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Abstract This paper presents the analysis of linear
elastic trusses proposed by Valentino Cerruti in his
graduation thesis. While Cerruti is famous among ra-
tional mechanicians, very little is known on this work
of his. We will consider the work in some detail,
putting into evidence the main subjects dealt with by
the author: redundant trusses and uniform resistance.
We will also provide a comparison with his contem-
poraries and some critical comments.
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1 Introduction

In 1873, two very interesting graduation theses were
discussed in the Regia scuola d’applicazione per in-
gegneri (Royal technical school of applications for en-
gineers) in Torino, one by Valentino Cerruti [1], the
other by Carlo Alberto Castigliano [2]. Both dealt
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with linear elastic redundant trusses, a subject of great
importance and up-to-date at the time, since the fast
development of Europe and of recently unified Italy
(1861–1870) saw the realization of huge structures in
both civil and industrial fields (bridges, roofs, arches,
cranes, decks, elevators, . . .), of which trusses were
important elements.

Cerruti strictly dealt with the subject of trusses
composed of elements undergoing only tension or
compression; on the other hand, Castigliano studied
frames including also elements undergoing flexure and
torsion. Their works got the same marks by the com-
mittee, yet Cerruti was given the first position among
his colleagues, Castigliano the second, due to their
preceding career. However, in the history of mechanics
of structures Castigliano’s work is given much impor-
tance and Cerruti’s thesis has almost been forgotten.

To frame these two contributions in the develop-
ment of mechanics of structures, we give some short
hints on the matter. The early development of mechan-
ics of structures in Europe has been dealt with in detail
in some treatises [4–6], and we may roughly say that
it ranged from 1820 to 1890, in two phases. The first
phase was characterized by the original formulation of
structural models for elastic beams, plates, and shells.
Simple redundant structures were solved, without a
precise and rigourous technique but rather by means
of ad hoc procedures. The place of birth of these stud-
ies was France and the main founder was almost for
sure Navier [7]. Almost contemporarily, Cauchy was
one of the founders of mechanics of continua.
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The second phase, which we may say started in
the 1840’s, was characterized especially by works on
frames and trusses; Germany emerged and we see a
kind of dependance of England on the studies made in
the Continent. A detailed and commented presentation
of this aspect is found in the Introduction of [5].

During this phase, we may see two sub-phases: on
one hand, attention was focused on the design of sim-
ple, statically determined, trusses. Efficient analytical
and graphical techniques were developed to solve the
kinematical and statical problems for these structures.
We may quote the contributions by Möbius,1 Rank-
ine,2 Clerk Maxwell [10–16], Fleeming Jenkin,3 Cul-
mann,4 Cremona,5 Lévy [8, 9], Williot,6 Ritter.7

In the second sub-phase we see the search for the
methods of solution for redundant systems, especially
trusses. The method of displacements (stiffness app-
roach) was anticipated by Navier [7] and developed
by Poisson [17] and Clebsch [18, 19]. It is simple
and undergoes implementation by algebraic calcula-
tions, since it requires the solution of a system of lin-
ear equations in the displacement components of all
nodes. Trusses with more than a dozen nodes, how-
ever, required a huge amount of operations. These

1Möbius AF, Lehrbuch der Statik, Göschen, Leipzig (1837).
Möbius examines plane and spatial trusses, finds the necessary
condition between the number of nodes and beams so that the
truss is simple and shows that it is not sufficient when the ma-
trix of constraints is singular. His work, however, appears almost
unknown among the engineers of his time.
2Rankine WJM, A manual of applied mechanics, Griffin, Lon-
don (1858); Principle of the equilibrium of polyhedral frames,
Philosophical magazine s. 4, 27, 92 (1864).
3Fleeming Jenkin HC, On the practical application of reciprocal
figures to the calculation of strains on framework, Transactions
of the Royal Society of Edinburgh, 25, 441 ff. (1869).
4Culmann C, Die graphische Statik, Meyer & Zeller, Zürich
(1866). Culmann is considered the first to have rationally placed
statical graphics into the frame of projective geometry and to
have developed a comprehensive treatise of how to apply graph-
ical calculus to the various branches of engineering.
5Cremona L, Le figure reciproche nella statica grafica, Hoepli,
Milano (1872). Here Cremona not only encompasses Culmann’s
statical graphics, but gives it a renewed geometrical rigour by
means of the theory of reciprocal figures.
6Williot VJ, Notions pratiques sur la statique graphique,
Lacroix, Paris (1878). Here a graphical technique for evaluat-
ing the displacements of the nodes of a truss is proposed.
7Ritter KW, Anwendungen der graphischen Statik nach Profes-
sor Dr. C. Culmann, Meyer & Zeller, Zürich (1888–1900). Here
Ritter, pupil of Culmann, expounds the theories of graphical sta-
tics by his master and divulgates them.

were practically impossible to perform at that time,
when no calculating machines were at ease, so the
method was soon abandoned. The method of forces
(flexibility approach), also anticipated by Navier [7],
saw three different developments. Menabrea [20] pro-
posed a method based on the search for a minimum of
what we now call elastic complementary energy with
respect to redundant forces. Mohr [24] used the vir-
tual work principle to calculate displacement compo-
nents. Lévy [8] proposed an original technique to ob-
tain global compatibility equations for the solution of
statically indeterminate systems without the need to
choose redundant actions.

Cerruti and Castigliano’s theses find thus proper
place in a time when there was still no universally
accepted procedure for the problems of mechanics of
structures. Cerruti tried to propose a general technique
of solution for trusses, but was not able to define it
properly and could not provide a precise algorithm of
calculation. On the contrary, Castigliano found some
results, perfected later [3] and now called after his
name, that provided a means of evaluating redundant
actions not only in trusses (strutures with elements
subjected to tension and compression only) but in gen-
eral frames.

Little is commonly known on the history of me-
chanics of structures in Italy. The main focus has been
on Menabrea and Castigliano and on their dispute over
the priority of the theorem of least elastic work,8 in
which Cerruti was also involved.9

In this paper we will consider Cerruti’s thesis. We
will give hints on the educational background of the
technical school for engineers in Torino and some bi-
ographical notes. We will then expound and comment
the graduation thesis trying to put into evidence the
points of originality and the possible drawbacks. In-
deed, Cerruti’s treatment is elegant and written with
intelligence and mastery of mathematical tools. On the

8Benvenuto E, A brief outline of the scientific debate that pre-
ceded the works of Castigliano, Meccanica, 19-supplement, 19–
32 (1984). Also in: Castigliano A, Selecta 1984, Levrotto e
Bella, Torino (1984); Nascé V, Alberto Castigliano, railway
engineer: his life and times, Meccanica, 19-supplement, 5–14
(1981). Also in: Castigliano A, Selecta 1984, cit.; Charlton
TM, Least work theory according to Menabrea, Castigliano, and
Fränkel, The structural engineer, 62A, 345–347 (1984); [27].
9Cerruti V, Sopra un teorema del Sig. Menabrea, Atti della Reale
Accademia dei Lincei, s. 2, 2, 570–581 (1875); reprinted with
the same title, Salviucci, Roma (1875).
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other hand, some of the procedures he proposes are not
original. Moreover, the presentation of the subject is
not always precise and uniform (sometimes with con-
ceptual jumps from one of the main subjects to the
other) and a series of misprints are quite apparent. It
looks like Cerruti did not spend too much time on a
very precise preparation of this work, which seems
reasonable since from his biography it turns out that
at that time he was deeply busy with other research
and activities.

