
Meccanica (2011) 46:1267–1281
DOI 10.1007/s11012-010-9383-z

Dynamic basic displacement functions in free vibration
analysis of centrifugally stiffened tapered beams;
a mechanical solution

Reza Attarnejad · Ahmad Shahba

Received: 29 July 2009 / Accepted: 13 November 2010 / Published online: 30 November 2010
© Springer Science+Business Media B.V. 2010

Abstract This paper deals with enhancing the exist-
ing Finite Element formulations through employing
basic principles of structural mechanics accompanied
with mathematical techniques. Introducing the con-
cept of Basic Displacement Functions (BDFs), the free
vibration analysis of rotating tapered beams is stud-
ied from a mechanical point of view. It is shown that
exact shape functions could be derived in terms of
BDFs. The new shape functions turn out to be de-
pendent on the rotational speed, circular frequency,
the position of element along the beam and variation
of cross-sectional dimensions along the element. Dy-
namic BDFs are obtained by applying Adomian Mod-
ified Decomposition Method (AMDM) to the govern-
ing differential equation of motion. Carrying out nu-
merical examples, the competency of the method is
verified.
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Nomenclature
A(x) cross-sectional area at distance x

A0 cross-sectional area at x = 0
b vector of BDFs
E modulus of elasticity
F vector of nodal forces
FII,FJJ nodal flexibility matrices of the left and

right nodes respectively
G matrix containing nodal stiffness matrices
I (x) moment of inertia at distance x

I0 moment of inertia at x = 0
K flexural stiffness matrix
KG geometric stiffness matrix
KII,KJJ nodal stiffness matrices of the left and right

nodes respectively
L length of the beam
le length of the element
M bending moment
M consistent mass matrix
N vector of shape functions
q external transverse load
R hub radius
t time
T centrifugal force
V shear force
w transverse displacement
x longitudinal coordinate along whole beam
x̄ longitudinal coordinate along beam element
δ hub radius parameter
η non-dimensional rotational speed
θ angle of rotation
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μ non-dimensional natural frequency
ρ mass density
ω circular frequency
� rotational speed

1 Introduction

Rotating beams are mostly encountered in structures
designed for mechanical and aerospace intensions
such as windmills, helicopter rotor blades and space-
crafts with flexible appendages [1–3]. Due to the pres-
ence of centrifugal force and its stiffening effect, the
vibration characteristics of the rotating beams, a cru-
cial point in design of rotary machineries, differ sig-
nificantly from that of non-rotating beams.

The presence of variable coefficients in the gov-
erning differential equation for out-of-plane bending
vibration of rotating tapered beams, brought up due
to the varying centrifugal force and cross-sectional di-
mensions along beam element, leads to the fact that
there is no closed-form solution for this engineer-
ing problem; thus numerical techniques such as fi-
nite element method [4–12], spectrally formulated fi-
nite element method [13, 14], Galerkin method [15,
16], Frobenius series solution [17, 18] and differen-
tial transform method [19–23] have been considerably
used.

One of the methods which have remarkably at-
tracted attention from the researchers is dynamic stiff-
ness method [24–26] which enables one to exactly
determine as many natural frequencies and mode
shapes as required with just one element. Banerjee et
al. [25] derived the dynamic stiffness matrix for rotat-
ing Euler-Bernoulli beams whose cross-sectional area
and moment of inertia vary along beam with arbitrary
integer power n and n + 2, respectively.

Assuming the transverse displacement to vary as
a fourth order function, Gunda and Ganguli [27] de-
rived rational shape functions which unlike the cubic
Hermite shape functions satisfy the static part of the
homogeneous governing differential equation of rotat-
ing Euler-Bernoulli beams. Recently Gunda et al. [28]
have derived new hybrid stiff-string-polynomial func-
tions for vibration analysis of high speed rotating
tapered beams. These functions are linear combina-
tion of the solution of the governing static differential
equation of a stiff-string and a cubic polynomial.

