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Abstract The model of one-dimensional equations
of the two-temperature generalized magneto-thermo-
elasticity theory with two relaxation times in a perfect
electric conducting medium is established. The state
space approach developed in Ezzat (Can J. Phys. Rev.
86(11):1241–1250, 2008) is adopted for the solution
of one-dimensional problems. The resulting formula-
tion together with the Laplace transform techniques
are applied to a specific problem of a half-space sub-
jected to thermal shock and traction-free surface. The
inversion of the Laplace transforms is carried out using
a numerical approach. Some comparisons have been
shown in figures to estimate the effects of the temper-
ature discrepancy and the applied magnetic field.
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ρ Density
CE Specific heat at constant strain
H Magnetic field intensity vector
E Electric field intensity vector
Ho Constant component of magnetic field
J Conduction current density vector
T Thermodynamic temperature
ϕ Conductive temperature
To Reference temperature
αT Coefficient of linear thermal expansion
σij Components of stress tensor
eij Components of strain tensor
ui Components of displacement vector
e =ui,i , dilatation
k Thermal conductivity
κ Diffusivity
μo Magnetic permeability
εo Electric permeability
τ, ν Two relaxation times
βo The dimensionless temperature discrepancy
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1 Introduction

Linear elasticity is at the heart of almost all continuum-
based constitutive models used in structural and geo-
technical engineering, and therefore it is reasonable to
concentrate efforts (initially at least) on improvement
of solvers for these cases.

While in service, structural elements are frequently
subjected to not only force loads but also nonuniform
heating causing thermal stresses. These stress them-
selves or in combination with mechanical stresses due
to external loads may cause the material to fracture.
Therefore, to perform a complete strength analysis of
structures, it is necessary to know the magnitude and
distribution of thermal stresses. In this connection, is-
sues associated with the determination of temperature
fields and thermal stresses are of importance and draw
the attention of experts of different professions.

The two temperatures theory of thermoelasticity
was introduced by Gurtin and Williams [2, 3], Chen
and Gurtin [4], and Chen et al. [5, 6], in which the
classical Clausius-Duhem inequality was replaced by
another one depending on two temperatures; the con-
ductive temperature ϕ and the thermodynamic temper-
ature T , the first is due to the thermal processes, and
the second is due to the mechanical processes inherent
between the particles and the layers of elastic material,
this theory was also investigated by Ieşan [7].

The two-temperature model was underrated and un-
noticed for many years thereafter. Only in the last
decade has the theory been noticed, developed in many
works, and find its applications mainly in the prob-
lems in which the discontinuities of stresses have no
physical interpretations. Among the authors who con-
tribute to develop this theory, Quintanilla [8] studied
existence, structural stability, convergence and spatial
behavior for this theory, Youssef [9] introduced the
generalized Fourier law to the field equations of the
two-temperature theory of thermoelasticity and proved
the uniqueness of solution for homogeneous isotropic
material, Puri and Jordan [10] studied the propagation
of harmonic plane waves, recently, Magaña and Quin-
tanilla [11] have studied the uniqueness and growth
solutions for the model proposed by [9].

The heat conduction equations for the classical lin-
ear uncoupled and coupled thermoelasticity theories
are of the diffusion type predicting infinite speed of
propagation for heat wave contrary to physical obser-
vations. To eliminate the paradox inherent in the clas-

sical theories, the theories of generalized thermoelas-
ticity were developed in attempt to amend the classi-
cal thermoelasticity in 1960’s. Cattaneo [12] was the
first to offer an explicit mathematical correction of
the propagation speed defect inherent in Fourier’s heat
conduction law. Cattaneo’s theory allows for the ex-
istence of thermal waves, which propagate at finite
speeds. Starting from Maxwell’s idea [13] and from
the paper by Cattaneo, an extensive amount of litera-
ture [14–17] has contributed to the elimination of the
paradox of instantaneous propagation of thermal dis-
turbances. The approach used is known as extended
irreversible thermodynamics, which introduces time
derivative of the heat flux vector, Cauchy stress ten-
sor and its trace into the classical Fourier law by pre-
serving the entropy principle. Puri and Kythe [16] in-
vestigated the effects of using the (Maxwell-Cattaneo)
model in Stoke’s second problem for a viscous fluid.
Joseph and Preziosi give a detail history of heat con-
duction theory in [15].

