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Abstract The wave propagation modeling in cylindri-
cal human long wet bones with cavity is studied. The
dynamic behavior of a wet long bone that has been
modeled as a piezoelectric hollow cylinder of crys-
tal class 6 is investigated. An analytical solutions for
the mechanical wave propagation during a long wet
bones have been obtained for the flexural vibrations.
The average stresses of solid part and fluid part have
been obtained. The frequency equations for poroelas-
tic bones are obtained when the medium is subjected
to certain boundary conditions. The dimensionless fre-
quencies are calculated for poroelastic wet bones for
various values for non-dimensional wave lengths. The
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dispersion curves of the dry bone and wet bone for the
flexural mode n = 2 are plotted. The numerical results
obtained have been illustrated graphically.
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1 Introduction

The investigation of remodeling properties and smart
behavior of bone tissue and their applications to bio-
medical engineering by considering its coupled elas-
tic, magnetic, electric behavior has received a consid-
erable interest among the scientists of different fields
in the past decades. Bone is an heterogeneous and
anisotropic natural composite. It is assumed that the
solid part is perfectly elastic and the fluid part is New-
tonian viscous and compressible. The pores are inter-
connected and that flow of fluid, produced by defor-
mation of bone is governed by Darcy’s law. The study
of wave propagation through a continuous media is
of practical importance in the field of engineering,
medicine and in bioengineering. Application of the
poroelastic materials in medicinal fields such as or-
thopedics, dental and cardiovascular is well known. In
macroscopic terms the percentage of porosity in the
cortical bone is 3–5%, whereas in the trabecular or
cancellous the percentage of porosity is up to 90%
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(see, Natali and Meroi [1]). In recent years, nonin-
vasive quantitative ultrasound (QUS) techniques have
become important modalities for the investigation of
bone strength by Natali and Meroi [1], Thompson et
al. [2], Doherty et al. [3], Jurist [4] and Papathana-
sopoulou et al. [5]. The measurement of ultrasonic
properties of bone such as the speed of sound (SOS) or
the slope of frequency-dependent attenuation (broad-
band ultrasonic attenuation BUA) using the transmis-
sion of elastic wave through the skeleton has been
shown to convey important information related to bone
strength.

The dynamical behavior model, especially, wave
propagation and vibration of bone are necessary in
measuring in vivo properties of bone by the above
noninvasive method which discussed by Thompson et
al. [2], Doherty et al. [3] and Jurist [4], Papathana-
sopoulou et al. [5] investigated a theoretical analysis
of the internal bone remodeling process induced by a
medullar pin is presented. Fotiadis et al. [6] studied
wave propagation in human long wet bones of arbi-
trary cross-section. Fotiadis et al. [7] presented wave
propagation modeling in human long wet bones. Se-
baa et al. [8] considered many applications of frac-
tional calculus to ultrasonic wave propagation in hu-
man cancellous bone. Padilla et al. [9], studied numer-
ically the problem of wave propagation in cancellous
bone. Haeat et al. [10] investigated numerical simula-
tion of the dependence of quantitative ultrasonic pa-
rameters on trabecular bone’s micro-architecture and
elastic constants. Pithious et al. [11] presented, an al-
ternative ultrasonic method for measuring the elastic
properties of cortical bone. Kaczmarek et al. [12] in-
vestigated short ultrasonic waves in cancellous bone.
Levitsky et al. [13] studied wave propagation in cylin-
drical viscous layer between two elastic shells. Tadeu
et al. [14] studied 3D elastic wave propagation mod-
elling in the presence of 2D fluid-filled thin inclusions.
Paul and Murali [15] investigated wave propagation in
a cylindrical poroelastic bone with cavity. wet bones
are heterogeneous and an isotropic in nature. Qin et al.
[16] studied thermoelectroelastic solutions for surface
bone remodeling under axial and transverse loads.

Protopappas et al. [25] studied the ultrasonic moni-
toring of bone fracture healing, quantitative ultrasound
has attracted significant interest in the evaluation of
bone fracture healing, animal and clinical studies
have demonstrated that the propagation velocity across
fractured bones can be used as an indicator of healing.

Ultrasound velocity measurements on healing bones
using the external fixation pins: a two-dimensional
simulation study is pointed out by Vavva et al. [26].
The problem of computer simulations in the ultra-
sonic characterization of bone has further extended
our understanding about the parameters that affect
ultrasound velocity measurements is investigated by
Kauffman [27] and Moilanen [28]. Vavva et al. [29] il-
lustrated the velocity dispersion of guided waves prop-
agating in a free gradient elastic plate: Application to
cortical bone. Recently, Mahmoud [24] pointed out the
wave propagation in cylindrical poroelastic dry bones.

