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Abstract We show how the unitary, genetic S-code
description of the family of Kepler conic sections,
not only enlightens the genesis of the so called Dan-
delin spheres but also naturally unfolds in the Kepler
scenery the famous golden ratio, the golden rectangle
and the Fibonacci sequence.

Keywords Kepler conic sections · Dandelin
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1 Introduction

THE FAMILY OF THE KEPLER CONIC SECTIONS.
The three classical curves (ellipse, parabola and hy-

perbola) were described by the two great Greek ge-
ometers Menaechmus (c.375-325 B.C.) and Apollo-
nius of Perga (c.262-190 B.C.) as geometrical objects,
obtained by intersecting a cone with a plane: thus the
expression conic sections.

The same curves were described geometrically
by the Greek mathematician Pappus of Alexandria
(c.290-350 AD) as the locus of points such that the
ratio of the their distances from a given fixed point
and from a straight fixed line is a constant value: the
conic being a parabola, ellipse or hyperbola according
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as the constant ratio is equal to, less than or greater
than 1.

We have to wait for Kepler and Newton to find a
physical application for the conic sections in the dy-
namics of celestial bodies where it is shown that a
mass point under the influence of a central, attractive,
inverse square law field, describes an orbit which is a
conic section. It was Kepler that introduced the term
focus to denote the attractive, fixed point.

Actually, the Kepler conics, implemented by the
peculiar perfect ellipse (the circle), are classified, both
from a geometrical and physical point of view, in the
following four types

circle, ellipse, parabola, hyperbola

corresponding, respectively, to the following constant
values of

(1) the geometrical ratio e (the eccentricity):

e = 0, 0 < e < 1, e = 1, e > 1; (1)

(2) the physical total mechanical energy E per unit of
mass of the particle:

E = −K4(2�2)−1, E < 0, E = 0,

E > 0,

related to e by

e2 − 1 = 2E�2K−4 (2)
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Fig. 1 The polar {F,ρ,τ } and the cartesian {F, I,J,K} frames

Fig. 2 The sum vector S. The orthogonal constant vector N

where � is the magnitude of the constant angular
momentum vector per unit of mass and K2 is the
universal constant of gravitation.

The whole family of conic sections, characterized
by the scalar couple (E,�) or by the equivalent couple
of positive numbers

(e,p)

(giving both the shape e and dimension p = �2 K−2),
is represented by the polar scalar equation

r = p

1 + e cos θ
(3)

in a standard plane polar coordinate system (r, θ), with
the origin at the fixed focus F , and with r = |x|, being
x the point particle position vector (Fig. 1)

x = P − F = rρ.

The axis θ = 0 is characterized by the eccentricity vec-
tor

e = eρ(0). (4)

THE GENETIC S-CODE OF THE FAMILY. THE VEC-
TOR N AND THE N -CONE.

In our previous works [4–6, 8] we have shown that:

(A) a vector equation of the whole Kepler family of
conic sections is

S · x = 1 (5)

where the sum vector S, defined by

S ≡ B − F ≡ p−1(e + ρ), (6)

lies in the polar plane of the orbits (see Fig. 2);
(B) the vector S, by (5) and (6), not only encompasses

the scalar equation (3), but also stores in a sort
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Fig. 3 The vectors e and N in the 3-space {F,X,Y,Z}

of genetic code all the characteristic geometrical
and dynamical information about the Kepler fam-
ily (for instance, Newton’s gravitation law, Bi-
net’s equation, the energy E and the map which
regularizes at collision the Newton’s differential
equations of motion);

(C) in particular, the vector S encodes a constant vec-
tor N which, in the inertial right-handed unit sys-
tem {F, I,J,K} (Figs. 1 and 2), is defined by

N ≡ N − F ≡ p−1(e + K), (7)

is orthogonal to the {I,J}-plane of the conic orbits
and unravels naturally the N -cone which defines
the Kepler orbits as conic sections. Briefly, the N-
breed of the N -cone was found by relaxing the
restriction (4), so that

e = eXI + eY J = e cosφI + e sinφJ = e(φ)

(the angle φ giving the direction of e with respect
to I (Fig. 3)), whence

N = eX

p
I + eY

p
J + 1

p
K

and the three coordinates of its tip point N , that is

XN = p−1eX, YN = p−1eY ,

ZN = p−1
(8)

satisfy

X2
N + Y 2

N − Z2
N = (e2 − 1)p−2 (9)

Fig. 4 The N -cone structure

(where e = |e| =
√

eX
2 + eY

2). Since the sign of
(e2 −1) depends on e � 1, and ZN > 0, we found
several results, here summarized in the

Proposition 1.1 The conics are sections of the N -
cone.

