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Abstract In the article, the exact solution of a sinu-
soidal loaded simply supported rectangular plate is
given for the case of an isotropic plate and for the case
of a transversally inextensible plate. Asymptotic and
numerical comportment with Reissner, Mindlin and
Reddy plate models is present.

Keywords Elasticity · Plate theory · Shear
deformable plates

1 Introduction

The aim of various plate theories is to reduce three
dimensional elasticity problems to two dimensional
problems. When a theory is developed, one has the
temptation to compare an exact solution of some sim-
ple three dimensional problems to results predicted by
the plate theory and in this way obtain a direct differ-
ence between them. Lack of exact three-dimensional
solutions often force authors to compare results only
among plate theories [1] or/and among methods of so-
lution, and by such comportment we can hardly decide
which plate theory is better. A typical introductory
problem in plate theory is the simply supported rect-
angular plate subject to sinusoidal distributed trans-
verse load, which is treated by Navier’s double series
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method [2, 3]. No comportment to an exact three-
dimensional solution of this problem is provided in
standard monographs and textbooks [2–9], though a
three dimensional solution does exist.

Apparently, the three dimensional solution of the
problem was first provided in 1931 by Galerkin [10],
who expressed stress components through a single
stress function which satisfies the biharmonic equa-
tion. In 1985 Levinson [11] gave a solution by solv-
ing Navier’s equations by the semi-inverse method.
Levinson’s approach was later discussed in detail
by Nicotra and Podio-Guidugli [12]. In 1988 Barret
and Ellis [13] illustrated their exact general three-
dimensional solution of elasticity equations by consid-
ering a sinusoidally loaded isotropic rectangular plate.
However, they provided only formulas for displace-
ments. In 1999 Werner [14] provided a solution of
the problem by setting the transversal normal stress
at zero so the load would become a characteristic
volume force distribution across plate thickness. Re-
cently Demasi [15] gave the exact three-dimensional
for isotropic thick and thin rectangular plates using
mixed form of Hooke’s law and by solving the eigen-
value problem. This approach leads to algebraic field
solutions for all the displacements and stresses which
no longer require a new solution of the differential
equation or eigenvalue problem. Future references for
various other analytical and semi-analytical methods
used to solve the problem may be found in Teo and
Liew [16]. To that we add that various exact 3D elas-
ticity solutions of orthotropic plates, sandwich plates,
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piezoelectric plates, and variable-thickness inhomoge-
neous elastic plates may be found in [17–31].

In the article the three-dimensional problem of
bending of a sinusoidally loaded simply supported
rectangular plate will be solved once more by a
method similar to one used by Levinson but in a more
direct fashion by assuming displacements distribution
which fulfils the boundary conditions. Aside from the
isotropic plate, the solution for the transverse inex-
tensible plate will be given since some plate theo-
ries are directly or tacitly based on assumptions that
better suite such plates. All the expressions for dis-
placements, stress components and stress resultants
are present in their explicit form. The solutions are
then compared to solutions given by three plate mod-
els: Reissner, Mindlin and Reddy.

2 Governing equations

We consider the equilibrium of a weightless homoge-
neous transversally isotropic elastic plate bounded by
the planes

x = y = 0 x = a y = b z = ±h

2
(1)

The stress-strain state of the plate is characterized
by the normal stress components σx,σy, σz, the shear
stresses components τxy, τxz, τyz, and the displace-
ment components u,v,w. The equations connecting
these quantities are: equilibrium equations

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
= 0 (2)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
= 0

and constitutive equations. For an isotropic plate we
have

σx = 2G

(1 − 2ν)

[
(1 − ν)

∂u

∂x
+ ν

(
∂v

∂y
+ ∂w

∂z

)]

σy = 2G

(1 − 2ν)

[
(1 − ν)

∂v

∂y
+ ν

(
∂u

∂x
+ ∂w

∂z

)]
(3)

σz = 2G

(1 − 2ν)

[
(1 − ν)