In the present paper, new functions holding struc-
tural interpretations, Basic Displacement Functions

(BDFs), are introduced from which exact shape func-
tions are derived. Applying AMDM on the out-of-
plane bending motion of rotating beams and imposing
appropriate boundary conditions, BDFs are obtained
on the basis of dynamic deformations. The present
method considers the variation of cross-sectional area,
moment of inertia and centrifugal force along the el-
ement in order to obtain shape functions. The present
formulation poses no restriction on the type of func-
tions which describe the variation of cross-sectional
area and moment of inertia; hence it is capable of han-
dling a big class of arbitrarily varying beams. The effi-
ciency of the idea of BDFs has been verified for differ-
ent engineering problems. BDFs are categorized into
static BDFs [29–32] and dynamic BDFs [33]. Here the
dynamic BDFs are introduced and employed in free
vibration analysis.

There are two important questions need to be an-
swered; firstly why do we resort to Finite Element
method? Secondly why do we try to enhance Finite
Element method? About the first question, we can say
that Finite Element method in comparison with other
methods is much simpler and more flexible in treat-
ing different types of engineering problems with dif-
ferent conditions like dampers, spring-mass systems
and abrupt profile changes. About the second question,
as previously stated, the cubic Hermite shape func-
tions do not satisfy the governing differential equa-
tion of rotating beams. Finite Element method is a
displacement-based method (stiffness method) which
is established on a prescribed displacement field; that
is, an additional hypothesis is imposed apart from the
three essential relations namely equilibrium of forces,
compatibility of displacements and/or strains and the
constitutional law of the material behavior. Due to this
extra hypothesis, usually one of the three essential re-
lations is satisfied only in certain interior points of
the domain; however application of stiffness method is
simple. Unlike the stiffness method, application of the
flexibility-based method ensures the exact satisfaction
of the equilibrium equations at any interior point of
the element; nevertheless its application in engineering
problems has mostly been limited to simple ones due
to its cumbersome procedures. In this paper, a novel
method is proposed which captures its accuracy and
exactness from its flexibility basis and its simple ap-
plication from stiffness method.
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2 Basic displacement functions

Basic Displacement Functions (BDFs) are not merely
mathematical functions while they hold pure mechan-
ical interpretations. In what follows, BDFs are firstly
defined and then it is shown how the shape functions
could be obtained in terms of BDFs.

2.1 BDFs definition

BDFs are basically interpreted as the nodal displace-
ments, either transverse displacement or angle of rota-
tion, due to a unit load on the element. BDFs can be
defined in detail as

bw1: Transverse displacement of the left node due to
an arbitrarily varying axial load and a unit load
at distance x̄ as shown in Fig. 1a.

bθ1: Bending rotation of the left node due to an arbi-
trarily varying axial load and a unit load at dis-
tance x̄ as shown in Fig. 1b.

bw2: Transverse displacement of the right node due to
an arbitrarily varying axial load and a unit load
at distance x̄ as shown in Fig. 1c.

bθ2: Bending rotation of the right node due to an ar-
bitrarily varying axial load and a unit load at dis-
tance x̄ as shown in Fig. 1d.

On the basis of reciprocal theorem, an equivalent
system is considered for each BDF; that is, an equiva-
lent definition is presented for BDFs which states that
BDFs are the transverse displacement of an arbitrary
point on the element due to a unit nodal load, either

lateral load or moment. The equivalent definitions of
BDFs are defined in detail as

bw1: Transverse displacement at distance x̄ due to an
arbitrarily varying axial load and a unit load at
the left node of a free-clamped beam as shown
in Fig. 2a.

bθ1: Transverse displacement at distance x̄ due to an
arbitrarily varying axial load and a unit moment
at the left node of a free-clamped beam as shown
in Fig. 2b.

bw2: Transverse displacement at distance x̄ due to an
arbitrarily varying axial load and a unit load at
the right node of a clamped-free beam as shown
in Fig. 2c.

bθ2: Transverse displacement at distance x̄ due to
an arbitrarily varying axial load and a unit mo-
ment at the right node of a clamped-free beam as
shown in Fig. 2d.