2 Cerruti and the technical school in Torino

Valentino Cerruti was born in Crocemosso di Biella,
near Torino, in 1850 and died there in 1909. When
he was still a student, he published works on ana-
lytical geometry in the Giornale di matematiche di
Battaglini.10 He attended the Regia scuola di appli-
cazione per ingegneri in Torino, one of the technical
high schools established in the new born Kingdom of
Italy after 1860 by the so-called “legge Casati” (Casati
law).

The technical school in Torino was established in
1860, replacing an older institution of the Kingdom of
Sardinia. It had among its founders Prospero Richel-
my11 and Quintino Sella.12 In the teaching staff, we
find Giovanni Curioni, of whom both Cerruti and Cas-
tigliano were pupils. Curioni deeply influenced the
teaching of the subject in Italy by means of his massive
handbook L’arte di fabbricare.13 Curioni changed the
name of his discipline into “Scienza delle costruzioni”,

10This journal, founded in 1863 by the Italian mathemati-
cian Giuseppe Battaglini, was intended to spread mathematical
knowledge and up-to-date research in new branches of mathe-
matics in Italian universities, as its complete title says: Giornale
di matematiche ad uso degli studenti delle Università italiane,
pubblicato per cura del professore G. Battaglini.
11A very well known professional engineeer, Richelmy was also
the first president of the school.
12Quintino Sella (1827–1884), mineralogist, professional engi-
neer and important politician in unified Italy, studied in Torino
and perfected in various European countries. He was professor
of mineralogy, member of the Italian Parliament since 1860 and
minister of finances in 1862.
13Curioni G, L’arte di fabbricare ossia corso completo di isti-
tuzioni pratiche per ingegneri, Negro, Torino (1864–1884). It
consists of six volumes and five appendixes and had at least
three different editions.

which remained unchanged until nowadays, and pro-
moted the passage from a technical to a scientific ed-
ucation for engineering students. As far as structures
are concerned, Menabrea’s influence14 is apparent and
the studies and discussions on redundant systems were
for sure usual among teachers and students.

After his graduation, Cerruti moved to Roma,
where he became private teacher of the children of
Quintino Sella and became close friend with him.
In 1873 he was appointed assistant professor in hy-
draulics at the technical school of applications for en-
gineers in Roma. He was appointed professor of ratio-
nal mechanics in 1877, full professor in 1881. In 1888
he became rector of the University of Roma, then dean
of the Faculty of Sciences in 1892 and rector of the
University again from 1900 to 1903. In 1901 he was
elected at the Senate of the Kingdom of Italy and pro-
moted the law which transformed two different techni-
cal schools in Torino into a polytechnical school, still
operating under the name of Politecnico di Torino. In
1903 he became director of the school of applications
for engineers in Roma.

Even if his education was in the field of engineer-
ing, the scientific work of Valentino Cerruti is mainly
devoted to rational mechanics. This of course em-
phasizes his strong mathematical background, which
should have been a main feature of the school in
Torino, taking consideration also of the contributions
by Castigliano. Leaving the details aside,15 Cerruti’s
main contributions are two fundamental papers. The
first16 is on the extension of Betti’s reciprocal theorem
from statics to dynamics: Cerruti managed to find par-
ticular integrals of the equations of motion with char-
acteristic singularities in space and time and provided

14General Luigi Federico Menabrea taught “Costruzioni”
(strength of materials and mechanics of structures) at the Uni-
versity of Torino before the institution of the Royal technical
school for engineers. He taught until 1865, when he devoted
himself to political and military activities.
15More detailed biographies may be found in: Levi-Civita T,
Commemorazione del Socio Valentino Cerruti, Rendiconti della
Reale Accademia dei Lincei, s. 5, 18, 565–575 (1909); Silla
L, Valentino Cerruti. Commemorazione letta alla Società Ital-
iana di Fisica (sezione di Roma) nella seduta dell’8 gennaio,
Il Nuovo Cimento, 19-1, 5–19 (1910); Lauricella G, Com-
memorazione di Valentino Cerruti, Giornale di matematiche di
Battaglini, 50, 329–336 (1912).
16Cerruti V, Sulle vibrazioni dei corpi elastici isotropi, Memorie
della Reale Accademia dei Lincei, s. 3, 8, 361–389 (1880).
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resolving expressions. The second17 solves the prob-
lem of finding the stress state in a half-space loaded
by a tangential force, helping so in founding, together
with Boussinesq, geomechanics.

3 Cerruti’s “Sistemi elastici articolati”

In the following, we will summarize Cerruti’s thesis,
expounding the main points of interest.

After a short introduction in §2, Cerruti describes
articulated systems as structures composed of bodies
(understood to be rectilinear, even if this statement
is never declared) connected by frictionless spherical
hinges (nodes). Cerruti says that his results hold also
for cylindrical hinges (i.e., plane trusses) and admits
that the absence of friction is an idealization:

I will suppose that at the contact surface of dif-
ferent elements friction does not exist, or is at
least negligible: if this happens, the elements
will bear only longitudinal stress. I must at once
add, that frictionless articulated systems do not
actually exist and are merely abstractions. In
spite of this, their study leads to applications, at
least in those cases in which the effects of bend-
ing may be neglected.18

Cerruti distinguishes among “simple” and “com-
plex” articulated systems. The former are those in
which nodes connect only two elements and, he says,
reduce to chains and may easily be treated by means of
graphical methods like that of funicular polygon. The
latter are those in which nodes connect more than two
elements.

3.1 The number of equations and constraints

In §3, Cerruti defines a truss as a system of points in
space connected by rectilinear bars (“aste”). This view,

17Cerruti V, Ricerche intorno all’equilibrio dei corpi elastici
isotropi, Memorie della Reale Accademia dei Lincei, s. 3, 13,
81–122 (1882).
18Supporrò, che nella superficie di mutuo contatto dei diversi
pezzi attrito non si sviluppi, o almeno sia trascurabile: se questo
avviene, essi non sopporteranno che sforzi diretti nel senso della
loro lunghezza. Ma debbo tosto soggiungere, che i sistemi arti-
colati (senz’attrito) non esistono in realtà: esse sono mere as-
trazioni; contuttociò la loro teoria non è scevra di applicazioni
pratiche, in tutti quei casi almeno, in cui gli effetti della flessione
possono trascurarsi. Reference [1], p. 6.

focusing on the nodes seen as body-points rather than
on bars, is the same as that of Menabrea [20–23], who
for sure left his mark in Torino. Cerruti specifies the
minimum condition number on the total n(n − 1)/2
“distances” between the couples of points of the sys-
tem to have a unique well-defined shape, resulting as
3n−6. These conditions, as well as those on some ter-
minal nodes (called vertexes) to fix the configuration
may easily be interpreted, in contemporary language,
as a definition of a statically determined truss.

The external constraints are the conditions imposed
on the vertexes and must be at least in number of
six to have a well constrained system. Their equa-
tions are given by Cerruti in terms of the coordinates
x, y, z; ξ, η, ζ ; . . . of the points on which they act:19

f1 = 0, f2 = 0, f3 = 0, . . . f6 = 0 (1)

Constraint reactions are seen as the Lagrange mul-
tipliers of the first variation of condition equations. In-
deed, if �i are proportionality constants, Cerruti states
that the condition equations fi = 0 imply the presence
of the system of forces20

�i

dfi

dx
, �i

dfi

dy
, �i

dfi

dz
,

�i

dfi

dξ
, �i

dfi

dη
, �i

dfi

dζ
,

. . . . . . . . .