Three generalizations to the coupled theory were
introduced. The first generalization to coupled ther-
moelasticity is due to Lord and Shulman [18], who
introduced the theory of generalized thermoelasticity
with one relaxation time. The heat equation of this the-
ory is of the wave-type, it automatically ensures finite
speeds of propagation for heat and elastic waves. The
remaining governing equations for this theory, namely,
the equations of motion and constitutive relations, re-
main the same as those for the coupled and the uncou-
pled theories. The second generalization to the cou-
pled theory of elasticity is what is known as the the-
ory of thermoelasticity with two relaxation times or
the theory of temperature-rate-dependent thermoelas-
ticity. Müller [19], in a review of the thermodynam-
ics of thermoelastic solids, proposed an entropy pro-
duction inequality, with the help of which he consid-
ered restrictions on a class of constitutive equations.
A generalization of this inequality was proposed by
Green and Laws [20]. Green and Lindsay obtained an
explicit version of the constitutive equations in [21].
These equations were also obtained independently by
Şuhubi [22] and Ezzat [23] has obtained the funda-
mental solution for this theory. This theory contains
two constants that act as relaxation times and mod-
ify all the equations of the coupled theory, not only
the heat equation. Dhaliwal and Rokne [24] studied
one dimensional thermal shook problem with two re-
laxation times. The third generalization to the coupled
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theory is known as the dual-phase-lag thermoelastic-
ity, which were apparently developed by Maxwell, has
been considered by Tzou [25], in which the Fourier
law is replaced by an approximation to a modification
of the Fourier law with two different translations for
the heat flux and the temperature gradient.

Investigation of the interaction between magnetic
field and stress and strain in a thermoelastic solid is
very important due to its many applications in the
fields of geophysics, plasma physics and related top-
ics. Especially in nuclear fields, the extremely high
temperature and temperature gradients, as well as the
magnetic fields originating. Great attention has been
devoted inside nuclear reactors, influence their de-
sign and operations to the study of electromagneto-
thermoelastic coupled problems based on the general-
ized thermoelastic theories for non-rotating medium.
In the context of Lord and Shulman’s theory, Nayfeh
and Nasser [26] studied the propagation of plane
waves in a solid under the influence of an electromag-
netic field. Choudhuri [27] extend these results to ro-
tating media. Sharma and Chand [28] studied a one-
dimensional transient magnetothermoelastic problem
by introducing a potential function, Sherief and Ezzat
[29] investigated a problem of an infinitely long annu-
lar cylinder in generalized magneto-thermoelasticity
and Ezzat and Youssef [30] introduced a model of
the equations of generalized magneto-thermoelasticity
in a perfectly conducting medium. In the context of
Green and Lindsay’s theory, Ezzat et al. [31] solved an
electromagneto-thermoelastic two-dimensional prob-
lem in generalized thermoelasticity with two relax-
ation times.

The solution is obtained using a state space ap-
proach. The first writers to introduce the state space
formulation in thermoelastic problems were Bahar and
Hetnarski [32]. Their work dealt with coupled ther-
moelasticity in the absence of heat sources. This work
was followed by the work of Ezzat [33] in generalized
thermoelasticity including heat sources.

The present work is an attempt to generalize these
results to include the effects of a magnetic field in 2TT.
The resulting formulation together with the Laplace
transform is used to solve a one-dimensional thermal
shock problem for a perfectly conducting half-space
permeated by a primary uniform magnetic field whose
surface is assumed to be perfect conductor and trac-
tion free. The inversion of the Laplace transform will
be computed numerically by using a method based on
Fourier expansion technique [34].

2 Formulation of the problem

We shall consider a thermoelastic medium of prefect
conductivity permeated by an initial magnetic field H .
This produces an induced magnetic field h and in-
duced electric field E, which satisfy the linearized
equations of electromagnetism and are valid for slowly
moving media, Ezzat [33]:

The first set of equations constitutes the equations
of electrodynamics of slowly moving bodies:

curlh = J + εo

∂E

∂t
, (1)

curlE = −μo

∂h

∂t
, (2)

E = −μo

(
∂u

∂t
∧ H

)
, (3)

divh = 0. (4)

Here the vectors h and E denote perturbations of the
magnetic and electric fields, respectively, J is the elec-
tric current density vector, H the initial constant mag-
netic field, u the displacement vector and μo and εo

are the magnetic permeability in vacuum and electric
permittivity in vacuum, respectively.