∂w

∂z
+ ν

(
∂u

∂x
+ ∂v

∂y

)]

τxy = G

(
∂u

∂y
+ ∂v

∂x

)
τxz = G

(
∂u

∂z
+ ∂w

∂x

)

τyz = G

(
∂v

∂z
+ ∂w

∂y

) (4)

where G ≡ E
2(1+ν)

is shear modulus, with E the mod-
ulus of elasticity and ν Poisson’s ratio. For a transver-
sally inextensible plate for which the shear proper-
ties are isotropic, the constitutive equations (3) are re-
placed by

σx = 2G

1 − ν

(
∂u

∂x
+ ν

∂v

∂y

)

σy = 2G

1 − ν

(
∂v

∂y
+ ν

∂u

∂x

)
∂w

∂z
= 0

(5)

The boundary conditions of the problem are the fol-
lowing. Along the sides of the plate, we have

at x = 0 and x = a : w = 0 σx = 0

at y = 0 and y = b : w = 0 σy = 0
(6)

and on the plate faces the boundary conditions we have
are

on z = h

2
: σz = p τxz = τyz = 0

on z = −h

2
: σz = τxz = τyz = 0

(7)

where the load p is assumed to be in the form

p = p0 sin
πx

a
sin

πy

b
(8)

The shear stress components on the plate sides are
not specified. However, it is required that the plate is
in static equilibrium.

3 Isotropic plate

3.1 Solution

By examination of the problem, we may see that the
boundary conditions (6) are satisfied with displace-
ments of the form

u = U(z) cos
πx

a
sin

πy

b

v = V (z) sin
πx

a
cos

πy

b

w = W(z) sin
πx

a
sin

πy

b

(9)
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where the rigid body part of displacements is omitted.
Substituting these expressions into constitutive equa-
tions (3)–(4) and then resulting expressions for stress
components into equilibrium equations (2) we see that
the functions U(z), V (z) and W(z) must satisfy the
system of second order ordinary differential equations

d2U

dz2
−

[
λ2 + π2

a2(1 − 2ν)

]
U − π2

ab(1 − 2ν)
V

+ π

a(1 − 2ν)

dW

dz
= 0

d2V

dz2
−

[
λ2 + π2

b2(1 − 2ν)

]
V − π2

ab(1 − 2ν)
U

+ π

b(1 − 2ν)

dW

dz
= 0

d2W

dz2
− λ2(1 − 2ν)

2(1 − ν)
W − π

a(1 − ν)

dU

dz

− π

b(1 − ν)

dV

dz
= 0

(10)

where

λ ≡ π
√

a2 + b2

ab
(11)

The solution of this system may be written in the form

λaU = C1 coshλz + C2 sinhλz

+ C3λz coshλz + C4λz sinhλz

λbV = C1 coshλz + C2 sinhλz

+ C3λz coshλz + C4λz sinhλz (12)

πW = [
C2 − (3 − 4ν)C3

]
coshλz

+ [
C1 − (3 − 4ν)C4

]
sinhλz

+ C4λz coshλz + C3λz sinhλz

Note that the above solution contains only four inte-
gration constants—C1, C2, C3, and C4—instead of
six. However, as will be see below, this is enough to
satisfy all six face boundary conditions (7). Substitut-
ing expressions for displacements (9) into constitutive
equations (3)–(4) and taking (12) into account yields
expressions for in-plane stress components

σx = −p0

[
π2

λ2a2
f (z) + 2νg(z)

]
sin

πx

a
sin

πy

b

σy = −p0

[
π2

λ2b2
f (z) + 2νg(z)

]
sin

πx

a
sin

πy

b
(13)

τxy = p0
π2

λ2ab
f (z) cos

πx

a
cos

πy

b

and expressions for transverse stresses components

σz = p0
[
f (z) − 2(1 − ν)g(z)

]
sin

πx

a
sin

πy

b

τxz = πp0

λa

[
f1(z) − (1 − 2ν)g1(z)