(1) The N -cone with the vertex at F(0,0,0) is the up-
per nappe of the circular right cone given by

X2 + Y 2 − Z2 = 0. (10)

(2) The points N lying inside the N -cone correspond
to elliptical orbits, those on the cone to parabolic
ones and those outside the cone correspond to hy-
perbolic orbits (Fig. 4).

(3) Each point N defines a polar plane (with respect
to the unit sphere X2 + Y 2 + Z2 = 1 with centre
at F ), that is the plane, orthogonal to the line FN ,
defined by the equation

eX

p
X + eY

p
Y + 1

p
Z − 1 = 0 (11)

and which passes through the inverse point N∗
of N (such that the magnitudes are |N∗ − F | =
1/|N − F |).

(4) The polar plane intersects the N-cone in a conic
section, which, projected orthogonally onto the
{I,J}-plane, gives exactly a Kepler orbit (Fig. 5).

(5) The polar plane makes an angle β with the X-axis
such that

tanβ = e (12)

which is exactly the eccentricity of the Kepler or-
bit.
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Fig. 5 The projection of an elliptic section onto the Kepler plane

Summarizing: each Kepler orbit is represented by a
point N in the positive half-space Z > 0: the position
of N with respect to the N -cone (inside, outside or on
the cone) is determined by the type of the orbit, that is
by e.

The purpose of this paper The purpose of this paper
is to show how, embodied in the N-vector and in the
N -cone structure (that means deeply rooted into the
sum S-vector) we not only find another aspect regard-
ing the conic sections, that is the Dandelin spheres, but
that we also unravel in an unexpected way (in the Ke-
pler scenery) the famous entities: the golden ratio, the
golden rectangle and the Fibonacci sequence.

2 Two fundamental N-elements. The N-encoding
of the Dandelin spheres

The positive parameter p of the conics may be con-
sidered as a dimension parameter. We define paradig-
matic conics those corresponding to the unit value
p = 1 and with the eccentricity vector e = eI (lying
on the X-axis).

Let us restrict to the paradigmatic circular, elliptic
and parabolic orbits, orbits characterized by the cou-
ple

(0 ≤ e ≤ 1,p = 1).

Fig. 6 The N-rectangle and the associated N-triangle

These particular ‘unit’ (p = 1) members of the
conic family (with major axis on the I-axis) are
‘paradigmatic’, in the sense that, for each fixed value
of e in [0,1 ], they represent all the other conceiv-
able similar confocal orbits with p �= 1 and with
different inclination e(φ) in the Kepler plane, being
φ ∈ (0,2π).

From the previous restriction and by (7), the vector
N = eI + K, having the tip pont N with coordinates

XN = e, YN = 0, ZN = 1, (13)

defines in a natural way the two structures represented
in Fig. 6, that is

the N-rectangle and the N-triangle

which show up fundamental N-elements in the whole
paper.
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Fig. 7 The three N-embodied diagonal lengths 1,
√

1 + e2,
√

2

The first N-element, the N-rectangle, plays a key
role in this section. Notice that, being 0 ≤ e ≤ 1, the
length of its diagonal

FN = |N| = |N − F | =
√

1 + e2 (14)

ranges through the three particular lengths:

1,
√

1 + e2,
√

2, (15)

(from the unit segment FU , through the diagonals FN

of the rectangles defined by N , up to diagonal of the
unit square, as shown by the bold lines in Fig. 7).

As we shall show, the ratios of the first unit length, re-
spectively, to the sum and to the difference of the other
two lengths gives exactly the radiuses of the so called
Dandelin spheres.

These spheres are named after their discoverer, the
French/Belgium mathematician Germinal Pierre Dan-
delin (1794–1847), who demonstrated [1, 2] that if a
cone is intersected by a plane, the intersection is a
conic curve whose foci are exactly the points where
the plane touches the spheres inscribed in the cone (see
the Fig. 8, which depicts the two Dandelin spheres for
an ellipse). A parabola has one Dandelin sphere; an
hyperbola has two spheres, one for each nappe of the
cone.

Proposition 2.1 The two radius-vectors r1, r2 of the
two Dandelin spheres associated to a paradigmatic el-
liptic orbit, that is (Fig. 8)

r1 = F1 − C1 = r1u, r2 = F2 − C2 = −r2u

(where u is the unit vector orthogonal to the common
section plane) are related to the vector N and satisfy
the intertwining relation (parallelism)

r1 ∧ N = r2 ∧ N = 0

(wedge product ∧).