In the present paper, the three-dimensional equa-
tions of elastodynamics for transversely isotropic me-
dia are solved in terms of three displacement poten-
tials, each satisfying a partial differential equation of
the second order. For the hollow circular cylinder, sub-
jected to certain boundary conditions (fixed and mixed
boundary conditions), the results obtained in a charac-
teristic frequency equation in determinantal form of
sixth order. Several special cases of the general fre-
quency equation are discussed, including axially sym-
metric wave motion, the limiting modes of infinite
wave length, and longitudinal waves in a long thin
solid cylinder. The analysis presented here parallels
the work of Fotiadis et al. [7] who studied the cor-
responding problem for hollow transversely isotropic
circular cylinders. The paper is classified as follows.
In Sect. 2, we present the formulation of the prob-
lem. The solution of mechanical equation as harmonic
wave in hollow cylinder of infinite extent is derived in
Sect. 3. In Sect. 4, we investigate the frequency equa-
tion taking into consideration the boundary conditions,
inner surface fixed and outer surface fixed. Some spe-
cial cases are discussed in Sect. 5. The frequency equa-
tion in solid circular cylinder is investigated in Sect. 6.
The numerical results of the frequency equation are
discussed in detail for wet bones, displayed graphi-
cally and discussed in Sect. 7. Finally, the conclusions
are introduced in Sect. 8.

2 Formulation of the mechanical waves

The constitutive equations for a transversely isotropic
case with z as axis of the symmetry are taken in polar
coordinates as in Biot [17] take the form
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(2.1)

where, σij and σ are the average stresses of solid and
fluid respectively and Cij ,M , Q, R are the elastic con-
stants and C66 = 1

2 (C11 − C12).
The equation of the flow is

b−1
rr ∇2σ + b−1

zz σ = ∂(ε − σ)

∂t
(2.2)

where, brr = μf 2

krr
, bzz = μf 2

kzz
, ∇2 is Laplacian op-

erator in polar coordinates, μ is the viscosity, f is
the porosity and krr , kzz are the permeability of the
medium. The average displacements of solid and ve-
locity of fluid phases are taken as ui, and υi respec-
tively. The strains are expressed as eij = 1

2 (ui,j +uj,i)

and dilation of the phases as e = ui,j and ε = υi,i .

In general the stress-strain relation for a piezoelec-
tric body can be written in the following way in matrix
notation

σm = CmnSn − emkEk, 1 ≤ m,n ≤ 6, 1 ≤ k ≤ 3

(2.3)

where, emk and Ek are, respectively, the piezoelectric
strain constants and the components of the electrical
field. The last term in (2.3) is ignored in (2.1) for sim-
plification purposes the calculation. But this step can

be justified, where, they showed that the piezoelectric
stiffening in bones in the ultrasonic wave propagation
is small and negligibly. This simplification leads to the
mechanical stress equations by using the three dimen-
sional stress equations of motion in the form
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(2.4)

where, ρ is the density of the bone and t is the time.

3 Solution of the mechanical equations

In this analysis, a long bone is approximated by an in-
finite hollow cylinder. The free harmonic wave in hol-
low cylinder of infinite extent can be obtained by using
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the following solution in the field equations:
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(3.1)

where, ur,uθ , uz, υr , υθ , and υz are mechanical dis-
placements and velocities, k,
, and h are the wave
number, frequency and thickness of the cylinder,
h = b − a, a is the inner radius, b is the outer radius
and �,	,ζ and η all values are functions of r and θ

only.
Substituting from (2.1) into (2.2), (2.4) and us-
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(3.2)

By defining the dimensionless coordinate x = r
h

and
ε1 = kh, the above equations are written in dimension-
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The reason for ξ being defined as above and not be-
ing solved for the variable η is that the flow of fluid
through the boundaries of bone does not take place
during the study of the propagation of waves. How-
ever, η can be calculated if the flow on the boundaries
is prescribed writing (3.3) in the from
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Evaluating the determinantal form, the following
equations are obtained
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−R′C̄11 + M̄
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where, α2
i are the non-zero roots of the equation:
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by,
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the solution of (3.4) takes the form

	 = [A4Jn (α4x) + B4Yn (α4x)] sinnθ (3.7)

where, α2
4 = ((ch)2−ε2
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C̄66
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4 Frequency equation

4.1 Fixed boundary conditions

Using the following boundary conditions, inner sur-
face fixed and outer surface fixed

ur = uθ = uz = σ = 0 at r = a,

ur = uθ = uz = σ = 0 at r = b.

}
(4.1)

Substituting from (3.1), (3.6) and (3.7) into (4.1) and
grouping the coefficients of A1, B1, A2, B2, A3

and B3, we get the characteristic frequency equation
as a determinant form as

|aij | = 0, (i, j = 1,2, . . . ,8) (4.2)

where, the coefficients of a
ij

are included in Appen-
dix A in the paper end.

In this study, the wave propagation of a wet bone
with circular cylindrical cavity subjected to inner fixed
surface (r = a) and outer fixed surface (r = b) is con-
sidered, the frequency equation is obtained by consid-
ering the material as transversely isotropic in nature.

The numerical results are carried out and compared
for the wet bone as a poroelastic material and a purely
transversely isotropic elastic material.