The second group of equations is the equations of
motion:

ρ
∂2ui

∂t2
= σij,j + Tij,j + Xi, (5)

where σij is the stress tensor represents the constitu-
tive equation:

σij = λekkδij + 2μeij − γ

(
T − T0 + ν

∂T

∂t

)
δij , (6)

and Tij the Maxwell electromagnetic stress tensor re-
lated to the quantity h in the following manner [35]:

Tij = μo

[
Hihj + Hjhi − δij (hkHk)

]
, (7)

so that the quantity Tij,j = μo ∈ijk JjHk is the i-
component of the Lorentz force, and Xi are the com-
ponents of the body forces.

The above equations should be supplemented by
the relations between strain and displacements

eij = 1

2
(ui,j + uj,i), (8)
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and the heat conduction equation

kϕ,ii = ρCE

(
∂T

∂t
+ τ

∂2T

∂t2

)
+ γ ϕo

∂e

∂t
. (9)

In the theory of two-temperature, the reference tem-
perature is ϕ0 = T0, the Fourier law is qi = −kϕ,i and
the relation between the thermodynamic absolute tem-
perature T and conductive absolute temperature ϕ is
given as [6]

ϕ − T = aϕ,ii , (10)

where a > 0, and [a] = m2 is the temperature discrep-
ancy [4, 6].

In the above equations a comma denotes material
derivatives and the summation convention are used.

The previous equations constitute a complete sys-
tem of two-temperature generalized magneto-thermo-
elasticity with two relaxation times equations for a
medium with a perfect electric conductivity.

Now, we shall consider a homogeneous isotropic
thermoelastic conducting solid occupying half-space
x ≥ 0, which obey (1)–(9) when the body force is ab-
sent and the magnetization disregarded. The system is
initially quiescent where all the state functions are de-
pending only on the variable x and the time t .

The displacement vector has components

ux = u(x, t), uy = uz = 0.

The strain component takes the form

e = exx = ∂u

∂x
. (11)

The heat conduction equation is given by

k
∂2ϕ

∂x2
= ρCE

(
∂T

∂t
+ τ

∂2T

∂t2

)
+ γ To

∂e

∂t
. (12a)

Substitution (10) into the heat conduction equation
(12a) yields for the considered solid

κ
∂2ϕ

∂x2
+ a

∂3ϕ

∂x2∂t
+ aτ

∂4ϕ

∂x2∂t2

= ∂ϕ

∂t
+ τ

∂2ϕ

∂t2
+ ϕo

∂e

∂t
, (12b)

where κ = k
ρCE

is the diffusivity.
The constitutive equation will be

σ = σxx

= (2μ + λ)e − γ

[
(ϕ − ϕo)

− a
∂2ϕ

∂x2
+ ν

∂ϕ

∂t
− νa

∂3ϕ

∂x2∂t

]
. (13)

For the linear two-temperature thermoelasticity theory
it is assumed that [4]:

δ = Max
{|ϕ − ϕo|, |∇ϕ|, |∇∇ϕ|, |∇ϕ̇|, |∇∇ϕ̇|}

is small.

A constant magnetic field with components
(0,Ho,0) is permeating the medium. The induced
magnetic field h will have one component in the y-
direction, while the induced electric field E will have
one component in z-direction. Then, (1)–(3) yield.

J =
(

∂h

∂x
− ε0

∂E

∂t

)
, (14)

h = −H0e, (15)

E = −μ0H0
∂u

∂t
. (16)

Expressing the components of the vector J in terms of
displacement, by eliminating from (14) the quantities
h and E and introducing them into the displacement
equation (5), we get

∂2σ

∂x2
+ μoH

2
o

∂2e

∂x2
= ρα

∂2e

∂t2
, (17)

where α = 1 + α2
0

c2 and αo =
√

μoH 2
o

ρ
is the Alfven ve-

locity.
Let us introduce the following non-dimensional

variables:

x∗ = coηox, u∗ = coηou, t∗ = c2
oηot,

τ ∗ = c2
o
ηoτ, ν∗ = c2

o
ηoν, θ∗ = γ (T − To)

ρc2
o

,

ϕ∗ = γ (ϕ − ϕo)

ρc2
o

, ηo = ρCE

ko

= 1

κ
,

ε = δoγ

ρCE

, σ ∗ = σ

ρc2
o

,

E∗ = E

μoHoco

, c2
o = λ + 2μ

ρ
,
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h∗ = h

Ho

, T ∗
ij = Tij

μoH 2
o

.