The definitions of nodal flexibilities for a beam
under axial loading are shown in Fig. 3. Comparing
Fig. 3 with the equivalent definition of BDFs in Fig. 2,
one can evaluate the nodal flexibility matrices in terms
of BDFs as

FII =
[

bw1(0) bθ1(0)
dbw1
dx̄

|x̄=0
dbθ1
dx̄

|x̄=0

]
(1)

FJJ =
[

bw2(le) bθ2(le)
dbw2
dx̄

|x̄=le
dbθ2
dx̄

|x̄=le

]
(2)

where points I and J are respectively the left and
right nodes of the element. Once inverting nodal flex-

Fig. 1 Definitions of (a) bw1; (b) bθ1; (c) bw2 and (d) bθ2
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Fig. 2 Equivalent definitions of (a) bw1; (b) bθ1; (c) bw2 and (d) bθ2

Fig. 3 Illustration of nodal flexibilities of (a) left node; (b) right node

ibility matrices, the nodal stiffness matrices are evalu-
ated.

2.2 Shape functions

A schematic of a non-prismatic beam element is
shown in Fig. 4. The system has to be decomposed
into two isostatic systems i.e. cantilever beams in or-
der to calculate the support reactions. Looking deeply,
the nodal displacements of point (J ) in Fig. 4b can be
expressed in terms of BDFs as,

{
wJ

θJ

}(b)

=
∫ le

0
q(x̄)

{
bw2

bθ2

}
dx̄ (3)

The nodal displacements of point (J ) in Fig. 4c are
given as

{
wJ

θJ

}(c)

= FJJ

{
VJ

MJ

}
(4)

where FJJ is the nodal flexibility of point (J ) given
in (1). Following superposition principle, we have

{
wJ

θJ

}(a)

=
{
wJ

θJ

}(b)

+
{
wJ

θJ

}(c)

= 0 (5)

and using (3) and (4), one obtains
{

VJ

MJ

}
= −KJJ

∫ le

0
q(x̄)

{
bw2

bθ2

}
dx̄ (6)
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Fig. 4 General non-prismatic beam decomposed into isostatic structures

in which KJJ is the nodal stiffness of point (J ). Sim-
ilarly the support reactions at point (I ) are obtained
as
{

VI

MI

}
= −KII

∫ le

0
q(x̄)

{
bw1

bθ1

}
dx̄ (7)

Knowing that the nodal equivalent forces are the op-
posite of support reactions; (6) and (7) are written in
matrix form as

F = G
∫ le

0
q(x̄)bdx̄ (8)

in which b = {bw1 bθ1 bw2 bθ2}T and

G =
[

KII 0
0 KJJ

]
(9)

According to the Finite Element method, the nodal
equivalent forces and the structural matrices are given
as

F =
∫ le

0
q(x̄)NT dx̄ (10)

M =
∫ le

0
NT ρA(x̄)Ndx̄ (11)

KG =
∫ le

0
N′T T (x̄)N′dx̄ (12)

K =
∫ le

0
N′′T EI (x̄)N′′dx̄ (13)

Comparing (8) and (10), the new shape functions are
derived as

N = bT G (14)

therefore the structural matrices i.e. consistent mass,
geometric stiffness and flexural stiffness are respec-

tively given as

M = G
(∫ le

0
bρA(x̄)bT dx̄

)
G (15)

KG = G
(∫ le

0
b′T (x̄)b′T dx̄

)
G (16)

K = G
(∫ le

0
b′′EI (x̄)b′′T dx̄

)
G (17)

It is expected that the new shape functions show
high accuracy in dynamic analysis of rotating tapered
beams since they have been obtained in terms of BDFs
where it will be shown that in their computations many
system parameters are taken into consideration includ-
ing variation of area and moment of inertia along el-
ement axis, circular frequency and centrifugal force
which by itself is dependent on the position of the el-
ement along the beam, hub radius and the rotational
speed.

3 Computation of BDFs

A schematic of a non-prismatic rotating beam is illus-
trated in Fig. 5. The governing differential equation for
out-of-plane bending motion of rotating tapered beams
is given by

∂2

∂x̄2

(
EI (x̄).