For very large wave numbers, dispersion curves for
flexural modes (n = 1,2) deviate. The derivation of η

from ζ will lead to two arbitrary constants which can
be calculated if the pores of the bone at r = a, b are
shielded, that is

∂η

∂r
= 0 at r = a, b.

4.2 Mixed boundary conditions

Using the following, boundary conditions, outer sur-
face free and inner surface fixed.

σrr = σrz = σrθ = σ = 0 at r = b,

ur = uθ = uz = σ = 0 at r = a

}
(4.3)

where, ā = a/h, b̄ = b/h.
Substituting from (3.1), (3.6) and (3.7) into (4.3)

and grouping the coefficients of A1, B1, A2, B2, A3,
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B3, A4 and B4, we obtain the characteristic frequency
equation as the determinant form

|aij | = 0 (i, j = 1,2,3, . . . ,8) (4.4)

where, the coefficients of aij are take the form in Ap-
pendix B in the paper end.

In this study, the wave propagation of a wet bone
with circular cylindrical cavity subjected to traction
free inner surface (r = b) and fixed surface (r = a)

is considered, the frequency equation is obtained by
considering the material as transversely isotropic in
nature.

The numerical results are carried out and compared
for the wet bone as a poroelastic material and a purely
transversely isotropic elastic material.

For very large wave lengths, dispersion curves for
flexural modes (n = 1,2) deviate.

5 Special cases of frequency equation

5.1 Motion independent of z

As the wave number k → 0 (i.e., for infinite wave
length, λ = 2π/k), the following simplifications re-
sult.
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2
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(5.1)

hence,

a11 = 0 = a22 = a23 = a24 = a51 = a52 = a53 = a54

and the characteristic equation (4.2) of fixed boundary
conditions and (4.4) of mixed boundary conditions,
may be written as the product of two determinants
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�2 =
∣∣∣∣a34 a38

a74 a78
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The elements a
ij

in (5.2) are given by (4.2) of fixed
boundary conditions and (4.4) of mixed boundary con-
ditions, with k− > 0 (i.e., for infinite wave length,
λ = 2π/k) and the appropriate simplifications out-
lined in (5.1). Furthermore, the Z and W are either J

or Y functions, in accordance to Table 1 since ρ
 2 >

k2C33, when k− > 0 (i.e., for infinite wave length,
λ = 2π/k).

The �1 = 0 corresponds to plane-strain vibrations
and is equivalent to that for the isotropic cylinder,
with the shear constant C44 being replaced by C66—
this is to be expected since the z-axis is perpendic-
ular to the plane of isotropy. The �2 represents mo-
tion involving the axial displacement uz only, corre-
sponding to longitudinal-shear vibrations. This equa-
tion could have been obtained immediately from the
displacement equations of equilibrium (2.2) by setting,
ur = 0 = uθ ,

∂
∂z

= 0 with the result.
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It is noted that the plane-strain and longitudinal
shear vibrations are uncoupled when a = 0 and be-
come coupled for a nonzero of wave number values
(i.e., for infinite wave length, λ = 2π/k).

5.2 Motion independent of θ

For motion independent of θ (i.e., n = 0), the charac-
teristic (4.2) and (4.4) may again be represented as the
product of two determinants �3, �4, where

�3�4 = 0. (5.3)

The elements a
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in (5.3) are given by (4.2) of fixed
boundary conditions and (4.4) of mixed boundary con-
ditions, with n = 0.

Furthermore, the Z and W are either J or Y func-
tions, in accordance to Table 1 since ρ
 2 > k2C33,
when n = 0.

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a15 a16 a17

a21 a22 a23 a25 a26 a27

a31 a32 a33 a35 a36 a37

a51 a52 a53 a55 a56 a57

a61 a62 a63 a65 a66 a67

a71 a72 a73 a75 a76 a77

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,
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�4 =
∣∣∣∣∣
a44 a48

a84 a88

∣∣∣∣∣ = 0.

The frequency equation �3 represents the coupled ra-
dial and axial motions, which are completely uncou-
pled from the pure torsional motions given by �4 = 0.
These frequency equations have been computed ap-
proximately, for orthotropic thick shells, which in-
cludes transverse isotropy as a special case. The
five elastic constants Cij appear in (5.3), however,
this equation reduces to that of the special case of
isotropy. For purely torsional modes, the frequency
�4 = 0 reduces to

J2 (β1a)Y2 (β1b) − J2 (β1b)Y2 (β1a) = 0

for ρω2 < k2C44 where β1 = | (ρω2−C44k
2)

C66
|1/2.

The corresponding frequency equation for e <

ρω2/C44k
2 < 1 is given by

I2 (β1a)K2 (β1b) − I2 (β1b)K2 (β1a) = 0

which has no real roots except the trivial solution, thus,
the phase velocity of torsional waves is always greater
than or equal to (C44

ρ
)1/2.