(2)

applied to the constrained points.
Internal constraints are given by the presence of

bars which impose a condition on the distance between
couples of points i, j . They have the form:21

Fij = (xi −xj )
2 +(yi −yj )

2 +(zi −zj )
2 − l2

ij = 0 (3)

and forces in bars are again seen as constraint reac-
tions:

The conditions compelling the system because
of bars connecting nodes are also expressed by
equations: [. . . ] in the same way as (1) imply the
forces represented by the expressions (2), so (3)
will imply other forces, that will be nothing else

19Reference [1], (1), p. 7. Cerruti’s equation numbering is in
square brackets, but here in order to avoid confusion with refer-
ences we will enclose them in parentheses.
20Reference [1], (2), p. 8.
21Reference [1], (3), p. 8.
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than tensions in bars: among these forces there
is [. . . ] the fundamental difference between ex-
ternal and internal forces, in that if a force A is
given by (3), then also −A exists.22

The static problem of finding internal and external
constraint reactions is not openly stated by Cerruti.
Yet, he presents the correct number of balance equa-
tions and of unknown inner forces and displacement
of nodes. However, he does not use a proper terminol-
ogy that can avoid ambiguities.

3.1.1 Evaluation of external constraint reactions

Cerruti examines the case when one or more nodes are
fixed, so that unknown constraint reactions are present,
and states the conditions for which statics of rigid bod-
ies is sufficient to determine them. However, he does
not consider the actual evaluation of constraint reac-
tions, consequently no balance equations are written.

When there is only one fixed node, he says, the so-
lution is always possible and unique. From an intuitive
point of view, we may say that it is obvious. If there is
a fixed point in a system and if the external active force
is applied to it, the system remains in equilibrium. Cer-
ruti, however, is not clear in these passages.

If the fixed nodes are two or three, Cerruti states
that the applied forces must reduce either to a resul-
tant force or to a resultant couple. This is a severe re-
striction, since in general a system of forces in a three-
dimensional space can be reduced to both a force f and
a couple m lying in a plane orthogonal to f.

Cerruti states that this requirement coincides with
the vanishing of the trinomial invariant characteristic
of the system of active forces:23

∑
X.

∑
Mx +

∑
Y.

∑
My +

∑
Z.

∑
Mz = 0

(4)

22Anche i legami da cui il sistema è astretto per causa delle
aste, che ne collegano i vertici, si possono esprimere mediante
equazioni: [. . . ] come dalle equazioni (1) derivano le forze rap-
presentate dalle espressioni (2), così dalle equazioni (3) deriver-
anno altre forze, le quali non saranno altro, che le tensioni delle
aste: ma tra queste due specie di forze corre [. . . ] la differenza
che intercede tra le forze esterne e le forze interne: epperò tra
le forze provenienti dalle equazioni (3), se ve ne è una A, ve ne
esiste ancora un’altra −A. Reference [1], p. 8.
23Reference [1], (4), p. 10.

where X,Y,Z are the Cartesian components of the ac-
tive forces and Mx,My,Mz are the Cartesian compo-
nents of the active moments. The condition (4) is well
known in statics.24 Asking the system to reduce either
to a force or to a couple equals to write (4).

However, the condition expressed by (4) is only
necessary for the solution of the static problem by the
ordinary laws of statics. Even if this is not stated by
Cerruti, it might be inferred from the fact that he im-
mediately provides sufficient conditions in the case of
two and three fixed nodes: the resultant must be or-
thogonal either to the line joining the nodes, for two
fixed nodes, or to the plane defined by the nodes, for
three different nodes. Even if Cerruti does not explain
why these are sufficient conditions, we may infer that
it stems on the possibility of a unique decomposition
of a force along two or three given directions. Note
that Cerruti’s reasoning is consistent only if the fixed
nodes are interpreted as spherical hinges; however, he
is ambiguous in this point.

3.2 A statically determinate system

In §4 Cerruti examines an example, shown in Fig. 1
with some slight changes with respect to the original.
It is a statically determinate truss with a recursive se-
quence of both bars and loads. Cerruti thus finds, by
means of balance equations, recursive formulæ25 for
constraint reactions and inner forces in all the elements
of the truss. These formulæ are for sure compact and
elegant from a mathematical point of view, but also
have practical utility, and they will be a basic tool for
Cerruti in order to solve redundant trusses.

Cerruti is able to present a complete and exhaustive
description of the distribution of inner forces in bars:
where they attain extrema, where they vanish, where
they change sign so that some bars are in tension and
others in compression, and which are the geometrical
parameters influencing this change.26

24In general the resultant f and the resultant couple m of a sys-
tem of forces are not orthogonal, except for the case in which
forces are all contained in a plane. Hence, (4) implies the sys-
tem to reduce either to f or to m. In the plane case, it is well
known that forces reduce either to a force or to a couple, and the
statement holds trivially true.
25Reference [1], (8)–(15), pp. 14–15. There are actually two
equations (8) in [1], one on p. 12, the other on p. 14. This is
an example of the apparent misprints in Cerruti’s thesis, which
we already talked of.
26Reference [1], (8)–(15), pp. 14–18.
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Fig. 1 A pattern truss according to Cerruti

In the last part of §4, Cerruti shows how, for the
truss shown in Fig. 1 (designed so to have uniform
resistance), it is easy to find the displacement of all
nodes. The results27 are obtained by elementary geom-
etry and the linear elastic law of extension for the bars
connecting each pair of nodes. Calculations are sim-
plified since the design of uniform resistance lets the
strain of the bars be the same, and Cerruti obtains new
recursive and elegant formulæ, different from those
obtained by Maxwell in [10–16], still showing his
skills in what we nowadays would call “automatic im-
plementation”.

3.3 Redundant and uniform resistance trusses

At the end of his §4, Cerruti begins dealing with the
core of his treatment, i.e. redundant trusses and the
possibility to design them in order to have uniform re-
sistance. These topics seem to be the ones to which
Cerruti at first sight devotes his study. In particular, the
study of structures of uniform resistance appears to be
a pressing problem of engineering practice for him:

The formulæ found here would provide [. . . ] the
shape of the deformed truss, [. . . ] the variation
of angles and the work spent by external forces
during the deformation. But I will quit this sub-
ject and will discuss [. . . ] the distribution of ten-
sions and pressures in those cases where statics
of rigid bodies throws us into indeterminacy and
it is necessary to adopt the laws of elasticity.28

27Reference [1], (16)–(20), pp. 9–22.
28Le formole ora trovate ci fornirebbero [. . . ] la figura della
trave deformata, [. . . ] la variazione degli angoli, ed il lavoro
sviluppato nella deformazione dalle forze esterne. Ma io la-
scierò qui tale argomento e passerò a discorrere [. . . ] della dis-
tribuzione delle tensioni e delle pressioni, nei casi, nei quali,
la statica dei corpi rigidi gettandoci nell’indeterminazione, è
mestieri aver ricorso alle leggi dell’elasticità. Reference [1],
p. 22.

The treatment of these subjects will continue until
§11. However, since there is not a unique thread in his
work, we prefer to distinguish between the two sub-
jects and to deal with them in the following Sects. 4
and 5, where we will not follow the order in which the
subjects are exposed by Cerruti.

3.4 Open questions

The last two sections of Cerruti’s thesis do not seem to
have a direct link with articulated systems and trusses,
but rather represent an outlook of Cerruti’s interests in
the open questions of rational mechanics, which would
constitute the main field of his future research.