Proof Recall that, by definition, also the vector N is
orthogonal to the polar plane to which the elliptic sec-
tion belongs, whence N = N − F = Nu. �

We are now able to construct the Dandelin radiuses
r1, r2 directly from N.

THE N-BREED OF THE DANDELIN RADIUSES r1

AND r2.

On the same line of the vector N −F = N = √
1 + e2u,

construct:

(a) the two points N+ and N− which define, respec-
tively, the vectors

N+ ≡ N+ − F ≡ √
2u + N,

N− ≡ N− − F ≡ √
2u − N

with magnitudes (recall that for an ellipse√
2 >

√
1 + e2):

|N+| = |N+ − F | = √
2 +

√
1 + e2,

|N−| = |N− − F | = √
2 −

√
1 + e2;

(b) the inverse points N∗+ and N∗− of the two previ-
ous points N+, N− (with respect to the unit sphere
with centre at F ), which define the vectors

N∗+ ≡ N∗+ − F ≡ 1√
2 + √

1 + e2
u,

N∗− ≡ N∗− − F ≡ 1√
2 − √

1 + e2
u.

Proposition 2.2 The magnitudes of the two vectors

N∗+, −N∗−

give exactly the two lengths r1, r2 of the two Dandelin
radius-vectors for the paradigmatic elliptic orbits.

Proof The proof comes from simple geometrical facts
related to the elliptical conic sections obtained by cut-
ting the N -cone with the polar plane of N (with re-
spect to the unit sphere with center at F(0,0,0)).
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Fig. 8 The Dandelin spheres

In our hypothesis, (11) of the polar plane yields
the polar line z = −ex + 1 in the {X,Z}-plane
which:

(A) makes the angle β with the X-axis so that tanβ =
e, intersects the X-axis in the point ( 1

e
,0) and the

Z-axis in the point (0,1) (see Fig. 9);
(B) intersects the two lines z = ±x (of the cone) in

the two points given by

{
z = ±x,

z = −ex + 1
(16)

that is (see Fig. 10) in the two points P1,P2:

P1 =
(

1

1 + e
,

1

1 + e

)
,

P2 =
(

1

e − 1
,

1

1 − e

) (17)

(recall that e < 1 and that Z > 0). �

Proposition 2.3 The triangle with vertices F , P1, P2

has a right angle at F (Fig. 11). The radiuses of the
two Dandelin spheres, that is the radius r1 of the circle
(incircle) inscribed in the right-angled triangle FP1P2
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Fig. 9 The point N , the line P1P2 and the focuses F1,F2

Fig. 10 The elliptic section

and the radius r2 of the circle (excircle) ex-scribed to
the same triangle, are given by

r1 = 1√
2 + √

1 + e2
, r2 = 1√

2 − √
1 + e2

. (18)

Proof The well-known formula for a general triangle

S = P

2
r

(where S, P and r are, respectively, the area, the
perimeter of the triangle and the radius of the inscribed
circle), yields for our right-angled triangle:

FP1 · FP2 = Pr. (19)

Being FP2 the hypothenuse of an isosceles triangle
(since | 1

e−1 | = | 1
1−e

|, see Fig. 11) and FP1 = FP2 ·
tan(π

4 − β), with β satisfying (12), we find that

FP2 = √
2(1 − e)−1, FP1 = √

2(1 + e)−1
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Fig. 11 The right-angled triangle FP1P2

whence P1P2 =
√

FP1
2 + FP2

2 = 2
√

1 + e2

× (1 − e2)−1. Thus the whole perimeter is

P = 2
√

1 + e2 + 2
√

2

1 − e2
(20)

whence, by (19), we obtain the value r1 of (18).
Finally, r2 comes from a well-known formula

adapted to our case, or

r2 = S

P
2 − P1P2

(21)

where S = FP1·FP2
2 = 1

1−e2 and P is given by (20). �

The Proposition 2.3 finally proves Proposition 2.2,
showing that r1 and r2 are strictly related to the ratios
of the three fundamental N -lengths (15).

LEADING IDEA. We have shown how the vector N
(through its two offsprings under inversion N∗+, N∗−)
encodes the radiuses r1 and r2 of the Dandelin spheres
with centers C1 and C2.

The leading, key idea which has naturally brought
us to attain this result is that the points C1 and C2 lie
on the opposite sides of the polar line (and that circle-
inversion changes inner points into outer points and
vice-versa).