5.3 Motion independent of θ and z

When both the wave number k (i.e., for infinite wave
length, λ = 2π/k) and n vanish, the frequency equa-
tion degenerates into three uncoupled families of
modes, which may be identified as plane-strain ex-
tensional, plane-strain shear, and longitudinal shear.

The frequency equations for these three types of
motion are, respectively, given by

�5�6�7 = 0. (5.4)

The elements a
ij

in (5.4) are given by (4.2) of fixed
boundary conditions and (4.4) of mixed boundary con-
ditions, with k → 0 (i.e., for infinite wave length,
λ = 2π/k), n = 0 and the appropriate simplifications
outlined in (5.1). Furthermore, the Z and W are ei-
ther J or Y functions, in accordance to Table 1 since
ρ
 2 > k2C33.

�5 =
∣∣∣∣∣
a13 a15

a53 a55

∣∣∣∣∣ = 0, �6 =
∣∣∣∣∣
a44 a48

a84 a88

∣∣∣∣∣ = 0,

�7 =
∣∣∣∣∣
a34 a38

a74 a78

∣∣∣∣∣ = 0.

The first of (5.4) for orthotropic thick cylinders, which
includes transverse isotropy as a special case.

6 Frequency equation for solid circular cylinder

So far, we have considered the frequency equations for
various types of motions of hollow circular cylinders.
It is a trivial matter to deduce from this analysis the
corresponding frequency equations for a solid circu-
lar cylinder. In the latter case, the inner radius a → 0
and furthermore, the Bessel functions K and Y result
in unbounded stresses and displacement at the origin
r = 0. Hence all the coefficients aij involving a and
the W functions must vanish and the frequency equa-
tion for the solid circular cylinder reduces to

�8 =

∣∣∣∣∣∣∣∣

a51 a52 a53 a54

a61 a62 a63 a64

a71 a72 a73 a74

a81 a82 a83 a84

∣∣∣∣∣∣∣∣
= 0. (6.1)

The elements a
ij

in (6.1) are given by (4.2) of fixed
boundary conditions and (4.4) of mixed boundary con-
ditions, with a = 0. Furthermore, the Z and W are ei-
ther J or Y functions, in accordance to Table 1. where,
an interesting degenerate case of (6.1) is that of axially
symmetric motions (i.e., n = 0). The frequency equa-
tion for this type of motion reduces to

�9 =
∣∣∣∣∣∣
a51 a52 a53

a61 a62 a63

a81 a82 a83

∣∣∣∣∣∣ (6.2)

for mixed boundary conditions:

a43 =
[

2

(
n

b̄

){−α3Jn+1
(
α3b̄

)

+ (n − 1)

b̄
Jn

(
α3b̄

)}]
,

a45 =
[

2

(
n

b̄

){−α1Yn+1
(
α1b̄

)

+ (n − 1)

b̄
Yn

(
α1b̄

)}]
,

a53 = [
α2

3 + d3εQ
′ + R′e3

]
Jn (α3ā) ,

a55 = [
α2

1 + d1εQ
′ + R′e1

]
Yn (α1ā)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)
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for fixed boundary conditions:

a43 = Jn (α3ā) ,

a45 = Yn (α1ā) ,

a53 = [
α2

3 + d3εQ
′ + R′e3

]
Jn

(
α3b̄

)
,

a55 = [
α2

1 + d1εQ
′ + R′e1

]
Yn

(
α1b̄

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.4)

If we assume now that the cross-sectional dimensions
of the cylinder are small as compared to the length
(i.e., γ1b � 1, γ2b � 1), an approximate value of the
frequency of longitudinal waves in a bar can be ob-
tained. Representing the Bessel functions in (6.3) as
power series in γib, a detailed analysis indicates that
this type of motion can occur only when the frequency

 lies in the interval k2C44 < ρ
 2 < k2C33. When
first terms only are retained in the power series expan-
sions, the frequency 
 is approximated by the expres-
sion

ρ
 2 = k2C33 −
[(

k2C2
13

)
/ (C11 − C66)

]

where, (C = 
/k) is the velocity of the waves which
propagated along the bar takes the form

C =
[(

C11C33 − C66C
2
33

)
/ρ (C11 − C66)

] 1
2
.

For the special case of the isotropic cylinder C11 =
C33, C12 = C13, C66 = C44 = (C11 − C12)/2 and the
velocity C becomes

C = [
C44 (2C11 − 4C44) /ρ (C11 − C44)

] 1
2 .

In terms of the Lame constants λ, μ, this expression
reduces to

C = [
μ(3λ + 2μ)/ρ (λ + μ)

]1/2 = (E/ρ)1/2

where, λ+2μ = C11, μ = C44 and E is Young’s mod-
ulus. This is the result in this investigations of longi-
tudinal vibrations of bars. If more-accurate values of
the frequency 
 are desired, it would appear to be
more efficient to go directly to the exact frequency
(6.2) rather than perform the tedious analyses required
in obtaining higher-order approximations in the man-
ner outlined above.