He so begins §12:

One could ask which is the reason why the prob-
lem of the distribution of tensions and pressures
in an articulated system can be solved by the pre-
ceding methods in a quite quick way and with
all the rigour of the mathematical theory of elas-
ticity, while many other problems remain un-
solved because of the amount of difficulties they
present. This is due to the fact, that in the con-
sidered case the laws of the displacement of the
points of the system are known, and indeed this
is the general problem of the theory of elasticity:
“Provided the forces acting on a body, find the
displacements parallel to three axes, which make
any of its molecules undergo”. When these dis-
placements are known, as it was said in section
8, it will be very easy to find the expression of
the elastic forces originated at each of its points.
Yet all difficulties actually lie in finding the law
of these displacements. The nature of systems
sometimes indicates a priori this law: an ex-
ample is in elastic articulated systems: in these
cases nothing else remains, than to find their
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magnitude, once external forces are given. How-
ever, hypotheses will never lead us to the true
knowledge of displacements; and indeed, when
a certain kind of deformation appears likely, it is
easy to verify if it be possible or not; it is enough
to prove, if by such an hypothesis the equations
for internal equilibrium are verified. I state this,
because the theories on the strength of materials,
as usually exposed, rely on a particular hypoth-
esis about the law of displacements; and this hy-
pothesis is almost never verified, as I will now
try to prove.29

Cerruti considers a linear elastic homogeneous
cylindrical body and writes the balance, compatibility,
and constitutive equations in terms of displacement
components:30

(λ + μ)
dθ

dx
+ μ�2u = 0,

(λ + μ)
dθ

dy
+ μ�2v = 0,

(λ + μ)
dθ

dz
+ μ�2w = 0,

(5)

29Si potrebbe dimandare quale sia il motivo pel quale coi metodi
precedenti il problema della distribuzione delle tensioni e delle
pressioni in un sistema elastico articolato si sia potuto risol-
vere ed in modo abbastanza spedito con tutto il rigore della teo-
ria matematica dell’elasticità, mentre tanti altri problemi riman-
gono ancora insoluti per le troppe difficoltà che presentano. Ciò
è dovuto al fatto, che nel caso ora considerato sono conosciute
le leggi degli spostamenti dei diversi punti del sistema; imper-
occhè questo è il problema generale della teoria dell’elasticità:
“Date le forze, che sollecitano un corpo, trovare gli spostamenti
paralleli a tre assi, che fanno subire ad una molecola qualunque
di essa. Quando tali spostamenti sieno conosciuti, come si è
accennato al no 8, sarà facilissimo trovare l’espressione delle
forze elastiche provocate in ogni suo punto”. Ma tutta la diffi-
coltà versa appunto nel trovare la legge di questi spostamenti.
La natura dei sistemi qualche volta indica a priori quale sia
questa legge: un esempio l’abbiamo nei sistemi elastici artico-
lati: in questi casi altro più non resta a fare, che a trovare la loro
grandezza, conoscendo le forze estrinseche. Ma non saranno
mai le ipotesi che ci guideranno alla verace conoscenza degli
spostamenti; d’altronde quando sembra probabile un certo modo
di deformazione, è agevole verificare se esso sia o no possi-
bile; basta provare, se con una tale supposizione le equazioni
dell’equilibrio interno restino soddisfatte. Io dico questo, per-
chè le teorie sulla resistenza dei materiali, come sono ordinari-
amente esposte, riposano su una ipotesi particolare intorno alla
legge degli spostamenti; ipotesi che non è quasi mai verificata,
come ora procurerò di dimostrare. [1], pp. 50–51.
30Reference [1], (66), p. 52.

with λ,μ the Lamé elastic moduli for the material, θ

the volumetric strain and � the Laplace’s operator.
Then Cerruti remarks that in standard theories of

strength of materials the small displacements are sup-
posed to consist of a translation and a rigid rotation,
generally varying from place to place in the body:31

u = a + qz − ry,

v = b + rx − pz,

w = c + py − qx

(6)

where the components a, b, c of the infinitesimal
translation and p,q, r of the infinitesimal rotation are
actually fields defined on the cylinder.

By inserting (6) into (5), Cerruti obtains a set of
equations32 which

[. . . ] cannot hold in other case than when a, b, c

are linear functions of z and p,q, r are uniform;
a very special case, that for sure does not em-
brace all those occurring in practice. But [. . . ] I
will not consider further this question. It might
perhaps be useful, at least in showing once more,
that no remarkable perfections and advantages
to the theories of the strength of materials will
be brought without getting free from many (un-
justified) hypotheses from which they start.33

In his §13, Cerruti shows that the methods of so-
lution of redundant problems he presented in his §5
are not limited to the mechanics of structures but of
more general application. He decides to show one of
these applications, i.e., the well-known problem of the
“pressures” (i.e., constraint reactions) of the support
points of a heavy body over a plane. This problem had
among its solvers Euler, Cournot, and Menabrea.34

Cerruti replicates Euler’s treatment with elegance and
precision. However, he forgets to quote Cayley [25,

31Reference [1], (67), p. 52.
32Reference [1], (68), p. 53.
33[. . . le quali] non possono sussistere altro che nel caso in cui
a, b, c sieno funzioni lineari di z e p,q, r costanti; caso parti-
colarissimo, e che non abbraccia certamente tutti quelli che si
presentano in pratica. Ma [. . . ] non mi fermerò ulteriormente su
tal quistione. Essa può forse avere la sua utilità, quella almeno
di far vedere una volta di più che non si arrecheranno mai per-
fezionamenti notevoli e di qualche vantaggio alle teorie della
resistenza dei materiali senza svincolarsi da molte delle ipotesi
(gratuite) da cui esse partono. Reference [1], p. 53.
34See, among others, [27].
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26], who made a treatment very similar to Cerruti’s.35

Cerruti puts into evidence some remarkable features
of such a relationship and, by the ordinary balance of
force and moment, easily obtains the same results by
Euler ([1], pp. 55–57).

4 Trusses with uniform resistance

Cerruti at the end of his §3 states that a truss will have
uniform resistance if36

Tij

Eijσij

= uniform = T (7)

where Tij is the stress in the bar joining the nodes
i, j , Eij is its Young’s modulus and σij is the area of
its cross-section. Remark that equation (7) defines a
limit strain, hence Cerruti adopts a maximum strain
(Navier) criterion. In §3 he limits himself to state that,
if the truss is statically determinate, there is a unique
distribution of the Tij and hence of the required cross-
sections of the bars.

The subject is considered again in §6, after Cerruti
has somehow dealt with redundant trusses, and lets the
author state some interesting theorems. Indeed, if there
are m redundant external constraints and k redundant
inner constraints, they must be described by constraint
equations similar to (1), (3). By differentiating con-
straint equations with respect to the coordinates of the
nodes and the length of the bars, respectively, Cerruti
is able to insert the condition of uniform resistance (7)
in both sets of equations.

For the external constraints he obtains37

∑ dF1

dlij
lij = 0,

∑ dF2

dlij
lij = 0,

. . .
∑ dFk

dlij
lij = 0,

(8)

which must be verified so that the problem be
compatible: this depends on the functions F and
we will also see later that depends on the forces

35Reference [1], (72), p. 55.
36Reference [1], (7), p. 12.
37Reference [1], (28), p. 28.

transmitted by the bars. This is not enough: in
equations (25)38 let us replace the variations of
the coordinates by their expressions via the elon-
gations of the bars, hence by their forces. Let
us introduce the condition of uniform resistance:
after having eliminated the six variations still
present, m conditions remain, independent of
constraint reactions, to be satisfied in order that
the problem be compatible: but it will in general
be not so, the functions fi being arbitrary. We
conclude, then, that a linear elastic truss cannot
have uniform resistance, if the number of condi-
tion equations39 exceeds six.40

This result is very interesting, since, without solv-
ing the linear elastic problem for a redundant truss,
Cerruti can provide a design suggestion: if the system
has redundant external constraints, no structure with
uniform resistance can be obtained. Still, the require-
ment that the simple external constraints do not exceed
six is only a necessary condition:

If the number of these conditions does not ex-
ceed six, it is necessary to check if equations
(28) [our equations (8)] hold or not. In the lat-
ter case we can say that it is impossible to fix the
cross-sections of the bars in order to compose a
system with uniform resistance: on the contrary,
in the former case this will be [. . . possible] in k

infinite ways; indeed, by replacing Tij in balance
equations by his value T Eijσij , 3n − 6 equa-
tions in the cross-sections of the 3n− 6 + k bars
of the system will result: yet choosing arbitrar-
ily k of those cross-sections the above quoted

38The differentiated equations of external constraints, p. 27.
39That is, simple external constraints.
40[. . . ] che devono essere verificate, perchè il problema sia
possibile: epperò tale possibilità dipende essenzialmente dalla
forma delle funzioni F , vedremo poi che dipende altresì dalla
natura degli sforzi subiti dalle diverse aste. Questo non basta:
nelle equazioni (25) alle variazioni delle coordinate si sostituis-
cano le loro espressioni per mezzo degli allungamenti delle di-
verse aste; ed a questi poi le tensioni corrispondenti. Si introduca
quindi la condizione di uniforme resistenza: dopo d’aver elimi-
nato le sei variazioni che vi entrano ancora, rimarranno m con-
dizioni indipendenti dalle reazioni dei vincoli, che dovrebbero
essere soddisfatte, perchè il problema fosse possibile: ma non lo
saranno generalmente potendo le funzioni fi essere qualunque.
Concludiamo dunque, che un sistema elastico articolato non si
può ridurre ad essere di ugual resistenza, se il numero delle
equazioni di condizione sia superiore a sei. Reference [1], p. 28.
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equations will uniquely provide the remaining
3n − 6, and each of these cross-section may be
arbitrarily attributed infinitely different values.41

Thus, Cerruti concludes, a truss with n nodes may
be designed to be with uniform resistance in a unique
way only if it has not more than six simple external
constraints and the number of bars does not exceed
3n − 6, i.e., when it is, in modern terms, statically de-
terminate.

When there are k redundant bars and equations (8)
hold, there are k different ways to design a truss with
uniform resistance, and Cerruti easily proves that42

δlij = T lij (9)

which says that the variations in length of the
elements are independent of the way in which
the arbitrary k cross-sections are chosen.43

From this result it also easily follows a theorem
on the work spent by the stress, clearly influenced by
Menabrea’s school:

[. . . ] the work of external forces, and thus also
that of molecular forces [i.e., inner work] during
the deformation do not depend at all on the way
the choice of those k cross-sections was made.44

A very interesting theorem from the point of view
of applications follows from the last result; from the
expression of inner work L and the condition (7) of

41Se il numero di tali equazioni non è superiore a sei, bisognerà
vedere se le equazioni (28) reggano o non. Nel secondo caso
potremo dire che è impossibile il determinare le sezioni delle
diverse aste così da formare un sistema di egual resistenza: nel
primo caso invece [. . . ] questo sarà possibile [. . . ] in un numero
di modi k volte infinito; imperocchè nelle equazioni di equilibrio
ponendo per Tij il suo valore T Eij σij ne seguiranno 3n − 6
equazioni tra le aree delle sezioni rette delle 3n − 6 + k aste
del sistema: ma intanto scegliendo ad arbitrio k di tali sezioni
le prefate equazioni ne daranno sempre in valor determinato per
le 3n − 6 altre, e a ciascuna di tali sezioni si possono attribuire
arbitrariamente infiniti valori diversi. Reference [1], pp. 28–29.
42Reference [1], (29), p. 29.
43[. . . ] la quale ci dice, che le variazioni di lunghezza dei di-
versi pezzi sono indipendenti dal modo, con cui si scelgono le k
sezioni arbitrarie. Reference [1], p. 29.
44[. . . ] il lavoro delle forze esterne, e quindi anche quello delle
forze molecolari nella deformazione non dipendono per nulla
dal modo con cui venne fatta la scelta di quelle k sezioni. Ref-
erence [1], p. 29.

uniform resistance, Cerruti obtains:45

L = 1

2

∑ T 2
ij

Eijσij

lij = T

2

∑
Eijσij lij ,

2L

T
=

∑
Eijσij lij

(10)

Now, L and T do not change with the choice
of the k cross-sections, the right hand side [of
the last equation of our (10)] shall then remain
constant for any of those choices. Then we can
say, that in this case the sum of the products of
the volumes of each bar times the relevant coef-
ficient of elasticity is independent of the choice
of the k arbitrary cross-sections. If the coeffi-
cient Eij is the same for each bar we may also
add that, in any way we make this choice, the
weight of the employed material will always be
the same.46

The technological consequences of this result are ap-
parent and any comment is straightforward.

It is interesting to compare this statement with the
theorem proposed in 1870 by Clerk Maxwell [14–
16], where the weigths of the compressed and ex-
tended bars of the truss are balanced. The two state-
ments seem different, yet complementary, since Clerk
Maxwell says that

Theorem. In any system of points in equilibrium
in a plane under the action of repulsions and at-
tractions, the sum of the products of each attrac-
tion multiplied by the distance of the points be-
tween which it acts, is equal to the sum of the
products of the repulsions multiplied each by
the distance of the points between which it acts.
[. . . ]
The importance of this theorem to the engineer
arises from the circumstance that the strength
of a piece is in general proportional to its sec-
tion, so that if the strength of each piece is pro-
portional to the stress which it has to bear, its

45Reference [1], (30) and the following unnumbered, p. 30.
46Ora L e T non cambiano col variare la scelta delle k sezioni,
il secondo membro dovrà dunque rimanere costante, comunque
tal scelta venga fatta. Epperò possiamo dire, che in questo caso
la somma dei prodotti dei volumi delle singole sbarre pel rispet-
tivo coefficiente di elasticità è indipendente dal modo con cui
venne fatta la scelta delle k sezioni rimaste arbitrarie. Che se
poi il coefficiente Eij è lo stesso per ogni sbarra posiamo ancora
soggiungere, che, comunque si faccia tal scelta, il peso della ma-
teria impiegata sarà sempre lo stesso. Reference [1], p. 30.
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weight will be proportional to the product of
the stress multiplied by the length of the piece.
Hence these sums of products give an estimate
of the total quantity of material which must be
used in sustaining tension and pressure respec-
tively.47

That is, Clerk Maxwell provides an estimate for the
amount of material employed in tension or in com-
pression for the truss, while Cerruti states a theorem
of equal quantity. It is apparent, however, that Cerruti
did not know Clerk Maxwell’s papers, published in a
journal not very well spread in Italy and strongly in-
fluenced by projective geometry.