∂2W

∂x̄2

)
+ ρA(x̄).

∂2W

∂t2

− ∂

∂x̄

(
T (x̄).

∂W

∂x̄

)
= q(x̄, t) (18)

where the centrifugal force in the ith element is given
as

T (x̄) =
∫ L

xi+x̄

ρA(x).�2.(R + x).dx (19)
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Fig. 5 Rotating tapered beam configuration

According to the equivalent definition of BDFs,
BDFs are transverse displacement W of any point on
the element due to a unit nodal load; that is, one can
compute BDFs by solving (18) for q(x, t) = 0. More-
over, assuming a sinusoidal variation of transverse dis-
placement with circular frequency ω, (18) is written as

d2

dx̄2

(
EI

d2w

dx̄2

)
− ω2ρAw

− d

dx̄

(
T (x̄)

dw

dx̄

)
= 0 (20)

As previously mentioned, numerical methods have
to be employed to solve (20). In this paper, we em-
ploy AMDM which is an efficient technique for solu-
tion of both ordinary and partial differential equations.
In what follows, we briefly introduce the concept of
AMDM and then it is shown how it could be used to
solve the governing differential equation.

3.1 Adomain modified decomposition method

Consider a general ordinary differential equation as

Ly + Ry + Ny = g(x) (21)

in which L is an invertible linear operator taken as
the highest-order derivative; R is the remainder of the
linear operator and N is the nonlinear operator. Solv-
ing (21) for Ly, we have

y = 	 + L−1g − L−1Ry − L−1Ny (22)

where 	 is the integration constant and L	 = 0. In
order to solve (21) by AMDM, y,g(x) and Ny are
represented by infinite series as [34]

y(x) =
∞∑
i=0

cix
i, g(x) =

∞∑
i=0

gix
i

Ny =
∞∑
i=0

Ai(c0, c1, . . . , ci)x
i

(23)

in which Ai are Adomian coefficients. Substitut-
ing (23) into (22), we have

y =
∞∑
i=0

cix
i = 	 + L−1

( ∞∑
i=0

gix
i

)

− L−1R

( ∞∑
i=0

cix
i

)

− L−1

( ∞∑
i=0

Ai(c0, c1, . . . , ci)x
i

)
(24)

The coefficients ci can be computed by the recur-
rence relation. In practical applications, the infinite
series is replaced by an approximate truncated series∑n−1

i=0 cix
i with n terms.

3.2 BDFs computation

Expanding (20) and using the dimensionless parame-
ter ξ = x/le, the following relation is obtained.

W ′′′′ + A(ξ)W ′′′ + B(ξ)W ′′ + C(ξ)W ′

+ D(ξ)W = 0 (25)

in which

A(ξ) = 2EI ′(ξ)/EI (ξ)

B(ξ) = [EI ′′(ξ) − l2
e T (ξ)]/EI (ξ)

C(ξ) = −l2
e T ′(ξ)/EI (ξ)

D(ξ) = −ω2l4
e ρA(ξ)/EI (ξ)

(26)
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Using power series expansion, the coefficients in the
differential (25) are expressed as

A(ξ) =
∞∑

k=0

akξ
k, B(ξ) =

∞∑
k=0

bkξ
k

C(ξ) =
∞∑

k=0

ckξ
k, D(ξ) =

∞∑
k=0

dkξ
k

(27)

Employing AMDM on (25), we have

W = 	 − L−1[A(ξ)W ′′′ + B(ξ)W ′′ + C(ξ)W ′

+ D(ξ)W ] (28)

where L−1 = ∫ ξ

0

∫ ξ

0

∫ ξ

0

∫ ξ

0 · · ·dξdξdξdξ and

	 = ∑3
k=0

dkW
dξk |ξ=0ξ

k . Moreover using Cauchy prod-
uct we obtain

D(ξ)W =
∞∑

k=0

dkξ
k ×

∞∑
k=0

wkξ
k =

∞∑
k=0

ξk
k∑

j=0

dk−jwj

C(x̄)W ′ =
∞∑

k=0

ckξ
k ×

∞∑
k=0

(k + 1)wk+1ξ
k

=
∞∑

k=0

ξk

k∑
j=0

(j + 1)ck−jwj+1

B(ξ)W ′′ =
∞∑

k=0

ξk

k∑
j=0

(j + 1)(j + 2)bk−jwj+2

A(ξ)W ′′′ =
∞∑

k=0

ξk
k∑

j=0

(j + 1)(j + 2)(j + 3)ak−jwj+3

(29)