Using the above values, then we have (dropping the
asterisks for convenience):

h = −e, (18)

E = −∂u

∂t
, (19)

∂2ϕ

∂x2
=

(
∂

∂t
+ τ

∂2

∂t2

)
θ + ε

∂e

∂t
, (20a)

∂2ϕ

∂x2
=

(
1 − βo

∂2

∂x2

)(
∂

∂t
+ τ

∂2

∂t2

)
ϕ + ε

∂e

∂t
, (20b)

σ = e −
(

1 + ν
∂

∂t

)
θ, (21)

∂2σ

∂x2
+ β

∂2e

∂x2
= α

∂2e

∂t2
, (22)

ϕ − θ = βo

∂2ϕ

∂x2
, (23)

where β = α2
o

c2
o

and βo = ac2
oη

2
o .

Taking the Laplace transforms defined by the rela-
tion

f (s) =
∫ ∞

0
e−st f (t)dt,

of both sides of (18)–(23), we obtain:

h̄ = −ē, (24)

Ē = −sū, (25)

∂2ϕ̄

∂x2
= (s + τs2)θ̄ + sεē, (26)

σ̄ = ē − (1 + νs)θ̄ , (27)

∂2σ̄

∂x2
+ β

∂2ē

∂x2
= αs2ē, (28)

ϕ̄ − θ̄ = βo

∂2ϕ̄

∂x2
, (29)

where all the initial state functions are equal to zero.
The conductive temperature attains its minimum

value at βc
o = ε(1 + ε)−3 and equal to the thermody-

namic temperature at βo = 0 [10].
Determining the conductive temperature ϕ it is easy

to obtain the thermodynamic temperature T by sim-
ple operations using (23), while knowing T it needs to

solve second order differential equation to get ϕ from
(23). Therefore, usually the problem is solving in ϕ

rather than in T .
Eliminating ē and θ̄ from (26)–(29), we obtain

∂2ϕ̄

∂x2
= L1ϕ̄ + L2σ̄ , (30)

where

L1 = s + τs2 + εs(1 + νs)

1 + βo[s + τs2 + sε(1 + νs)] ,

L2 = εs

1 + βo[s + τs2 + sε(1 + νs)] ,

and

∂2σ̄

∂x2
= M1ϕ̄ + M2σ̄ , (31)

where

M1 = m(αs2 − βL1)

1 + nβ
, M2 = nαs2 − mβL2

1 + nβ

m = (1 + νs)(1 − βoL1), and

n = 1 − βoL2(1 + νs)

Choosing as state variables the temperature of
heat conduction ϕ̄ and the stress component σ̄ in the
x-direction, (30) and (31) can be written in the matrix
form as:

d2v̄(x, s)

dx2
= A(s)v̄(x, s), (32)

where

ν̄(x, s) =
[

ϕ̄(x, s)

σ̄ (x, s)

]
and A(s) =

[
L1 L2

M1 M2

]
.

The formal solution of system (32) can be written in
the form

v̄(x, s) = exp
[−√

A(s)x
]
v̄(0, s), (33)

where

v̄(0, s) =
[

ϕ̄(0, s)

σ̄ (0, s)

]
=

[
ϕ̄o

σ̄o

]

where for bounded solution with large x, we have can-
celed the part of exponential that has a positive power.

We shall use the well-known Cayley-Hamilton the-
orem to find the form of the matrix exp[−√

A(s)x].



790 Meccanica (2011) 46:785–794

The characteristic equation of the matrix A(s) can be
written as follows:

k2 − k(L1 + M2) + (L1M2 − L2M1) = 0. (34)

The roots of this equation, namely, k1 and k2, satisfy
the following relations:

k1 + k2 = L1 + M2, (35a)

k1k2 = L1M2 − L2M1. (35b)

The Taylor series expansion of the matrix exponen-
tial in (33) has the form

exp
[−√

A(s)x
] =

∞∑
n=0

[−√
A(s)x]n
n! . (36)

Using the Cayley-Hamilton theorem, we can ex-
press A2 and higher orders of the matrix A in terms
of I and A, where I is the unit matrix of second order.

Thus, the infinite series in (36) can be reduced to

exp
[−√

A(s)x
] = ao(x, s)I + a1(x, s)A(s), (37)

where ao and a1 are coefficients depending on x and s.
By the Cayley-Hamilton theorem, the characteristic

roots k1 and k2 of the matrix A must satisfy (37), thus

exp
[−√

k1x
] = ao + a1k1, (38)

and

exp
[−√

k2x
] = ao + a1k2. (39)

The solution of the above system is given by

ao = k1e
−√

k2x − k2e
−√

k1x

k1 − k2
, and

a1 = e−√
k1x − e−√

k2x

k1 − k2
.