]

× cos
πx

a
sin

πy

b
(14)

τyz = πp0

λb

[
f1(z) − (1 − 2ν)g1(z)

]

× sin
πx

a
cos

πy

b

where

f (z) = c1 coshλz + c2 sinhλz

+ c3λz coshλz + c4λz sinhλz

g(z) = c3 sinhλz + c4 coshλz

f1(z) = 1

λ

df

dz
= c1 sinhλz + c2 coshλz

+ c3λz sinhλz + c4λz coshλz

(15)

g1(z) = 1

λ

dg

dz
= c3 coshλz + c4 sinhλz

and

Ck = p0π

2λG
ck (k = 1,2,3,4) (16)

By means of transverse stress components (14), the
plate faces boundary conditions (7) reduce to the fol-
lowing system of four linear equations for calculation
of constants c1, c2, c3 and c4

f (h/2) − 2(1 − ν)g(h/2) = 1

f (−h/2) − 2(1 − ν)g(−h/2) = 0

f1(±h/2) − (1 − 2ν)g1(±h/2) = 0

(17)

which has the solution

c1 =
λh
2 cosh λh

2 − (1 − 2ν) sinh λh
2

sinhλh + λh
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c2 =
λh
2 sinh λh

2 − (1 − 2ν) cosh λh
2

sinhλh − λh
(18)

c3 = − cosh λh
2

sinhλh − λh

c4 = − sinh λh
2

sinhλh + λh

In this way the problem is solved.

3.2 Stress resultants

By means of (13) the bending moments on a unit of
length are by definition

Mx ≡
∫ h/2

−h/2
σxzdz

= p0

λ2

π2

λ2a2

×
(
1 − 2ν a2

b2

)
sinhλh + νλh a2

b2 coshλh − λh
(
1 − ν a2

b2

)
sinhλh − λh

× sin
πx

a
sin

πy

b

My ≡
∫ h/2

−h/2
σyzdz

= p0

λ2

π2

λ2b2

×
(
1 − 2ν b2

a2

)
sinhλh + νλh b2

a2 coshλh − λh
(
1 − ν b2

a2

)
sinhλh − λh

× sin
πx

a
sin

πy

b

(19)

and the twisting moment is

Mxy ≡
∫ h/2

−h/2
τxyzdz

= p0

λ

π2

λ2ab

× (1+2ν) sinhλh−νλh coshλh−λh(1+ν)

sinhλh − λh

× cos
πx

a
cos

πy

b
(20)

Using (14) the transverse shearing forces on a unit of
length are by definition

Qx ≡
∫ h/2

−h/2
τxzdz = p0

λ

π

λa
cos

πx

a
sin

πy

b

Qy ≡
∫ h/2

−h/2
τyzdz = p0

λ

π

λb
sin

πx

a
cos

πy

b

(21)

We may now check the static equilibrium of the plate.
Using (21) the reaction forces along the plate sides are

Fx =
∫ b

0
Qxdy = − 2b

λ2a
p0

Fy =
∫ a

0
Qydx = − 2a

λ2b
p0

(22)

The sum of vertical forces is therefore

2Fx + 2Fy = −4ab

π2
p0

and this equals total load

∫ a

0

∫ b

0
pdxdy = 4ab

π2
p0

The plate is thus in static equilibrium as expected.

3.3 Case of a thin plate

In order to compare the obtained solution with various
plate theories we introduce dimensionless transverse
coordinate ζ and a small dimensionless parameter η

by writing

ζ ≡ z

h/2
∈ [−1,1] η ≡ λh � 1 (23)

Expansion of displacements (9) with respect to η and
retaining only the first term in the expansion yields

u = − p0

λ4D

[
πη

2λa
ζ + O

(
η3)] cos

πx

a
sin

πy

b

v = − p0

λ4D

[
πη

2λb
ζ + O

(
η3)] sin

πx

a
cos

πy

b

w = p0

λ4D

[
1 + η2

40

(
8 − 3ν

1 − ν
− 5ν

1 − ν
ζ 2

)
+ O

(
η4)]