Once substituting (29) into (28) and integrating four
times, we obtain

W =
∞∑

k=0

wkξ
k = 	 −

∞∑
k=0

(k!)ξk+4

(k + 4)!

×
k∑

j=0

[(j + 1)(j + 2)(j + 3)ak−jwj+3

+ (j + 1)(j + 2)bk−jwj+2

+ (j + 1)ck−jwj+1 + dk−jwj ] (30)

The following recurrence relations are obtained by
equating the coefficients of the like powers of ξ

in (30).

• For 0 ≤ k ≤ 3:

wk = dkW

dξk

∣∣∣∣
ξ=0

• For k ≥ 4:

wk = − (k − 4)!
k!

k−4∑
j=0

[(j + 1)(j + 2)

× (j + 3)ak−j−4wj+3

+ (j + 1)(j + 2)bk−j−4wj+2

+ (j + 1)ck−j−4wj+1 + dk−j−4wj ] (31)

At this stage the problem reduces to determination
of the first four terms of W(ξ) which requires im-
posing the boundary conditions for each BDF. On the
basis of the equivalent definitions of BDFs shown in
Fig. 2, the boundary conditions for BDFs read as

bw1: V |ξ=0 = 1, M|ξ=0 = 0

W |ξ=1 = 0, θ |ξ=1 = 0
(32a)

bθ1: V |ξ=0 = 0, M|ξ=0 = −1

W |ξ=1 = 0, θ |ξ=1 = 0
(32b)

bw2: W |ξ=0 = 0, θ |ξ=0 = 0

V |ξ=1 = −1, M|ξ=1 = 0
(32c)

bθ2: W |ξ=0 = 0, θ |ξ=0 = 0

V |ξ=1 = 0, M|ξ=1 = 1
(32d)

From the Euler-Bernoulli beam theory, angle of rota-
tion, bending moments and shear forces are respec-
tively given as

θ(ξ) = 1

le

dW

dξ
(33a)

M(ξ) = EI (ξ)

l2
e

d2W

dξ2
(33b)

V (ξ) = 1

l3
e

d

dξ

(
EI (ξ)

d2W

dξ2

)
− T (ξ)

le

dW

dξ
(33c)

Using (32) and (33), BDFs are obtained as polyno-
mials. The following procedure is proposed to derive
new shape functions using BDFs.

(a) Derivation of BDFs using Sect. 3.2.
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Table 1 Dimensionless natural frequencies for different combinations of height ch and breadth cb taper ratios

cb ch

0 0.3 0.6

Present Downs [36] Present Downs [36] Present Downs [36]

First mode

0 3.51601 3.51602 3.66675 3.66675 3.93428 3.93428

0.3 3.91602 3.91603 4.06693 4.06693 4.33622 4.33622

0.6 4.58530 4.58531 4.73720 4.73721 5.00903 5.00903

0.8 5.39758 5.39759 5.55296 5.55297 5.82882 5.82882

Second mode

0 22.0345 22.0345 19.8806 19.8806 17.4878 17.4879

0.3 22.7859 22.7860 20.5555 20.5555 18.0803 18.0803

0.6 24.0211 24.0211 21.6698 21.6699 19.0649 19.0649

0.8 25.6558 25.6558 23.1578 23.1578 20.3952 20.3952

Third mode

0 61.6972 61.6972 53.3222 53.3222 44.0248 44.0248

0.3 62.4361 62.4361 54.0152 54.0152 44.6583 44.6583

0.6 63.7515 63.7515 55.2224 55.2224 45.7384 45.7384

0.8 65.7470 65.7470 57.0156 57.0157 47.3051 47.3051

Fourth mode

0 120.902 120.902 103.267 103.267 83.5541 83.5541

0.3 121.648 121.648 103.975 103.975 84.2100 84.2101

0.6 123.025 123.025 105.241 105.241 85.3438 85.3438

0.8 125.264 125.264 107.231 107.231 87.0561 87.0561

Table 2 Dimensionless natural frequencies under different rotational speed parameters