CIRCULAR, PARABOLIC, AND HYPERBOLIC
ORBITS. The above results (obtained for the elliptic
orbits) apply to the:

• paradigmatic circular orbits (e = 0), where N = K,
the polar line is the horizontal line z = 1, the tri-

angle F,P1,P2 is an isosceles one with unit height
and r1 = (1 + √

2)−1, r2 = (
√

2 − 1)−1;
• paradigmatic parabolic sections (e = 1), where,

from (17) and (18), the triangle degenerates in a seg-
ment and we have accordingly only one Dandelin

sphere with radius r1 =
√

2
4 ;

• paradigmatic hyperbolic orbits (e > 1), where
r1 �= r2, the polar line passing through the points
( 1
e
,0) and (0,1).

PROPERTY. It is worth noticing that: the perimeter of
the right triangle FP1P2 is exactly twice the radius r2

of the Dandelin sphere with centre C2.

3 Physical interpretation of a Dandelin sphere

In recovering the Dandelin spheres we have consid-
ered the parameter p as a dimension parameter, that is
as a geometrical quantity.

Now, we are going to give a physical flavor to our
results, by recalling that the parameter p is related to
the angular momentum magnitude � of the Kepler mo-
tion and to the universal constant of gravitation K2 by
the relation

p = �2K−2.

For the paradigmatic orbits (p = 1), the relation (2)
becomes e2 + 1 = 2 + 2EpK−2 = 2 + 2EK−2 which,
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substituted in the formula (18) for the Dandelin radius
r1, finally yields

r1 = 1√
2

(
1

1 + √
1 + EK−2

)
(22)

which gives r1 = r1(E).
Thus, we may state that any sphere with a given ra-

dius r1 in the Euclidean three-dimensional space rep-
resents a physical Kepler orbit with mechanical en-
ergy E related to r1 by (22). For the particular energy
values E = −K4(2�2)−1 = − 1

2K2 (being p = 1) and
E = 0, we recover the radiuses r1 given explicitly in
Sect. 2 for the circle and the parabola.

4 N-encoding: the golden ratio � and the golden
rectangle

The second fundamental N-element, the N-triangle,
plays a key role by encoding the famous golden num-
ber: the golden section or golden ratio.

Let us consider the perimeter of the N-triangle
which is obviously

1 + e +
√

1 + e2.

Now, let us ‘open’ this perimeter (by rotating the
hypotenuse HU = √

1 + e2 about the vertex H till
it becomes aligned to the cathetus FH , yielding the
segment FHext (see Fig. 12, which shows this simple
construction). The resulting whole length

1 + (e +
√

1 + e2)

may now be considered as the semi-perimeter of a
rectangle with

height = FU = 1, base = FHext = e +
√

1 + e2.

We call this rectangle the extended N-rectangle or,
briefly, Next -rectangle.

THE golden ratio. THE Next -RECTANGLE FOR e = 1
2

IS a golden rectangle.

When the eccentricity varies in the range [0,1], the
different extended rectangles vary from a degenerate
unit segment, up to a rectangle of height 1 and base
1 + √

2.

Fig. 12 Perimeter of the N-triangle = Semi-perimeter of its
Next-rectangle

When the eccentricity assumes the medium value
e = 1

2 , the Next-rectangle has

height = 1, base = 1

2
+

√
5

2
= 1 + √

5

2
.

This result:

(a) Unravels the golden ratio, for the length of the
base is exactly

� = 1 + √
5

2
= 1,618 . . .

that is the famous irrational number, the golden
ratio or golden section (see [3]).

(b) Shows that the particular Next -rectangle corre-
sponding to e = 1

2 (having height 1 and base �) is
a rectangle with sides in the ratio 1 : � and thus is
a golden rectangle, the famous rectangle [3] con-
sidered in art and in architecture to posses the most
pleasing appearance (Fig. 13).

Thus, the introduction of the vector N unravels that:

Proposition 4.1 The particular N-vector

N = 1

2
I + K

related to the particular couple (p, e) = (1, 1
2 ), ex-

hibits, through the associated Next -rectangle, the two
famous golden elements: the golden ratio � and the
golden rectangle.
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Fig. 13 The golden rectangle (the Next-rectangle for e = 1
2 )

Fig. 14 The Kepler ellipse for the golden Next-rectangle (for e = 1
2 )

THE GOLDEN RECTANGLE IN THE PHYSICAL KE-
PLER ARENA.

What is the paradigmatic Kepler orbit associated to
the golden Next -rectangle? By the well-known identi-
ties (written for p = 1)

a = 1

1 − e2
, b = a

√
1 − e2, c = ae,

the physical Kepler orbit (p = 1, e = 1
2 ) is an ellipse

with (Fig. 14):

a = 4

3
(semi-major axis);

b = 2
√

3

3
(semi-minor axis);

c = ae = 2

3
(focus F in the middle point

of the semi-major axis).

such that b = √
a and which shows the particular an-

gles π
3 and π

6 (equilateral triangle).