× sin
πx

a
sin

πy

b

(24)
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Similarly the expansions of stress components (13)–
(14) are

σx = p0

[
6π2

λ2b2

(
ν + b2

a2

)
ζ

η2
+ O(η0)

]

× sin
πx

a
sin

πy

b

σy = p0

[
6π2

λ2a2

(
ν + a2

b2

)
ζ

η2
+ O(η0)

]

× sin
πx

a
sin

πy

b

τxy = −p0

[
6π2(1 − ν)

λ2ab

ζ

η2
+ O(η0)

]

× cos
πx

a
cos

πy

b

(25)

τxz = p0

[
3π

2λa

1 − ζ 2

η
+ O(η0)

]
cos

πx

a
sin

πy

b

τyz = p0

[
3π

2λb

1 − ζ 2

η
+ O(η0)

]
sin

πx

a
cos

πy

b

σz = p0

[
1

4
(1 + ζ )2(2 − ζ ) + O(η2)

]
sin

πx

a
sin

πy

b

The above formulas illustrate that for a thin plate
the in-plane displacements and in-plane stress compo-
nents are in the first approximation linearly distributed
across plate thickness while transverse shear stress
components are distributed parabolically. Such distri-
butions are customary initial assumptions of classical
plate theories. Note that the order of magnitude of in-
plane stress components is O(η−2), the order of mag-
nitude of transverse shear stress component is O(η−1)

and the order of magnitude of σz is O(η0). The expan-
sion of moments (19) and (20) with respect to η are

Mx = p0

λ2

π2

λ2b2

[
b2

a2
+ ν + ν

10
η2 + O(η4)

]

× sin
πx

a
sin

πy

b

My = p0

λ2

π2

λ2a2

[
a2

b2
+ ν + ν

10
η2 + O(η4)

]

× sin
πx

a
sin

πy

b

(26)

Mxy = −p0

λ2

π2

λ2ab

[
1 − ν − ν

10
η2 + O(η4)

]

× sin
πx

a
sin

πy

b

This shows that the bending moments are of an order
of magnitude O(η0). To that we note that the trans-
verse shearing forces (21) do not depend on h so they
have no expansion with respect to η.

4 Transversally inextensible plate

Consider now the transversally inextensible plate. The
solution of the problem is sought in the form

u = U(z) cos
πx

a
sin

πy

b

v = V (z) sin
πx

a
cos

πy

b
(27)

w = W0 sin
πx

a
sin

πy

b

where U(z) and V (z) are unknown functions and W0

is a constant. Substituting these expressions into con-
stitutive equations (4) and (5)1,2 we obtain expressions
for stress components. Introducing them into equi-
librium equations (2)1,2 we obtain a system of ordi-
nary differential equations which may be written in the
form

d2U

dz2
−

[
λ2 + π2

a2(1 − 2ν)

]
U

− π2(1 + ν)

ab(1 − ν)
V = 0

d2V

dz2
−

[
λ2 + π2

b2(1 − 2ν)

]
V

− π2(1 + ν)

ab(1 − ν)
U = 0

(28)

where

λ ≡ π
√

a2 + b2

ab
α2 ≡ 2

1 − ν
(29)

The solution of this system may be expressed as

λaU = a2(C1 coshλz + C2 sinhλz)

+ C3 coshαλz + C4 sinhαλz

λbV = b2(C1 coshλz − C2 sinhλz)

+ C3 coshαλz + C4 sinhαλz

(30)
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From the third equilibrium equation (2), one, after in-
tegration, obtains

σz = G

[
π

ab
(bU + aV ) + W0λ

2z + C

]
sin

πx

a
sin

πy

b

(31)

The values of the constants in (30) and (31) follow
from boundary conditions (7)

C1 = C2 = C4 = 0

C3 = πW0

α cosh αλh
2

(32)