Hence, we have

exp
[−√

k1x
] = Lij (x, s), i, j = 1,2, where

L11 = e−√
k2x(k1 − L1) − e−√

k1x(k2 − L1)

k1 − k2
,

L12 = L2(e
−√

k1x − e−√
k2x)

k1 − k2
,

L22 = e−√
k1x(k2 − M2) − e−√

k2x(k1 − M2)

k1 − k2
,

L21 = M1(e
−√

k1x − e−√
k2x)

k1 − k2
. (40)

The solution in (33) can be written in the form

v̄(x, s) = Lij v̄(0, s). (41)

Hence, we obtain

ϕ̄(x, s) = (k1ϕ̄o − L1ϕ̄o − L2σ̄o)e
−√

k2x − (k2ϕ̄o − L1ϕ̄o − L2σ̄o)e
−√

k1x

k1 − k2
, (42)

σ̄ (x, s) = (k1σ̄o − M1ϕ̄o − M2σ̄o)e
−√

k2x − (k2σ̄o − M1ϕ̄o − M2σ̄o)e
−√

k1x

k1 − k2
. (43)

By using (42) and (43) with (29) we get

θ̄ (x, s) = (k1ϕ̄o − L1ϕ̄o − L2σ̄o)(1 − βok2)e
−√

k2x − (k2ϕ̄o − L1ϕ̄o − L2σ̄o))(1 − βok1)e
−√

k1x

k1 − k2
. (44)

It should be noted that the corresponding ex-

pressions for generalized thermoelasticity of two-

temperature with relaxation time in the absence of

magnetic field can be deduced by setting α = 1.0 and

β = 0 in (40).

We consider a semi-space homogeneous elastic
medium of perfect conductivity occupying the region
x ≥ 0 with quiescent initial state and boundary condi-
tions in the following form:

(i) Thermal boundary condition:
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A thermal shock is applied to the boundary
plane x = 0 in the form

ϕ(0, t) = �oH(t) or ϕ̄(0, s) = ϕ̄o = �o

s
,

(45)

where �o is a constant and H(t) is the Heaviside
unit step function.

(ii) Mechanical boundary condition:
The bounding plane x = 0 is taken to be

traction-free, i.e.

σ(0, t) + T11(0, t) − T o
11(0, t) = 0, (46)

where T o
11 is the Maxwell stress tensor in a vac-

uum.

Since the transverse components of the vectors E

and h are continuous across the bounding plane, i.e.
E(0, t) = E0(0, t) and h(0, t) = h0(0, t), t > 0, where

E0 and h0 are the components of the induced elec-
tric and magnetic field in free space and the rela-
tive permeability is very nearly unity, it follows that
T11(0, t) = T o

11(0, t) and (46) reduces to [33]:

σ(0, t) = 0, or σ̄ (0, s) = σ̄0 = 0. (47)

Hence, we can use the conditions on (45) and (46) into
(42) and (43) to get the exact solution in the Laplace
transform domain in the following forms:

ϕ̄(x, s)

= �o[(k1 − L1)e
−√

k2x − (k2 − L1)e
−√

k1x]
s(k1 − k2)

, (48)

σ̄ (x, s) = �oM1(e
−√

k1x − e−√
k2x)

s(k1 − k2)
, (49)

θ̄ (x, s) = �o[Be−√
k2x − Ae−√

k1x]
s(k1 − k2)

, (50)

ē(x, s) = �o[[m(k1 − L1) − nM1]e−√
k2x − [m(k2 − L1) − nM1]e−√

k1x]
s(k1 − k2)

, (51)

where A = (k2 − L1)(1 − βok1),

B = (k1 − L1)(1 − βok2).

From (11), the displacement takes the form:

ū(x, s) = �o(Ce−√
k1x − De−√

k2x)

s(k1 − k2)
,

where C = m(k2 − L1) − nM1√
k1

,

D = m(k1 − L1) − nM1√
k2

. (52)

The induced magnetic and electric field takes the fol-
lowing forms

h̄(x, s) = −�o[[m(k1 − L1) − nM1]e−√
k2x − [m(k2 − L1) − nM1]e−√

k1x]
s(k1 − k2)

, (53)

Ē(x, s) = −�o(Ce−√
k1x − De−√

k2x)

s2(k1 − k2)
. (54)

Those complete the solution in the Laplace transform

domain.