Cerruti in §7 is interested in the conditions for
which (8) are satisfied. He then examines a particular
case, the consequences of which are general enough:
a spatial system with five nodes is geometrically de-
termined by means of nine bars, and a tenth is neces-
sarily dependent on the other nine distances. Cerruti
gives credit to Cayley48 for providing the condition to
express this statement:49

C = det
(
l2
ij

)
= 0, i, j = 0,1,2, . . . ,5 (11)

where l00 = 0, li0 = l0j = 1, lii = 0, lij = −lj i . The
first variation of equation (11) is the compatibility con-
dition for the solution of the considered redundant sys-
tem. After lengthy passages which show his mastery,
Cerruti can state:

[. . . ] the system may be reduced to have uniform
resistance in a simply infinite way, when all bars
undergo stresses of the same kind.50

and, in general:

[. . . when] the number of nodes is n, that of bars
is n(n − 1)/2, it is necessary to make some dis-
tinctions: either it is possible to select (n2 −7n+
12)/2 groups of five nodes, through which ten
bars liked with each other undergo stresses of

47Reference [14–16], Scientific papers, pp. 172–173.
48Cerruti does not make a precise quotation. We may infer that
he refers to the paper On a theorem relating to five points in a
plane, in: Cayley’s collected papers, vol. 5, pp. 480–483, Cam-
bridge University Press, 1892.
49Reference [1], (31), p. 31.
50[. . . ] il sistema si può rendere di egual resistenza ed in un
numero di maniere semplicemente infinito, se tutte e dieci le aste
sopportano sforzi della stessa natura. Reference [1], p. 34.

the same kind (which in any case may vary from
a group to the other), then the system may have
uniform resistance in (n2 − 7n + 12)/2 infinite
different ways; or this is impossible, and then,
unless very special cases, it is impossible to de-
sign the system in order to have uniform resis-
tance. In any case, if it is possible to select some
groups of five nodes whiche satisfy the above
mentioned conditions, the bars composing them
may be designed to have uniform resistance in
as many infinite ways as these groups are.51

Cerruti appears to be satisfied with these conclu-
sions: he has indicated some design prescriptions and
that seems enough, so that he skips to the other main
subject of his thesis.

5 Statically indeterminate trusses

5.1 Poisson and Lévy’s approaches

Cerruti begins to examine redundant trusses in his §5,
where he declares his intentions in order to find the
solution, in terms of inner forces, of the linear elastic
problem.

The first approach presented by Cerruti looks for
as many auxiliary unknowns as the balance equations,
like in the problem of linear elastic continua, where the
auxiliary unknowns are the displacement components:

[. . . ] the trick for the solution consists in let-
ting the search for the unknown pressures and
tensions depend on the search for 3n − 6 other
quantities, as many as the independent balance
equations, which is [. . . ] always possible. This
trick holds not only for the problem I consider,

51[. . . ] il numero dei punti essendo n, quello delle aste
n(n − 1)/2, bisogna fare alcune distinzioni: o si possono for-
mare (n2 − 7n + 12)/2 gruppi di cinque punti, pei quali dieci
aste che li collegano sopportano sforzi della stessa natura (la
quale peraltro può cambiare da un gruppo all’altro) e allora il
sistema si può ancora ridurre ad essere di egual resistenza, e
questo in (n2 − 7n + 12)/2 infinite maniere differenti; o ciò
è impossibile, ed allora, meno casi specialissimi, non si potrà
ridurre il sistema ad essere di egual resistenza. Tuttavia, se sia
possibile il formare alcuni gruppi di cinque punti, che soddis-
fino alle summenzionate condizioni, si possono foggiare le aste
che li formano, cosicchè costituiscono un complesso di egual
resistenza, e ciò in tante infinite maniere differenti, quanti sono
questi gruppi. Reference [1], pp. 35–36.
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but for many other general questions [. . . ]: it is
known indeed that the knowledge of molecular
forces in a body depends on that of six func-
tions [the stress components] related by three
partial differential equations, that are not suffi-
cient to determine them, if the mentioned func-
tions could not be expressed by means of other
three only. The nature of these three functions is
determined by the model we make of molecular
forces: for elastic forces, these three functions
are the orthogonal components of the displace-
ment of any molecule of the body.52

As an example of this approach for an articulated
system, Cerruti assumes the node displacement com-
ponents as auxiliary unknowns. First he writes the
length lij of a bar in terms of the differences among
the coordinates of its terminal nodes i, j and differen-
tiates it:53

(xj − xi)(δxj − δxi) + (yj − yi)(δyj − δyi)

+ (zj − zi)(δzj − δzi) − lij δlij = 0 (12)

then, by using the linear elastic constitutive relation for
the force borne by the bar, he obtains:54

Tij = Eijσij

l2
ij

[(xj − xi)(δxj − δxi)

+ (yj − yi)(δyj − δyi)

+ (zj − zi)(δzj − δzi)]. (13)

Inserting the expressions for stresses given by
(22) [our (12)] into the balance equations, these

52[. . . ] l’artifizio della soluzione consiste nel far dipendere la
ricerca delle pressioni e delle tensioni incognite dalla ricerca di
3n − 6 altre quantità tante quante sono le equazioni di equilib-
rio fra loro indipendenti: cosa [. . . ] sempre possibile. Nè questo
artifizio è applicabile soltanto al mio problema, ma sì a ben al-
tre quistioni più generali [. . . ]: è noto infatti che la conoscenza
delle forze molecolari destate in un corpo dipende da quella di
sei funzioni legate fra loro da tre equazioni alle derivate parziali,
equazioni che non sarebbero sufficienti a determinarle, se le sei
funzioni in discorso non si potessero esprimere mercè tre altre
soltanto. La natura poi di queste tre funzioni resta sempre deter-
minata dal concetto che altri si fa sull’origine delle forze mole-
colari: nel caso delle forze elastiche queste tre funzioni sono gli
spostamenti paralleli a tre assi di una molecola qualunque del
corpo. Reference [1], pp. 22–23.
53Reference [1], (21), p. 24.
54Reference [1], (22), p. 24.

will contain the variation of the coordinates
only, that can so be determined: once known
their values, by equations (22) the forces can be
calculated.55

Remark that in the whole of his thesis Cerruti
does not explicitly write the balance equations for the
nodes; the same had been done by Menabrea in [20].
On the contrary, Castigliano in [2] does actually write
them.

Cerruti’s second approach avoids the use of aux-
iliary unknowns. It is based on the choice of k inde-
pendent relations among the 3n − 6 + k distances. If
the displacements, as supposed, are small, all varia-
tions may be written in the reference configuration.
Thus, the k relations among distances may be differ-
entiated and the expressions of forces in terms of dis-
placement variations may be inserted in them. These
conditions, in addition to the 3n − 6 independent bal-
ance equations for the first, will determine the forces
in the 3n − 6 + k bars.

Cerruti gives credit to Poisson [17]56 for the first
approach and to Lévy [8] for the second. Poisson actu-
ally studied the motion of a material point P subjected
to a given active force and constrained to fixed points
Ai by means of elastic threads. The strain ζi of each
thread i with initial length li is given by

ζi = 1

li
[(α − ai)u + (β − bi)v + (γ − ci)w], (14)

where u,v,w are the displacement components of P ,
and the balance equations are

∑

i

(α − ai)ζi

liεi

= X,

∑

i

(β − bi)ζi

liεi

= Y,

∑

i

(γ − ci)ζi

liεi

= Z,

(15)

where α,β, γ ;ai, bi, ci are the cartesian coordinates
of P and Ai , respectively, and εi are the extensibil-
ities of the threads. By inserting equations (14) into

55Mettendo poi nelle equazioni di equilibrio al posto delle ten-
sioni le loro espressioni forniteci dalle (22) esse verranno a non
contenere più che le variazioni delle coordinate, le quali potran-
nosi in tal modo determinare: una volta conosciuti i loro val-
ori mercè le equazioni (22) si calcoleranno quelli delle tensioni.
Reference [1], pp. 24–25.
56The quoted passage is contained in vol. 2, pp. 402–404.
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(15) Poisson obtained three independent equations of
motion in the unknown coordinates α,β, γ , and then
provided the conditions for equilibrium. In contempo-
rary language, such an approach is a version of the
displacement method, in which the unknowns are the
components of the displacement of the nodes and the
equations to be solved are those of equilibrium. For
an engineer of the 1800’s it was straightforward to in-
terpret P as a node of a truss and the linear elastic
threads as the bars connecting the node to the others
of the truss.