C = p0

2

By means of (27), (30) and (32) the final expressions
for displacement components are

u = πp0

λ2aG

sinhαλz

cosh αλh
2

(
αλh

2 − tanh αλh
2

) cos
πx

a
sin

πy

b

v = πp0

λ2bG

sinhαλz

cosh αλh
2

(
αλh

2 − tanh αλh
2

)

× sin
πx

a
cos

πy

b

(33)

w = αp0

2λG

1
αλh

2 − tanh αλh
2

sin
πx

a
sin

πy

b

The stress components defined by above displace-
ments follows from (4), (5) and (31). The in-plane
stress components are

σx = p0
π2

λ2b2(1 − ν)

(
ν + b2

a2

)
sinhαλz

αλh
2 cosh αλh

2 − sinh αλh
2

× sin
πx

a
sin

πy

b

σy = p0
π2

λ2a2(1 − ν)

(
ν + a2

b2

)
sinhαλz

αλh
2 cosh αλh

2 − sinh αλh
2

× sin
πx

a
sin

πy

b

(34)

τxy = p0
π2

λ2ab

sinhαλz

αλh
2 cosh αλh

2 − sinh αλh
2

× cos
πx

a
cos

πy

b

and the transverse stress components are

σz = p0

2

(
1 +

αλz
2 cosh αλh

2 − sinhαλh

αλh
2 cosh αλh

2 − sinh αλh
2

)

× sin
πx

a
sin

πy

b

τxz = p0
πα

2λa

cosh αλh
2 − coshαλz

αλh
2 cosh αλh

2 − sinh αλh
2

× cos
πx

a
sin

πy

b

(35)

τyz = p0
πα

2λb

cosh αλh
2 − coshαλz

αλh
2 cosh αλh

2 − sinh αλh
2

× sin
πx

a
cos

πy

b

4.1 Stress resultants

The bending stress resultants corresponding to the
stress components (34)–(35) are

Mx = p0

λ2

π2

λ2b2

(
ν + b2

a2

)
sin

πx

a
sin

πy

b

My = p0

λ2

π2

λ2a2

(
ν + a2

b2

)
sin

πx

a
sin

πy

b
(36)

Mxy = −p0

λ2

π2

λ2ab
(1 − ν) sin

πx

a
sin

πy

b

Qx = p0

λ

π

λa
cos

πx

a
sin

πy

b

Qy = p0

λ

π

λb
sin

πx

a
cos

πy

b

(37)

From these we may see that unlike the isotropic plate
for a transversally inextensible plate, besides shear
forces, the moments are also independent of plate
thickness h.

If we perform an expansion with respect to η sim-
ilar to the isotropic plate we find that in the present
case the expansions for displacement components dif-
fer from those of an isotropic plate (24) only for plate
deflection, which is for present case given by

w0 = p0

λ4D

[
1 + η2

5

1

1 − ν
+ O

(
η4)] (38)

while the expansions for stress components are the
same as for an isotropic plate (25).
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Fig. 1 Displacement distribution across the thickness of square plate. Distribution of u is at middle of the plate side and w in the
center of the plate. Full lines give results for the isotropic plates, while the dashed lines are for the transversally inextensible plates

Fig. 2 Distribution of normal stress components across the thickness of a square plate at plate center. Full lines give results for
isotropic plates, while dashed lines are for transversally inextensible plates

4.2 Comparison

A comparison between isotropic and transversally in-
extensible plates is shown in Figs. 1–4, where the dis-
placements and stress components distribution across
plate thickness for a square plate with ratios h/a = 1/4
and h/a = 1 are shown and Fig. 5 where the deflec-
tion and maximal stress are shown for various ratios of
b/a and h/a. As my be seen from these figures there
is a minor difference in distributions of displacement

and stress components between isotropic and transver-
sally inextensible plates for ratios h/a < 0.25. The
difference becomes noticeable only for a higher ratio
of h/a.