3 Inversion of the Laplace transforms

In order to invert the Laplace transform in the above

equations, we adopt a numerical inversion method

based on a Fourier series expansion [34]. In this

method, the inverse g(t) of the Laplace transform ḡ(s)
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is approximated by the relation

g(t) = ect

t1

[
1

2
ḡ(c)

+ Re

( ∞∑
k=1

eikπt/t1 ḡ(c + ikπ/t1)

)]
,

0 ≤ t ≤ 2t1, (55)

where N is a sufficiently large integer representing the
number of terms in the truncated infinite Fourier series
and it must chosen such that

ectRe
[
eiNπt/t1 ḡ(c + iNπ/t1)

] ≤ ε1,

where ε1 is a persecuted small positive number that
corresponds to the degree of accuracy to be achieved.
The parameter c is a positive free parameter that must
be greater than the real parts of all singularities of ḡ(s).
The optimal choice of c was obtained according to the
criteria described in [34].

4 Numerical results

The copper material was chosen for purposes of nu-
merical evaluations. The constants of the problem
were taken as following [36] (see Table 1).

The computations were carried out for t = 0.1 and
t = 0.2. Formula (55) was used to invert the Laplace
transforms in (48)–(54) and giving the conductive tem-
perature, the thermodynamic temperature, the stress,
the displacement, the strain, induced magnetic field
and the induced electric field distributions. The results
are represented graphically at different positions of x.

In Figs. 1–7, we noticed the difference in all func-
tions for the value of the non-dimensional tempera-
ture discrepancy βo where the case of βo = 0.0 in-
dicates the old situation (one type temperature) and
the case βo = 0.075 [10], indicates the new case (two-
temperature).

In all figures we notice that the curves are smoother
in the case βo = 0.075.

In Figs. 1–3, we observe that at time t = 0.1, the
conductive temperature, the thermo-dynamical tem-

Fig. 1 The conductive temperature distribution

Fig. 2 The thermodynamic temperature distribution

Fig. 3 The stress distribution

Table 1 Values of the constants

k = 386 N/Ks, αT = 1.78 × 10−5 K−1, CE = 383.1 m2/K, ηo = 8886.73 s/m2, μ = 3.86 × 1010 N/m2, λ = 7.76 × 1010 N/m2,

ρ = 8954 kg/m3, To = 293 K, co = 415 m/s, ε = 0.0168, τ = 0.002 s, εo = 8.854 × 10−12 C2/Nm2, μo = 1.256 × 10−6 Ns2/C2,

ν = 0.003 s, Bo = μoHo = 1 Tesla, α = 1.001, β = 3.8 × 1012.
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Fig. 4 The displacement distribution

Fig. 5 The strain distribution

Fig. 6 The induced magnetic field distribution

perature and the stress waves cut the x-axis rapidly
when βo = 0.0 than when βo = 0.075.

In Figs. 3–7 exhibiting the space variation of the
displacement, the strain and the stress as well as the
induced magnetic and electric field, we observe the
following:

(i) Significant differences in the stress are noticed
for different value of the non-dimensional tem-
perature discrepancy in presence (α > 1.0) or ab-
sence (α = 1.0) of magnetic field.

Fig. 7 The induced electric field distribution

(ii) The absolute value of the maximum stress de-
creases when βo = 0.075 and increases when
βo = 0.0.

(iii) The magnetic field acts to decrease the displace-
ment, the strain and the magnitude of the stress
component. This is mainly due to the fact that
the magnetic field corresponds to term signifying
positive force that tends to accelerate the charge
carriers.

(iv) The absolute value of the induced magnetic and
electric field decreases when βo = 0.075 and in-
creases when βo = 0.0.

5 Conclusions

Previously, the discontinuity of the stress distrib-
ution was a critical situation and no one has ex-
plained the reason physically, while in the context
of the two-temperature theory of thermoelasticity, the
stress function is continuous. This paper indicates that,
the two-temperature generalized theory of magneto-
thermo-viscoelasticity describes the behavior of the
particles of an elastic body more realistically than
the one-temperature theory of generalized magneto-
thermoelasticity with two relaxation times.

In this work, the method of direct integration by
means of the matrix exponential, which is standard
approach in modern control theory and developed in
detail in many texts [1], is easier than in the classical
situation (with one thermodynamic temperature).
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