Lévy presented and improved ([8, 9]) a method to
solve redundant trusses which is a version of what we
now call the force method. The method is based on the
possibility, in a truss with k redundant bars, to write k

compatibility equations linking the lengths of the re-
dundant bars to those of the remaining m:

Fj (l1, l2, . . . , ln) = 0, j = 1,2, . . . , k, n = m + k.

(16)

Equations (16) hold in the reference configuration and
for small deformations in its neighbourhood, so the
first variation of (16) provides

∂Fj

∂l1
dl1 + ∂Fj

∂l2
dl2 + · · · + ∂Fj

∂ln
dln = 0. (17)

By inserting the forces fj in the bars in terms of
the variation of length dlj into (17), one obtains k

independent compatibility equations which, together
with the 3n − 6 independent balance equations for
the nodes, completely determine the forces in all the
3n − 6 + k bars.

The reference to Lévy’s paper, contemporary to
Cerruti’s thesis, puts into evidence how the school of
engineering in Torino was up-to-date and well docu-
mented on the most important researches in France.

On the other hand, it is strange and worth remark-
ing that no credits are given neither to Clebsch [18,
19], who for sure perfected the displacement method,
nor to Navier [7], who quite likely introduced it. The
first omission, which may at first glance seem the most
serious, is in part justified by the fact that Clebsch’
treatise was translated in French, a kind of second
mother language for scholars in Torino, only in 1883.
As a confirmation of this hypothesis, reading the early
works of Castigliano ([2, 3]) puts into evidence the
same omission, which lets us think that Clebsch was
not at all known in the school of engineering in Torino.

The omission of the reference to Navier has no easy
interpretation. However, even if Poisson’s treatise was
for sure well known, Navier’s should have been better
known, since it had successive editions until the most
famous one, commented by Saint-Venant.57

Maybe an explanation for the reference to Poisson
only is due to the fact that Cerruti in his thesis of-
ten refers to the links between nodes seen as material
points connected by elastic forces and the general view
of continua seen as molecules interacting by mean of
central forces. This view, present also in Navier’s trea-
tise, is for sure perfected and better explained by Pois-
son, one of the fathers of the molecular theory of elas-
ticity.

5.2 Cerruti’s contribution to the solution of
redundant trusses

After having presented these examples in literature,
Cerruti advances a method of his own, which seems
to be a version of Lévy’s method:

Let us consider the case in which the system
satisfies certain geometrical conditions, i.e., the
case in which a certain number of surface equa-
tions exist, to which the coordinates of the ver-
texes of the system shall obey (we will suppose,
however, that no fixed points exist, or, if they
exist, the conditions indicated in §3 are also ver-
ified). Let these conditions be m + 6: if m = 0
no difficulty exists and this subject was already
dealt with in §3; if m > 0 the rules expressed
there are no more sufficient. But on this purpose
we note that the surface equations will hold for
any value that the coordinates attain during de-
formation, hence, if differentiated, will also be
satisfied when the variations of the coordinates
will be replaced by the actual values they have
attained under the action of external forces. This
posed, let us find by one of the above quoted
methods the forces in function of the external
forces and of the m + 6 constraint reactions: let
us express the variations of the coordinates by
means of these forces and let us insert these ex-
pressions in the differentiated m + 6 equations
of condition: we will thus have m + 6 equations

57Navier CLMH, Résumé des leçons données a l’École des
Ponts et Chaussées . . . , avec des notes et des appendices par
M. Barré de Saint-Venant, Dunod, Paris (1864).
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among the constraint reactions and six variations
of the coordinates, in fact by means of forces
we can express but the values of 3n − 6 varia-
tions, and in our case all the variations are de-
termined and no one remains arbitrary. Yet by
combining balance equations one obtains six of
them relating external forces and constraint re-
actions that, in conjunction with the first m + 6
makes m + 12 among m + 6 reactions and six
variations of coordinates, that is, as many as the
unknowns of the problem. In any case, one can
have m+6 equations among the constraint reac-
tions only by eliminating among the first m + 6
the six variations of the coordinates.58

Cerruti’s approach is applied to the truss of Fig. 2,
composed by six bars along the sides and the diagonals
of a plane four-sided polygon. There are four external
forces applied to the nodes, fulfilling the conditions of
global balance. The eight independent scalar compo-
nents of the balance equations for the four nodes in
terms of the six unknown bar forces reduce to five,59

since three equations are needed for global balance.

58Consideriamo il caso, in cui il sistema debba soddisfare a certe
condizioni geometriche, il caso cioè in cui esista un certo nu-
mero di equazioni alla superficie, alle quali sieno obbligate le
coordinate dei vertici del sistema (supporremo però che o non
vi siano dei punti fissi, o, quando ve ne sono, si verifichino al-
tresì le condizioni indicate nel no 3). Sieno m + 6 queste con-
dizioni: quando m = 0 non si ha alcuna difficoltà e questo argo-
mento venne già discusso nel citato no 3; se m > 0 le regole ivi
enunziate non sono più sufficienti. Ma intorno a ciò osserver-
emo che le equazioni alla superficie, dovendo sempre sussistere
qualunque sia il valore, che le coordinate vengano ad ottenere
durante la deformazione, differenziate saranno pur soddisfatte
sostituendo alle variazioni delle coordinate quelle effettive, che
esse han subito sotto l’azione delle forze esterne. Ciò posto si
ricavino con uno dei metodi precedenti le tensioni in funzione
delle forze esterne e delle m + 6 reazioni dei vincoli: si esp-
rimano le variazioni delle coordinate per mezzo di queste ten-
sioni e si sostituiscano tali espressioni nelle m + 6 equazioni
di condizione differenziate: avremo così m + 6 equazioni tra le
reazioni dei vincoli e sei variazioni delle coordinate, imperoc-
chè per mezzo delle tensioni non si possono esprimere, che i
valori di 3n−6 delle variazioni, e nel nostro caso tutte quante le
variazioni sono determinate e niuna arbitraria. Ma combinando
le equazioni di equilibrio se ne ricavano sei tra le forze esterne
e le reazioni dei vincoli che congiunte colle prime m + 6 fanno
m + 12 equazioni tra m + 6 reazioni e sei variazioni di coordi-
nate, tante cioè quante sono le incognite del problema. Però si
possono avere m + 6 equazioni tra le sole reazioni dei vincoli
eliminando tra le prime m + 6 le sei variazioni delle coordinate.
Reference [1], pp. 26–27.
59Reference [1], (40), p. 37.

Fig. 2 A redundant truss with no fixed points

Another independent equation is needed to close the
problem and Cerruti indicates that such equation has
the form given by Cayley’s condition (11) on the dis-
tances among a given number of points in space:

C = det
(
l2
ij

)
= 0, i, j = 0,1,2, . . . ,4 (18)

where this time the indexes i, j range from 0 to 4.60

Indeed, by differentiating this condition and replac-
ing the variations δlij by their expressions in terms of
the elastic forces in the bars, Cerruti obtains a compat-
ibility equation in the form:61

sin(31̂4) sin(32̂4)

l34

T12

ε12
− sin(21̂4) sin(23̂4)

l24

T13

ε13

+ sin(21̂3) sin(24̂3)

l23

T14

ε14
+ sin(12̂4) sin(13̂4)

l14

T23

ε23

− sin(12̂3) sin(14̂3)

l13

T24

ε24

+ sin(13̂2) sin(14̂2)

l12

T34

ε34
= 0. (19)

The use of (18), in our opinion, represents Cer-
ruti’s major contribution to the solution of redundant
trusses. This equation represents indeed an easy and
well established algorithm to obtain Lévy’s equations
(16). Applying (18) to a truss with only six bars, as
depicted in Fig. 2, is not a serious limitation because

60Reference [1], (41), p. 37.
61Reference [1], (44), p. 38.
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Fig. 3 A redundant truss obtained starting from a simple one

most trusses of civil and industrial architecture can be
decomposed into meshes similar to that of Fig. 2.