5 Comparison with plate theories

In this section, we compare the above exact solu-
tions with three plate models: Reissner’s, Mindlin’s
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Fig. 3 Distribution of shear stress components across the thickness of a square plate: τxy at the middle of the plate, τxz at the middle
of the plate side. Full lines give results for isotropic plates, while dashed line are for transversally inextensible plates

Fig. 4 Deflection of center of square plate. Full lines give re-
sults for isotropic plates, while dashed line are for transversally
inextensible plates

and Reddy’s. All three theories approximate w ≈
w0(x, y), which is exact for the transversally inexten-
sible plate; however, Reissner’s model includes σz in
constitutive equations for in-plane stress components
while Mindlin’ and Reddy’ models do not so they may
also be suitable for modelling transversally inextensi-
ble plates.

5.1 Reissner and Mindlin plate

where
The basic equations of shear deformable plates es-

tablished by Reissner [32, 33] and Mindlin [33, 34]
may be written in the form

D�2w0 = p − h2(2 − ων)

10(1 − ν)
�p (39)

The equation’s shear forces equations are

Qx − h2

10
�Qx

= −D
∂�w0

∂x
− h2

10

1 + ν(1 − ω)

1 − ν

∂p

∂x

Qy − h2

10
�Qy

= −D
∂�w0

∂y
− h2

10

1 + ν(1 − ω)

1 − ν

∂p

∂y

(40)

and the moments are determined by

Mx = −D

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
+ h2

5

∂Qx

∂x

− h2

10

ν(2 − ω)

1 − ν
p
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Fig. 5 Midplane deflection (left) and maximum stress (right) for various ratios of b/a and h/a. Full lines give results for isotropic
plates, while dashed line are for transversally inextensible plates

Mx = −D

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
+ h2

5

∂Qx

∂x

− h2

10

ν(2 − ω)

1 − ν
p

(41)

Mxy = −(1 − ν)D
∂2w0

∂x∂y
+ h2

10

(
∂Qx

∂y
+ ∂Qy

∂x

)

where

ω =
{

0 transversally inextensible plate (Mindlin)

1 isotropic plate (Reissner)

(42)

and where for Mindlin’s model the shear correction
factor is taken to be κ2 = 5

6 . Now, if we sought the
solution of (39) and (40) in the form

w0 = W sin
πx

a
sin

πy

b

Qx = A cos
πx

a
sin

πy

b

Qy = B sin
πx

a
cos

πy

b

(43)

where W,A and B are constants, then by substituting
(43) into (39)–(40) we obtain

w = p0

λ4D

(
1 + η2

10

2 − ων

1 − ν

)
sin

πx

a
sin

πy

b
(44)

Qx = p0

λ

π

λa
cos

πx

a
sin

πy

b

Qy = p0

λ

π

λb
sin

πx

a
cos

πy

b

(45)

From this it follows that the shear forces for both plate
models are the same and match exact values (21). The
magnitude of error for deflection in the case of an
isotropic plate is for both theories of the order O(η2),
as may be seen by comparing (44) and (24). In the case
of a transversally inextensible plate the error of deflec-
tion for Mindlin’s plate is of the order O(η4), as may
be seen by comparing (38) and (44) with ω = 0.

By means of (44) and (45) the moments (41) be-
come

Mx = p0

λ2

π2

λ2b2

(
b2

a2
+ ν + ων

10
η2

)
sin

πx

a
sin

πy

b

My = p0

λ2

π2

λ2a2

(
a2

b2
+ ν + ων

10
η2

)
sin

πx

a
sin

πy

b

Mxy = −p0

λ2

π2

λ2ab

(
1 − ν − ων

10
η2

)
sin

πx

a
sin

πy

b

(46)

If we compare this with expansions (26) we find
that for the case of an isotropic plate the difference
between exact moments and moments of Reissner’s
model is of the order O(η4) while for Mindlin’s model
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it is of the order O(η2). For a transversally inexten-
sible plate the moments given by the Mindlin plate
model match the exact values (36).