η First mode Second mode Third mode

Present Ref. [27] Present Ref. [27] Present Ref. [27]

0 3.8238 3.8239 18.3173 18.3173 47.2648 47.2649

1 3.9866 3.9866 18.4740 18.4740 47.4173 47.4173

2 4.4368 4.4368 18.9366 18.9366 47.8716 47.8717

3 5.0927 5.0927 19.6839 19.6839 48.6190 48.6190

4 5.8788 5.8788 20.6851 20.6852 49.6456 49.6457

5 6.7434 6.7434 21.9053 21.9053 50.9338 50.9339

6 7.6551 7.6551 23.3093 23.3093 52.4633 52.4633

7 8.5956 8.5956 24.8647 24.8647 54.2124 54.2125

8 9.5539 9.5540 26.5436 26.5437 56.1595 56.1596

9 10.5239 10.5239 28.3227 28.3227 58.2833 58.2834

10 11.5015 11.5016 30.1827 30.1828 60.5639 60.5640

11 12.4845 12.4845 32.1085 32.1086 62.9829 62.9830

12 13.4711 13.4711 34.0877 34.0877 65.5236 65.5238
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Fig. 6 Variation of natural frequencies with respect to hub radius parameter for different rotational speed parameters

(b) Evaluating nodal flexibility matrices using (1)
and (2).

(c) Evaluating structural matrices using (15)–(17).

4 Numerical results

Obtaining the structural matrices, free vibration analy-
sis is carried out by general eigenvalue analysis [35],

(K + KG)φ = ω2Mφ (34)

in which ω is the natural frequency. The following di-
mensionless parameters are introduced to present the
numerical results.

δ = R

L
, η = �

√
ρA0L4

EI0

μ = ω

√
ρA0L4

EI0

(35)

In what follows, four numerical examples are pro-
vided including non-rotating double tapered beam, ro-
tating beam with linearly varying height, rotating dou-
ble tapered beam with equal height and breadth taper
ratios and non-rotating stepped beam. In Examples 1–
3, free vibration analysis in carried out for cantilever

boundary conditions due to its wide application in en-
gineering problems and well coverage in the literature.

4.1 Example 1: non-rotating double-tapered beam

A non-rotating double tapered beam with rectangu-
lar cross-section whose height and breadth both vary
linearly is considered. The first four dimensionless
frequencies for different combinations of height and
breadth taper ratios, respectively ch and cb, are deter-
mined and compared with Downs [36] in Table 1.

4.2 Example 2: linear cross-sectional area and cubic
moment of inertia

It is assumed that cross-sectional area and moment of
inertia vary as

A(x) = A0

(
1 − 0.5

x

L

)

I (x) = I0

(
1 − 0.5

x

L

)3
(36)

The first three natural frequencies of the beam with
δ = 0 for different rotational speed parameters are de-
termined and tabulated in Table 2. The effect of rub
radius on the first four natural frequencies of the beam
under different rotational speed parameters is investi-
gated in Fig. 6.
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Table 3 Dimensionless natural frequencies under different rotational speed parameters; Modes: 1–3

η First mode Second mode Third mode

Present Ref. [25] Present Ref. [25] Present Ref. [25]

0 4.62514 4.62515 19.5476 19.5476 48.5789 48.5789

1 4.76404 4.76405 19.6803 19.6803 48.7073 48.7073

2 5.15641 5.15641 20.0733 20.0733 49.0906 49.0906

3 5.74577 5.74578 20.7121 20.7121 49.7226 49.7227

4 6.47261 6.47262 21.5749 21.5749 50.5939 50.5938

5 7.29013 7.29014 22.6360 22.6360 51.6918 51.6918

6 8.16628 8.16630 23.8684 23.8684 53.0019 53.0018

7 9.08034 9.08036 25.2461 25.2461 54.5081 54.5082

8 10.0192 10.0192 26.7454 26.7454 56.1941 56.1941

9 10.9747 10.9747 28.3459 28.3459 58.0433 58.0434

10 11.9415 11.9415 30.0299 30.0299 60.0399 60.0399

Table 4 The same as Table 3; Modes: 4–5

η Fourth mode Fifth mode

Present Ref. [25] Present Ref. [25]