7 Numerical results and discussion

The numerical results for the frequency equation are
computed for the wet bone. Since the frequency equa-
tion is transcendental in nature, there are an infinite
number of roots for the frequency equation. The re-
sults of frequency versus wave length are plotted in
Figs. 1–7 for bones (transversely isotropic materi-
als) for several values of n the number of circum-
ferential waves. It is note that, since the determinan-
tal (4.2) and (4.4) is transcendental in nature, there
are an infinite number of modes for each value of
n = 1,2,3, . . . . In most cases, the results of the ap-
proximate theory shown in Figs. 1–3, indicated the os-
cillation of the dispersion curve for the flexural mode
(n = 1,2) is quite low at smaller wave lengths and for
larger wave lengths. It is notes that, three modes (un-
der mixed boundary conditions, n = 2) the frequency
fixed with the increasing of the wave lengths in the
range 20 ≤ λ ≤ 50, see Fig. 4. The roots are obtained
for the flexural mode (n = 1,2) in the cases of fixed
boundary condition and mixed boundary condition are
plotted and presented in Figs. 5, 6.

Consider the flexural mode n = 2, for various val-
ues of wave lengths, the frequencies, are obtained from
frequency equation, the dispersion curves for dry bone
[24] and wet bone are represented in Fig. 7. To study
the effect of fluid part and the free charges of the fluid
phase of the wet bone tissue, the dotted line repre-
sents the dispersion curve for the poroelastic case of
dry bone, and the continuous line represents the dis-
persion curve for the poroelastic case of the wet bone.
It is found that the two curves deviate quite high in
the range 9 ≤ λ ≤ 20. But they almost coincide in the
range 20 ≤ λ ≤ 50.

The dimensionless angular frequency � and para-
meter δ are defined in the following way

� = 


2π

h√
(
C66
ρ

)

, δ = h

λ
, k = 2π

λ

where, h and λ are, respectively, the thickness of the
hollow cylinder and k is the wave length. The val-
ues of the elastic constants of the bone are taken from
[17], see Table 1, it is summarized for the approxi-
mate geometry of the femur and the material constants
in Gaussian units which are used in the computations
The poroelastic constant is evaluated from the expres-
sion given by Lang [18].
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Fig. 1 Variations of the three modes frequencies respect wave length if n = 1

Fig. 2 Variations of the three modes frequencies respect wave length if n = 2

Fig. 3 Variations of the three modes frequencies respect wave length if n = 1
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Fig. 4 Variations of the three modes frequencies respect wave length if n = 2

Fig. 5 Variations of the second mode frequencies respect wave length if (n = 1,2)

Table 1 The approximate geometry of the femur and the mate-
rial constants in Gaussian units

C11 C12 C13 C33 C44 a b h

2.12 0.95 1.02 3.76 0.75 0.8 1.4 0.6

Q = f

(
1 − f − δ

χ

)(
γ + δ + δ2

χ

)
,

R = f 2

(γ + δ + δ2

χ
)

where, f is the porosity, and γ, δ,χ are related by
Young’s modulus and the Poisson’s ratio. The expres-
sions for χ, δ, γ are given by χ = 3(1 − 2v)/E;
δ = 0.6χ; and γ = f (C1 − δ) where C1 is taken
to be zero for the incompressibility of the fluid. The
porosity of the human bone in the age group 35–
40 years is taken to be 0.24 [19]. In order to evalu-
ate one more poroelastic constant it is assumed that
M/Q ∼= C12/C13 as the value M is not provided.
Since the fluid in general is isotropic, it is taken that
brr = bzz. The density of the fluid in the poro-space,
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Fig. 6 Variations of the second mode frequencies respect wave length if (n = 1,2)

Fig. 7 Variations of the dry and wet bones frequencies respect wave length if n = 2

permeability of the medium and mass density of the
bone are taken from [20].

In this work, we have studied the wave propagation
in an infinite piezoelectric hollow cylinder of crystal
class 6. We adopted the analysis of [21] and [22], and
the solution of the problem was expressed in terms
of a fluid part. The resulting dispersion relation has
been solved numerically. Other researchers in the past
have investigated this problem without succeeding to
obtain an analytical solution. Gtizelsu and Saha [23]
have obtained results for the wave propagation in the
diaphysis of the dry femur (long bone) due to a me-
chanical stress wave. However, they have ignored the

effect of a fluid part on the stresses and presented
numerical results only. Also, Fotiadis et al. [7] in-
vestigated wave propagation modeling in human long
bones, they have ignored the effect of a fluid part on
the stresses.

In addition to the other researchers we have inves-
tigated three modes and we have considered the four
different cases (motion Independent of Z, motion in-
dependent on θ , motion independent on θ and Z, fre-
quency equation for solid circular cylinder), resulting
for those types of solutions of the characteristic (4.2)
and (4.4) obtained for piezoelectric cylinder which are
simplifications of the general problem.
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8 Conclusions

In this paper, the wave propagation of a poroelastic
bone with circular cylindrical cavity subjected to cer-
tain boundary condition is considered. The frequency
equation is obtained by considering the material as
transversely isotropic in nature. The numerical results
are carried out and compared for the wet bone as a
poroelastic material and dry bone. The conclusions of
the paper are classified as follow:

(1) For very large wave lengths, dispersion curves for
flexural modes n = 1,2 deviate and vibration are
displayed graphically and very announced.