5.2 Reddy’s plate model

The basic equation of the Reddy plate model [3],
Eqs. (6.4.4, 6.4.5, 6.4.6, 6.4.11a-6.4.11j) may be trans-
formed into the following form which is convenient
for analytical treatment

D�2w0 = 5p − 4P − 4h2

21(1 − ν)
�P

P ≡ −
(

∂Qx

∂x
+ ∂Qy

∂y

) (47)

Qx − 17h2

168
�Qx

= −D
∂�w0

∂x
− 17h2(1 + ν)

168(1 − ν)

∂P

∂x

Qy − 17h2

168
�Qy

= −D
∂�w0

∂y
− 17h2(1 + ν)

168(1 − ν)

∂P

∂y

(48)

Observe that unlike Reissner’ and Mindlin’ plate mod-
els the above equations form the coupled system of
differential equations for unknowns w0, Qx and Qy .
The moments are

Mx = −D

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
+ h2

5

∂Qx

∂x

− h2ν

5(1 − ν)
P

My = −D

(
∂2w0

∂y2
+ ν

∂2w0

∂x2

)
+ h2

5

∂Qy

∂y

− h2ν

5(1 − ν)
P

(49)

Mxy = −(1 − ν)D
∂2w0

∂x∂y
+ h2

10

(
∂Qx

∂y
+ ∂Qy

∂x

)

The solution of the system (47)–(48) is again sought in
the form (43). Omitting details, the final solution may
be written in the form

w = p0

λ4D

1 + 17
84

η2

1−ν

1 + 1
420

η2

1−ν

sin
πx

a
sin

πy

b
(50)

Qx = p0

λ

π

λa

1

1 + η2

420
1

1−ν

cos
πx

a
sin

πy

b

Qy = p0

λ

π

λb

1

1 + η2

420
1

1−ν

sin
πx

a
cos

πy

b

(51)

It turns out that the moments (49) corresponding to this
solution are the same as (46) with ω = 0; i.e., as pre-
dicted by Mindlin’s plate model. So, for the case of an
isotropic plate the difference between exact moments
and moments of Reddy’s model is of the order O(η2)

and for a transversally inextensible plate the moments
match exact values (36). From (50) we see that the de-
flection error is of the order O(η2) even in the case
of a transversally isotropic plate; so Mindlin’s model
in this case yields a smaller error. Also, from (51) it is
seen that unlike Reissner’s model and Mindlin’s model
the error in shear forces are of the order O(η2).

5.3 Numerical results

The quantitative comportment between models is
given in Tables 1 and 2. The results in the tables
confirm the results of qualitative asymptotic analy-
ses. As may be seen from Table 1 the smallest de-
flection relative error is for a square isotropic plate
obtained by Reissner’s plate model, which gives a rel-
ative error below 0.5% even for the ratio h/a = 0.3.
Comparing Reddy’s and Mindlin’s models, the first
gives approximately two times the smallest relative er-
ror in deflection. However, for transversally inextensi-
ble plates the deflection error is smallest for Mindlin’s
plate model as was expected on the base of asymp-
totic analysis. Note that the relative error of deflection
is for Mindlin’s transversally inextensible plate for ra-
tio h/a = 0.3 even below 0.2%. Table 2 illustrates the
comportment of maximum normalized bending mo-
ment for a square plate. Note that in the table the val-
ues for the bending moment for the Mindlin and Reddy
plate models are the same since the moments for both
models are given by (46). It may be seen from the table
that the relative error in the bending moment for Reiss-
ner’s isotropic plate is in the case of deflection much
smaller than that of Mindlin’s and Reddy’s. However,
for a transversally inextensible plate Mindlin’s and
Reddy plate’s give the exact value for the maximum
bending moment.
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Table 1 Comportment of maximum normalized plate deflection w/(p0a
4/π4D) at middle of the square plate. A: isotropic plate,