When the system reduces to three bars joined by
the node 4 and fixed at their other extremities 1, 2, 3,
which is a standard problem in the study of redundant
structures, Cerruti remarks that he may obtain:62

sin(24̂3)
T14

ε14
− sin(14̂3)

T24

ε24
+ sin(14̂2)

T34

ε34
= 0, (20)

which, he observes, by taking into consideration the
geometrical properties of the triangles, is the solution
for the same problem obtained by Menabrea in [21].63

Another tribute to Menabrea in a work where almost
no hint on work and energy is given, is a meaningful
sign of how Menabrea’s teaching was deeply rooted in
the school of engineering in Torino.

Always with the aim of providing an iterative pro-
cedure, Cerruti reduces the linear algebraic system
composed by the five balance equations for the nodes
and the compatibility condition (19) to a linear alge-
braic system of two equations in the two unknowns
T23, T14,64 so that he can examine a series of particu-
lar cases of interest in the applications.65

He begins by examining the case where the external
forces are directed along the diagonals of the polygon,
then goes on to study the case when the polygon re-
duces to a trapeze and eventually to a parallelogram.
In this last case, he obtains a universal formula for the
forces in the bars in terms of the external ones.66 This

62Reference [1], (45), p. 39.
63Menabrea at pp. 152–156 of [21] studies a five bar system sim-
ilar to that considered by Cerruti and at p. 155 refers an equation
connected to Cerruti’s one. See also [27].
64Reference [1], (46), p. 39 and (47), p. 40.
65Reference [1], pp. 41–44.
66Reference [1], (51), p. 43.

formula is simplified again when the parallelogram be-
comes a rectangle or a square.67

Cerruti remarks that this result is now independent
of possible symmetries both in geometry and exter-
nal load which could otherwise provide an answer for
the problem of redundant trusses. Indeed, he remarks,
these symmetry considerations fail as soon as defor-
mation begins and may lead to errors, while the for-
mulation of additional compatibility conditions based
only on the geometry of distances among points is not
affected by such errors.

In §9, Cerruti applies his recursive formulæ ob-
tained for the truss of Fig. 1 for the redundant truss
in Fig. 3, which is obtained from the simple one in
Fig. 1 by adding bars along the other diagonal of each
rectangular element composing the truss. He first ex-
amines the rectangle between the nodes n and n + 1,
which is but a particular case of the polygon he studied
in §8.

By means of ordinary balance equations on the por-
tion of the truss comprised by the transverse imaginary
sections between the nodes n + 1, n + 2 and n − 1, n,
he obtains the external forces applied to the vertexes of
the considered rectangle.68 He then writes the balance
equations for the considered rectangle as another por-
tion of the truss,69 as well as the balance equations for
the nodes of the rectangle, even if, he remarks, not all
of these equations are linearly dependent.70 He then
provides the compatibility equation corresponding to
(19)71 and remarks that one has nine equations in ten
unknowns, which

67Reference [1], (52) and (53), p. 44.
68Reference [1], (54)–(57), p. 45.
69Reference [1], (58)–(59), p. 46.
70Reference [1], (60), p. 46.
71Reference [1], (61), p. 46.
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[. . . ] will let us determine nine of the forces in
terms of the tenth. After that, by using the al-
ready obtained results, one finds the forces of
the different elements of the preceding rectan-
gle, and so on until one reaches the [external]
support. All forces will be expressed in terms of
that tenth, which had been left undetermined in
the calculation of the first rectangle, the value of
which will be found at the end of the procedure.
By replacing its value found in this way into the
preceding expressions, all the forces in the ele-
ments will be known.72

In §10 Cerruti leaves the applications aside for a
while and considers again Poisson’s study of body-
points motion, to which he referred as inspiring one
of the methods of solution for redundant systems. He
does not add anything to Poisson’s original treatment,
but frames the method directly into a structural envi-
ronment by considering the points as hinges and the
threads as elastic bars, and studying the standard case
of three bars hinged at fixed points and joined at a
common node to which an external force is applied.
Cerruti puts into evidence the meaning of the con-
straint equations in terms of length of the bars and ap-
plies the rules of determinants to solve the linear sys-
tem of balance equations in terms of displacements.
Cerruti suggests that a matrix approach to a displace-
ment method is fruitful:

This example is useful to show how simple is
to solve the problem of the stress distribution by
letting it depend on the search of as many quan-
tities as balance equations.73

In §11 Cerruti spends some more words on the
possible cases in which the k redundant bars cannot
be described by the additional compatibility condition

72Esse ci permetteranno dunque di ricavare nove delle tensioni
in funzione della decima. Dopo ciò, facendo uso dei risultati già
ottenuti, si passerà a trovar le tensioni dei diversi pezzi del ret-
tangolo precedente, e così via di mano in mano sino a che si sia
giunto all’appoggio. Tutte le tensioni si potranno esprimere me-
diante quella decima, che era rimasta indeterminata nel calcolo
relativo al primo rettangolo, ma il cui valore si potrà trovare poi
al termine dell’operazione. Sostituendo quindi il suo valore così
trovato nelle espressioni precedenti, tutte le tensioni dei diversi
pezzi diverranno conosciute. Reference [1], p. 47.
73Questo esempio serve a far vedere con quanta semplicità
si possa sciogliere il problema della distribuzione delle ten-
sioni, facendolo dipendere dalla ricerca di tante quantità soltanto
quante sono le equazioni di equilibrio. Reference [1], p. 49.

(18). Indeed, this is effective when considering five
nodes (only one redundant distance which can be ex-
pressed by means of other nine), but even in the case
of six nodes the situation is more complicated. Indeed,
twelve bars are sufficient for a statically determined
truss, but when considering a single redundant bar, it
is not possible to express a single compatibility condi-
tion for it in terms of other distances. Cerruti remarks
that this possibility depends much on how the truss is
actually built.

6 Final remarks

The study of Cerruti’s thesis lets us know for sure
that the level of education at the school of engineer-
ing in Torino was very high. The quotations are up-to-
date, like the problems dealt with by Castigliano and
Cerruti. Still, as it was already stated above, Cerruti’s
thesis is somehow not fully appreciable and it is not
strange that, even if Cerruti’s importance in the field
of rational mechanics is undoubtable, his graduation
work is for sure second to that of Castigliano, in spite
of the judgement of the commitee.

Indeed, it is apparent that the thesis has some inter-
esting features: the search for an iterative procedure,
partially fulfilled, and the search for the conditions of
uniform resistance, which gets some satisfactory re-
sults. On the other hand, a lot of the proposed proce-
dures are not original, and the technique for solving re-
dundant trusses, even if recursive and interesting from
a contemporary point of view because of the possibil-
ity of automatic implementation, is of limited applica-
tions.

There are hints of originality and apparent signs of
mastery and some new results in the thesis, however.
The study of the conditions of uniform resistance is
well done and, in particular, some results are obtained
without the need to solve the linear elastic static prob-
lem, which is of course very important. The idea that
it is possible to provide a recursive formulation for the
resolution of redundant problems is for sure modern
and absolutely convincing, but it is put forth for a very
limited set of applications.

In conclusion, we wish to put forth a last comment,
that is, as already mentioned, reading Cerruti’s thesis
with a contemporary eye lets us see that Cerruti was a
bright and very well educated fellow, ready for a bril-
liant career in mechanics, but who had no time for ful-
filling a very accurate work.
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