0 91.8128 91.8128 149.3899 149.390

1 91.9409 91.9409 149.5183 149.518

2 92.3243 92.3243 149.9030 149.903

3 92.9597 92.9597 150.5417 150.542

4 93.8415 93.8415 151.4311 151.431

5 94.9626 94.9627 152.5666 152.567

6 96.3142 96.3142 153.9423 153.942

7 97.8861 97.8861 155.5516 155.552

8 99.6672 99.6673 157.3867 157.387

9 101.6458 101.646 159.4393 159.439

10 103.8098 103.810 161.7006 161.701

4.3 Example 3: parabolic cross-sectional area and
fourth order moment of inertia

It is assumed that cross-sectional area and moment of
inertia vary as

A(x) = A0

(
1 − 0.5

x

L

)2

I (x) = I0

(
1 − 0.5

x

L

)4
(37)

The first five natural frequencies of the beam with
δ = 0 are determined and compared with those of
Banerjee et al. [25] in Tables 3 and 4. The first four

normalized mode shapes for Examples 2 and 3 are
plotted in Fig. 7 for η = 5 and δ = 0.

4.4 Example 4: non-rotating stepped beam

In order to show the competency of the method in
determination of natural frequencies of beams with
abrupt changes in cross-sectional area, a beam with
one step change in cross-section is considered as
shown in Fig. 8. In order to analyze this beam, each
portion of the beam is considered as a single element,
and the structural matrices of these two elements are
finally assembled through standard finite element as-
semblage procedure and the free vibration analysis is
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Fig. 7 The first four mode shapes of Examples 2 and 3 for η = 5 (solid line: Example 2, dotted line: Example 3)

Fig. 8 A beam with one step change in cross-section

carried out. The first three dimensionless natural fre-
quencies of the beam for different boundary condi-
tions are reported in Table 5 and compared with those
of Naguleswaran [37].

5 Discussion

Through the numerical examples, it was observed
that the results predicted by the proposed method are
in good agreement with those in the literature. This
is mostly due to the efficiency of BDFs in captur-

ing the effects of rotational speed and variable cross-
section. Figure 9 shows how BDFs vary with rota-
tional speed parameter and taper ratio for a unit length
beam element with E = 200 GPa, ρ = 8000 kg/m3,
A0 = 8 cm2, I0 = 60 cm4, ω = 0, δ = 0 and linearly
varying height.

It is concluded from Table 1 that the natural fre-
quencies except for the fundamental one decrease with
the height taper ratio while all natural frequencies in-
crease with breadth taper ratio. As observed in (19),
the centrifugal force is proportional to the rotational
speed parameter and hub radius. Moreover, centrifu-
gal force has a stiffening effect; therefore as expected,
the rotational speed parameter and hub radius have an
increasing effect on the natural frequencies as intro-
duced in Tables 2–4 and Fig. 6. In order to have a bet-
ter insight, one can investigate the increasing effects
of rotational speed and hub radius in Fig. 6 where it
is observed that the increasing rate of all natural fre-
quencies becomes larger for higher rotational speeds.
Table 5 verifies the competency of the method in deal-
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Table 5 Dimensionless natural frequencies of a non-rotating stepped beam