(2) The frequency equation must be separated into
three frequency ranges because of the changing
nature of the Bessel functions involved.

(3) As the wave length approaches infinity, the plane-
strain vibrations become uncoupled from the lon-
gitudinal shear vibrations. These two types of
motion become coupled for a non-infinity wave
lengths.

(4) For flexural motions (n = 1,2), the coupled radial
and axial motions are completely uncoupled from
the pure torsional motions.

(5) When both the wave length is infinity and if
n = 1,2, the three displacement potential func-
tions f, g1 and g2 generate three uncoupled fami-
lies of modes that may be identified as plane-strain
extensional, plane-strain shear, and longitudinal
shear, respectively.

(6) The characteristic frequency (4.2) and (4.4) for the
hollow cylinder can readily be reduced to that for
the solid cylinder on taking the limit a → 0.

(7) The results can be specialized to the case of the
isotropic cylinder by the following transforma-
tions:

C11 = C33, C12 = C13,

C66 = C44 = (C11 − C12) /2,

γ2 → β1, λ1 → −k, λ2k → q2.

(8.1)

(8) The results for approximate frequency of longitu-
dinal vibrations of a long solid bar obtained for a
generalized case of a transversely isotropic solid
cylinder.

(9) Finally, the results obtained compare well with the
results obtained by Abd-Alla and Mahmoud [24]
in the case of dry bone under analogous conditions

as it is shown in Fig. 7 for the case of a piezoelec-
tric cylinder and the numerical results of the char-
acteristic equation derived here are presented and
illustrated graphically.

Appendix A

a11 =
[
α2

1 + d1εQ
′ + R′e1

]
Jn (α1ā) ,

a12 =
[
α2

2 + d2εQ
′ + R′e2

]
Jn (α2ā) ,

a13 =
[
α2

3 + d3εQ
′ + R′e3

]
Jn (α3ā) ,

a14 = 0,

a15 =
[
α2

1 + d1εQ
′ + R′e1

]
Yn (α1ā) ,

a16 =
[
α2

2 + d2εQ
′ + R′e2

]
Yn (α2ā) ,

a17 =
[
α2

3 + d3εQ
′ + R′e3

]
Yn (α3ā) ,

a18 = 0,

a21 = α1

[(
n

āα1

)
Jn (α1ā) − Jn+1 (α1ā)

]
,

a22 = α2

[(
n

āα2

)
Jn (α2ā) − Jn+1 (α2ā)

]
,

a23 = α3

[(
n

āα3

)
Jn (α3ā) − Jn+1 (α3ā)

]
,

a24 =
(n

ā

)
Jn (α4ā) ,

a25 = α1

[(
n

āα1

)
Yn (α1ā) − Yn+1 (α1ā)

]
,

a26 = α2

[(
n

āα2

)
Yn (α2ā) − Yn+1 (α2ā)

]
,

a27 = α3

[(
n

āα3

)
Yn (α3ā) − Yn+1 (α3ā)

]
,

a28 =
(n

ā

)
Yn (α8ā) ,

a31 =
(n

ā

)
Jn (α1ā) , a32 =

(n

ā

)
Jn (α2ā) ,

a33 =
(n

ā

)
Jn (α3ā) ,

a34 = α4

[(
n

āα4

)
Jn (α4ā) − Jn+1 (α4ā)

]
,
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a35 =
(n

ā

)
Yn (α1ā) , a36 =

(n

ā

)
Yn (α2ā) ,

a37 =
(n

ā

)
Yn (α3ā) ,

a38 = α4

[(
n

āα4

)
Yn (α4ā) − Yn+1 (α4ā)