B: transversaly inextensible plate. err is relative error in %. ν = 0.3

Exact Reissner Mindlin Reddy

h/a A B errA errA errB errA errB

0.01 0.250127 0.250141 0.250120 0.00 0.250141 −0.01 0.00 0.250132 0.00 0.00

0.05 0.253126 0.253524 0.252996 0.05 0.253525 −0.16 0.00 0.253289 −0.06 0.09

0.10 0.262476 0.264090 0.261985 0.19 0.264099 −0.62 0.00 0.263151 −0.26 0.36

0.15 0.277966 0.281676 0.276965 0.36 0.281724 −1.35 −0.02 0.279567 −0.58 0.75

0.20 0.299456 0.306250 0.297938 0.51 0.306398 −2.32 −0.05 0.302506 −1.02 1.22

0.25 0.326748 0.337766 0.324903 0.56 0.338121 −3.48 −0.11 0.331926 −1.58 1.73

0.30 0.359588 0.376169 0.357861 0.48 0.376895 −4.81 −0.19 0.367771 −2.28 2.23

Table 2 Comportment of maximum normalized bending moment Mx( a
2 , b

2 )/(p0a
2/π2) for square plate. A: isotropic plate,

B: transversaly inextensible plate. err is relative error in %. ν = 0.3

Exact Reissner Mindlin and Reddy

h/a A B errA errA errB

0.01 0.325014 0.325 0.325015 0.00 0.325 0.00 0.00

0.05 0.325370 0.325 0.325370 0.00 0.325 0.11 0.00

0.10 0.326480 0.325 0.326480 0.00 0.325 0.45 0.00

0.15 0.328327 0.325 0.328331 0.00 0.325 1.01 0.00

0.20 0.330910 0.325 0.330922 0.00 0.325 1.79 0.00

0.25 0.334224 0.325 0.334253 −0.01 0.325 2.76 0.00

0.30 0.338264 0.325 0.338324 −0.02 0.325 3.92 0.00

6 Conclusions

A comparison between exact 3D solutions of isotropic
and transversally inextensible plates shows that the
difference between calculated displacements and stress
component become noticeable for approximately
h/a > 0.25. More precisely, the expansions with re-
spect to parameter η (23) for the stress components up
to order O(η0) and in-plane displacement components
up to order O(η3) are the same for both theories. The
difference is only for the plate deflection which is of
the order O(η2). In addition, the expansions show that
the solution for small η is governed mostly by the plate
bending, while the plate stretching is negligible.

Comparison between asymptotic expansion of the
results of an exact solution with respect to η and the
results obtained by Reissner’s, Mindlin’s and Reddy’s
plate theories shows that for the case of an isotropic
plate the difference between exact moments and mo-
ments given by Reissner’s model is of the order O(η4),

while for Mindlin’s and Reddy’s model the difference
is of the order O(η2). For transversally inextensible
plates both the Mindlin and Reddy plate models give
moments which match expressions for the exact mo-
ments. Further, the Reissner and Mindlin models also
match the exact expressions for shear forces (which
are the same for isotropic and transversally inextensi-
ble plate) while for the Reddy model the difference is
of the order O(η2). The difference for deflection is in
the case of an isotropic plate and transversally inexten-
sible plate for all three plate models of the order O(η2)

except for the transversally inextensible Mindlin plate,
for which the difference is of the order O(η4).

The present results show that for the case of si-
nusoidally loaded simply supported rectangular plates
the Reissner plate model is superior to Mindlin’s and
Reddy’s plate models. For the transversally inextensi-
ble plate it is a bit surprising that Mindlin’s first order
plate model gives better results than Reddy’s third or-
der model.
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Appendix

The present solution may be easily generalized to a
more general load case that may be represented by

p =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
(52)

simply by replacing a with a
m

and b with b
n

so (11)
becomes

λmn = π2
(

m2

a2
+ n2

b2

)
(53)

If (53) is used in the above solution instead of λ then
all displacement components and stress components
may be expressed as double series. For example the
deflection given by (9) becomes

w =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
(54)
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