d21 R1 Clamped-free Hinged-hinged Clamped-hinged√
α1

√
α2

√
α3

√
α1

√
α2

√
α3

√
α1

√
α2

√
α3

0.5 0.25 Present 1.6687 3.9528 6.1635 2.2270 4.5706 7.0984 3.3603 5.6457 7.7404

Ref. [37] 1.6687 3.9528 6.1635 2.2270 4.5706 7.0984 3.3603 5.6457 7.7404

0.375 Present 1.8696 3.9387 6.1399 2.2637 4.9160 7.6854 3.4450 5.5281 8.1829

Ref. [37] 1.8696 3.9387 6.1399 2.2637 4.9160 7.6854 3.4450 5.5281 8.1829

0.8 0.25 Present 1.8594 4.4137 7.2254 2.8274 5.7369 8.6953 3.7327 6.5206 9.3836

Ref. [37] 1.8594 4.4137 7.2254 2.8274 5.7369 8.6953 3.7327 6.5206 9.3836

0.375 Present 1.9205 4.3974 7.3419 2.8664 5.8917 8.7843 3.7177 6.5934 9.5553

Ref. [37] 1.9205 4.3974 7.3419 2.8664 5.8917 8.7843 3.7177 6.5934 9.5553

Fig. 9 Variation of BDFs with respect to rotational speed parameter and taper ratio (solid line: c = 0, η = 0, dotted line: c = 0.2,
η = 0, dashed line: c = 0, η = 10)

ing with beams with discontinuity in cross-sectional
profile.

In engineering applications, a new finite element
could only be relied on once its convergence is studied.
Here in the convergence study, the first issue which
should be addressed is the accuracy of AMDM due
to its direct effect on the BDFs and consequently the
performance of the present element. The convergence
of AMDM is guaranteed by the number of terms n

used in the truncated series. In order to investigate the
accuracy of AMDM, it is used directly to solve the

governing differential equation for free flapwise vibra-
tion of tapered rotating beams and the natural frequen-
cies are computed from the characteristic determinant
of the system. Figure 10 depicts the convergence of
AMDM with respect to n. It is observed that almost
40 terms are required so that AMDM could provide
satisfactory results. The authors observed that more
terms are required as the taper ratio, hub radius or rota-
tional speed increases. The other important issue is the
convergence of the method with respect to the number
of elements. Using 40 terms in AMDM and consid-
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Fig. 10 Convergence of AMDM with respect to n in determination of the natural frequencies of the beam described in Example 2
under η = 10

ering the results of Banerjee et al. [25] as exact ones,
the first four dimensionless natural frequencies of the
beam described in Example 2 under η = 10 are deter-
mined and the relative errors are shown in Fig. 11 and
compared with those of conventional finite element
method (CFEM) and the beam element proposed by
Bazoune [12]. It is observed that the present method
provides results with high accuracy with even one ele-
ment and the results change slightly with the increase
in the number of elements. A very important point is
deduced from Fig. 11 where we are dealing with a ro-
tating cantilever beam. Using one beam element, there
are two active degrees of freedom, degrees of free-
dom at the free end. As a result, the order of matri-
ces in (34) would be 2 × 2 and mathematically we are
able to find only the first two eigenfrequencies of the
system; while Fig. 11 shows that the third and fourth
natural frequencies could be also determined with em-
ploying only one element. This is possible since the
new shape functions are dependent on the natural fre-
quency ω. Consequently the value of ω affects the
structural matrices and (34) would be no longer an or-
dinary eigenvalue problem and we are able to deter-

mine more eigenvalues than the order of the structural
matrices.

6 Conclusions

Using Adomian modified decomposition method, spe-
cial functions namely Basic Displacement Functions
(BDFs) were obtained through solving the governing
differential equation for flapwise vibration. Follow-
ing basic principles of structural mechanics, the shape
functions were derived in terms of BDFs. Carrying out
several numerical examples, it was observed that free
vibration analysis could be efficiently performed us-
ing few elements due to two facts; firstly the flexibil-
ity basis of the method brings accuracy to the results
and secondly the new shape functions capture the ef-
fects of rotational speed, circular frequency, overall el-
ement configuration and physical properties. The de-
pendency of shape functions on circular frequency en-
ables the present element to predict many natural fre-
quencies with only one element.
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Fig. 11 Convergence of the method with respect to the number of elements (solid line: present; dashed line: CFEM; dotted line:
element proposed by Bazoune [12])
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