]
,

a41 = Jn (α1ā) , a42 = Jn (α2ā) ,

a43 = Jn (α3ā) , a44 = 0,

a45 = Yn (α1ā) , a46 = Yn (α2ā) ,

a47 = Yn (α3ā) , a48 = 0,

a51 =
[
α2

1 + d1εQ
′ + R′e1

]
Jn

(
α1b̄

)
,

a52 =
[
α2

2 + d2εQ
′ + R′e2

]
Jn

(
α2b̄

)
,

a53 =
[
α2

3 + d3εQ
′ + R′e3

]
Jn

(
α3b̄

)
, a54 = 0,

a55 =
[
α2

1 + d1εQ
′ + R′e1

]
Yn

(
α1b̄

)
,

a56 =
[
α2

2 + d2εQ
′ + R′e2

]
Yn

(
α2b̄

)
,

a57 =
[
α2

3 + d3εQ
′ + R′e3

]
Yn

(
α3b̄

)
, a58 = 0,

a61 = α1

[(
n

b̄α1

)
Jn

(
α1b̄

) − Jn+1
(
α1b̄

)]
,

a62 = α2

[(
n

b̄α2

)
Jn

(
α2b̄

) − Jn+1
(
α2b̄

)]
,

a63 = α3

[(
n

b̄α3

)
Jn

(
α3b̄

) − Jn+1
(
α3b̄

)]
,

a64 =
(

n

b̄

)
Jn

(
α4b̄

)
,

a65 = α1

[(
n

b̄α1

)
Yn

(
α1b̄

) − Yn+1
(
α1b̄

)]
,

a66 = α2

[(
n

b̄α2

)
Yn

(
α2b̄

) − Yn+1
(
α2b̄

)]
,

a67 = α3

[(
n

b̄α3

)
Yn

(
α3b̄

) − Yn+1
(
α3b̄

)]
,

a68 =
(

n

b̄

)
Yn

(
α8b̄

)
,

a71 =
(

n

b̄

)
Jn

(
α1b̄

)
, a72 =

(
n

b̄

)
Jn

(
α2b̄

)
,

a73 =
(

n

b̄

)
Jn

(
α3b̄

)
,

a74 = α4

[(
n

b̄α4

)
Jn

(
α4b̄

) − Jn+1
(
α4b̄

)]
,

a75 =
(

n

b̄

)
Yn

(
α1b̄

)
, a76 =

(
n

b̄

)
Yn

(
α2b̄

)
,

a77 =
(

n

b̄

)
Yn

(
α3b̄

)
,

a78 = α4

[(
n

b̄α4

)
Yn

(
α4b̄

) − Yn+1
(
α4b̄

)]
,

a81 = Jn

(
α1b̄

)
, a82 = Jn

(
α2b̄

)
,

a83 = Jn

(
α3b̄

)
, a84 = 0,

a85 = Yn

(
α1b̄

)
, a86 = Yn

(
α2b̄

)
,

a87 = Yn

(
α3b̄

)
, a88 = 0

where, (j = 1,2,3).

Appendix B

a11 =
[
α2

1 + d1εQ
′ + R′e1

]
Jn

(
α1b̄

)
,

a12 =
[
α2

2 + d2εQ
′ + R′e2

]
Jn

(
α2b̄

)
,

a13 =
[
α2

3 + d3εQ
′ + R′e3

]
Jn

(
α3b̄

)
, a14 = 0,

a15 =
[
α2

j + d1εQ
′ + R′e1

]
Yn

(
α1b̄

)
,

a16 =
[
α2

2 + d2εQ
′ + R′e2

]
Yn

(
α2b̄

)
,

a17 =
[
α2

3 + d3εQ
′ + R′e3

]
Yn

(
α3b̄

)
, a18 = 0,

a21 =
[

2

(
n

b̄

)2

C̄66 − α2
1C̄11 − C̄13d1ε

− M̄e1 −
(

2

b̄

)2

nC̄66

]

× Jn

(
α1b̄

) −
(

2

b̄

)2

nC̄66α1Jn+1
(
α1b̄

)
,

a22 =
[

2

(
n

b̄

)2

C̄66 − α2
2C̄11 − C̄13d2ε

− M̄e2 −
(

2

b̄

)2

nC̄66

]

× Jn

(
α2b̄

) −
(

2

b̄

)2

nC̄66α2Jn+1
(
α2b̄

)
,
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a23 =
[

2

(
n

b̄

)2

C̄66 − α2
3C̄11 − C̄13d3ε

− M̄e3 −
(

2

b̄

)2

nC̄66

]

× Jn

(
α3b̄

) −
(

2

b̄

)2

nC̄66α3Jn+1
(
α3b̄

)
,

a24 = 2

(
n

b̄

)
C̄66

[−α4Jn+1
(
α4b̄

)

+ (n − 1)

b̄
Jn

(
α4b̄

)]
,

a25 =
[

2

(
n

b̄

)2

C̄66 − α2
1C̄11 − C̄13d1ε

− M̄e1 −
(

2

b̄

)2

nC̄66

]

× Yn

(
α1b̄

) −
(

2

b̄

)2

nC̄66α1Yn+1
(
α1b̄

)
,

a26 =
[

2

(
n

b̄

)2

C̄66 − α2
2C̄11 − C̄13d2ε

− M̄e2 −
(

2

b̄

)2

nC̄66

]

× Yn

(
α2b̄

) −
(

2

b̄

)2

nC̄66α2Yn+1
(
α2b̄

)
,

a27 =
[

2

(
n

b̄

)2

C̄66 − α2
3C̄11 − C̄13d3ε

− M̄e3 −
(

2

b̄

)2

nC̄66

]

× Yn

(
α3b̄

) −
(

2

b̄

)2

nC̄66α3Yn+1
(
α3b̄

)
,

a28 = 2

(
n

b̄

)
C̄66

[−α4Yn+1
(
α4b̄

)