Comment The well-known golden rectangle is gen-
erally constructed in the literature by starting from a
whatsoever unit square ABCD, by dividing it in two
equal parts via a vertical segment T S (whence the
bases AT = T B = 1

2 ), by drawing the arc CE (centre
at T and ray T C), thus obtaining the golden rectangle
with base AE = � and the original height 1. Whereas
we construct the golden rectangle by starting from a
well definite figure, the N-triangle.

5 Golden N-cylinders. Pythagora’s pentagrams

A plane Next -rectangle corresponds to a given eccen-
tricity vector e = eI.

Now, if (for a fixed value e) the eccentricity vector
e is free to assume all the possible inclinations in the
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Fig. 15 The golden Next-cylinder in the 3-space {F, I,J,K}

Fig. 16 The golden N-rectangle and the starry pentagram

I,J plane, that is e = e(φ), the corresponding extended
Next -rectangles (generated by a φ-rotation about the
Z-axis) define in the three-space a N-cylinder with
unit height.

If also the magnitude |e| = e ≥ 0 is free to assume
all the values, so that e = e(φ) = eXI + eY J, we have
infinite concentric cylinders, one for each e.

Among these cylinders, the particular one with

height 1 and radius � = 1+√
5

2 (Fig. 15) which we
call golden Next -cylinder, represents all the Kepler el-
lipses (p = 1, e = 1

2 ) obtained by rotating the peculiar
paradigmatic one of Fig. 14 in its plane.

An intriguing aspect: by the simple construc-
tion of Fig. 16 and by the trigonometric relation
� = 2 cos π

5 = 2 cos 36◦, a golden rectangular section
of our golden cylinder generates an isosceles triangle
which is a ‘corner’ of the beautiful starry pentagram
of Pythagoras.

Summarizing:

ellipse

(
1,

1

2

)
→ golden rectangle Next

→ golden � → Phythagora’sstar

(one may say that a peculiar celestial elliptical Kepler
orbit in the sky finds a starry representation).

6 The Fibonacci sequence

Let us dwell on a fascinating result regarding particu-
lar parabolic orbits (p = 1, e = 1).

The sides (1, e,
√

1 + e2) of the associated right-
angled N-triangles are

1, 1,
√

2.
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Fig. 17 The
√

triangles related to the Fibonacci sequence

Now, let us treat all these three values in a uniform
way (by regarding all of them as square roots). Then
we may state that the N-triangle has sides
√

1,
√

1,
√

2

(the first triangle in Fig. 17).
Now, let us adopt a sort of shift-back clockwise-

operation, by shifting the base side to the height posi-
tion, by shifting the hypothenuse to the base side and
by evaluating the new hypothenuse, whence generat-
ing a new triangle with sides
√

1,
√

2,
√

3

(second triangle, Fig. 17). Similarly we construct the
third triangle (

√
2,

√
3,

√
5), and so on.

In so doing we have generated the following se-
quence of heights:
√

1,
√

1,
√

2,
√

3,
√

5,
√

8,
√

13, . . .

which, once squared, gives the sequence

1,1,2,3,5,8,13, . . .

which is exactly the famous, fascinating Fibonacci se-
quence.

Let us notice (in this N-triangle approach) the cor-
rect and natural repetition of the first two terms of the
Fibonacci sequence.

7 Conclusions and outlook

It is well-known that the Kepler orbits are plane
curves. In [4, 7] we have shown that the whole Ke-
pler family (and several of its geometrical and phys-
ical characters) are generated by the plane vector S.
Moreover [8], when this vector pops up in the three-
dimensional space and generates both the vector N and

the N -cone structure, the curves show up undoubtedly
as conic sections.

In this paper, we have naturally embedded in
this unitary and physical N-description not only the
so called Dandelin spheres, but also several other
renowned (and different) geometrical quantities (such
as the famous golden ratio �, the celebrated golden
rectangle and the famous Fibonacci sequence).

Thus, as an outlook, since the (S → N)-approach
has not only provided by birth a ‘primigenial unity’
among the different features strictly belonging to the
Kepler motion, but also, as shown in this paper, has re-
vealed a fundamental role in bringing together differ-
ent traditional aspects of the literature (which, at first
sight, do not strictly belong to the Kepler scenery but
are shown to be deeply intertwined to it), let us state
that this approach, suitably developed, may help in un-
derstanding the intimate structure of other geometrical
and dynamical research areas.
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