+ (n − 1)

b̄
Yn

(
α4b̄

)]
,

a31 = [α1 (d1 + ε)]

[(
n

b̄α1

)
Jn

(
α1b̄

) − Jn+1
(
α1b̄

)]
,

a32 = [α2 (d2 + ε)]

[(
n

b̄α2

)
Jn

(
α2b̄

) − Jn+1
(
α2b̄

)]
,

a33 = [α3 (d3 + ε)]

[(
n

b̄α3

)
Jn

(
α3b̄

) − Jn+1
(
α3b̄

)]
,

a34 =
(

n

b̄

)
Jn

(
α4b̄

)
,

a35 = [α1 (d1 + ε)]

[(
n

b̄α1

)
Yn

(
α1b̄

) − Yn+1
(
α1b̄

)]
,

a36 = [α2 (d2 + ε)]

[(
n

b̄α2

)
Yn

(
α2b̄

) − Yn+1
(
α2b̄

)]
,

a37 = [α3 (d3 + ε)]

[(
n

b̄α3

)
Yn

(
α3b̄

) − Yn+1
(
α3b̄

)]
,

a38 =
(

n

b̄

)
Yn

(
α4b̄

)
,

a41 =
[

2

(
n

b̄

){
−α1Jn+1

(
α1b̄

)

+ (n − 1)

b̄
Jn

(
α1b̄

)}]
,

a42 =
[

2

(
n

b̄

){
−α2Jn+1

(
α2b̄

)

+ (n − 1)

b̄
Jn

(
α2b̄

)}]
,

a43 =
[

2

(
n

b̄

){
−α3Jn+1

(
α3b̄

)

+ (n − 1)

b̄
Jn

(
α3b̄

)}]
,

a44 =
(

1

b̄

)2 [
2b̄α4Jn+1

(
α4b̄

)

+
(
α2

4 b̄2 + 2n2 − 2n
)

Jn

(
α4b̄

)]
,

a45 =
[

2

(
n

b̄

){
−α1Yn+1

(
α1b̄

)

+ (n − 1)

b̄
Yn

(
α1b̄

)}]
,

a46 =
[

2

(
n

b̄

){
−α2Yn+1

(
α2b̄

)

+ (n − 1)

b̄
Yn

(
α2b̄

)}]
,

a47 =
[

2

(
n

b̄

){
−α3Yn+1

(
α3b̄

)

+ (n − 1)

b̄
Yn

(
α3b̄

)}]
,
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a48 =
(

1

b̄

)2 [
2b̄α4Yn+1

(
α4b̄

)

+
(
α2

4 b̄2 + 2n2 − 2n
)

Yn

(
α4b̄

)]
,

a51 =
[
α2

1 + d1εQ
′ + R′e1

]
Jn (α1ā) ,

a52 =
[
α2

2 + d2εQ
′ + R′e2

]
Jn (α2ā) ,

a53 =
[
α2

3 + d3εQ
′ + R′e3

]
Jn (α3ā) , a54 = 0,

a55 =
[
α2

1 + d1εQ
′ + R′e1

]
Yn (α1ā) ,

a56 =
[
α2

2 + d2εQ
′ + R′e2

]
Yn (α2ā) ,

a57 =
[
α2

3 + d3εQ
′ + R′e3

]
Yn (α3ā) , a58 = 0,

a61 = α1

[(
n

āα1

)
Jn (α1ā) − Jn+1 (α1ā)

]
,

a62 = α2

[(
n

āα2

)
Jn (α2ā) − Jn+1 (α2ā)

]
,

a63 = α3

[(
n

āα3

)
Jn (α3ā) − Jn+1 (α3ā)

]
,

a64 =
(n

ā

)
Jn (α4ā) ,

a65 = α1

[(
n

āα1

)
Yn (α1ā) − Yn+1 (α1ā)

]
,

a66 = α2

[(
n

āα2

)
Yn (α2ā) − Yn+1 (α2ā)

]

a67 = α3

[(
n

āα3

)
Yn (α3ā) − Yn+1 (α3ā)

]
,

a68 =
(n

ā

)
Yn (α8ā) ,

a71 =
(n

ā

)
Jn (α1ā) , a72 =

(n

ā

)
Jn (α2ā) ,

a73 =
(n

ā

)
Jn (α3ā) ,

a74 = α4

[(
n

āα4

)
Jn (α4ā) − Jn+1 (α4ā)

]
,

a75 =
(n

ā

)
Yn (α1ā) , a76 =

(n

ā

)
Yn (α2ā) ,

a77 =
(n

ā

)
Yn (α3ā) ,

a78 = α4

[(
n

āα4

)
Yn (α4ā) − Yn+1 (α4ā)

]
,

a81 = Jn (α1ā) , a82 = Jn (α2ā) ,

a83 = Jn (α3ā) , a84 = 0,

a85 = Yn (α1ā) , a86 = Yn (α2ā) ,

a87 = Yn (α3ā) , a88 = 0

where, (j = 1,2,3).
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