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Abstract Based on a theoretical foundation for em-
pirical mode decomposition, which dictates the cor-
respondence between the analytical and empirical
slow-flow analyses, we develop a time-domain non-
linear system identification (NSI) technique. This NSI
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method is based on multiscale dynamic partitions and
direct analysis of measured time series, and makes no
presumptions regarding the type and strength of the
system nonlinearity. Hence, the method is expected to
be applicable to broad classes of applications involv-
ing time-variant/time-invariant, linear/nonlinear, and
smooth/non-smooth dynamical systems. The method
leads to nonparametric reduced order models of sim-
ple form; i.e., in the form of coupled or uncoupled
oscillators with time-varying or time-invariant coef-
ficients forced by nonhomogeneous terms represent-
ing nonlinear modal interactions. Key to our method
is a slow/fast partition of transient dynamics which
leads to the identification of the basic fast frequencies
of the dynamics, and the subsequent development of
slow-flow models governing the essential dynamics of
the system. We provide examples of application of the
NSI method by analyzing strongly nonlinear modal
interactions in two dynamical systems with essentially
nonlinear attachments.

Keywords Slow flow model ·
Complexification-averaging technique · Empirical
mode decomposition · Intrinsic mode function ·
Nonlinear system identification · Intrinsic modal
oscillator

1 Introduction

System identification (SI) in structural dynamics prob-
lems usually refers to determining the properties of
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a system (through the application of signal process-
ing techniques) by direct analysis of numerical or ex-
perimental output and, perhaps, input data. In linear
systems this is performed by modal analysis employ-
ing techniques such as curve fitting of frequency re-
sponse functions in the complex plane [1], the Ibrahim
time domain method [2], the eigensystem realization
algorithm [3], the stochastic subspace identification
method [4], and others. Nonlinear SI techniques are
often classified as time- or frequency-domain meth-
ods; a recent survey of current methods of nonlinear
SI was carried out in Kerschen et al. [5].

An important classification of nonlinear SI methods
concerns the presumptions made regarding the specific
characteristics of the mathematical model of the mea-
sured dynamics; in that sense we distinguish between
parametric and nonparametric methods. In a paramet-
ric method, a particular model is assumed for the dy-
namical system to be identified, and the aim is to de-
termine the parameters of that model. On the other
hand, nonparametric identification makes no presump-
tions regarding the model of the dynamics to be iden-
tified, focusing, for example, on optimal ‘functional’
representation of a system based on input-output map-
pings [6]. Hence, an important feature in nonparamet-
ric SI analysis is that there are no a priori assumptions
made about the physical model governing the dynam-
ics to be identified.

Typical nonparametric SI methods include deriva-
tion of a reduced-order model (ROM) through proper
orthogonal decomposition (POD), Volterra theory,
or artificial neural networks. For example, Silva [6]
performed nonlinear SI using Volterra theory on
aeroelastic systems, developed computationally-ef-
ficient ROMs employing an Euler/Navier-Stokes fluid
solver, and finally derived analytically Volterra ker-
nels for nonlinear aeroelastic systems from data of
flight flutter tests of an active aeroelastic wing air-
craft.

There are alternative well-established methods for
nonlinear parameter estimation, such as the restoring
force surface (RFS) method [7], NARMAX (Nonlin-
ear Auto-Regressive Moving Average models with
eXogenous inputs) [8, 9], methods based on Hilbert
transforms (FREEVIB and FORCEVIB methods
[10, 11]), and others. The harmonic balance technique
was applied to nonlinear SI. For example, Thothadri
et al. [12] extended nonlinear SI based on the princi-
ple of harmonic balance to multi-degree-of-freedom

(MDOF) fluid-structure interaction systems. The main
advantage of the harmonic balance technique is its
usefulness to predict bifurcation behavior of a non-
linear system, for which nonparametric methods are
not usually well suited; this is performed by exploiting
the periodicity in the response of an experimental sys-
tem, when parametric time-domain methods such as
the NARMAX fail [12]. A multi-staged approach for
fitting the excitation of a nonlinear system in nonpara-
metric form was developed in Masri et al. [13, 14].
Also, a general ‘data-based’ approach for develop-
ing ROMs of nonlinear MDOF systems was proposed
by assuming no information about the system mass
[15, 16]. However, none of these are truly efficient
nonparametric methods, since they are only applicable
to specific classes of dynamical systems; in addition,
some type of functional form is always assumed for
modeling the system nonlinearity and the main task
becomes the determination of the corresponding coef-
ficients.

Given a sufficiently dense set of sensors, measured
time series recorded throughout a mechanical or struc-
tural system contains all information regarding the dy-
namics of that system. This observation highlights the
importance of developing effective, straightforward,
non-parametric system identification and reduced or-
der modeling methods based on direct analysis of
measured time series. These methods should be ca-
pable of analyzing strongly nonlinear, complex, multi-
component systems and be as utilitarian as (the well
established) experimental modal analysis for linear
systems. This is precisely the focus of our work: the
development of a new methodology for performing
nonparametric system identification (eventually lead-
ing to reduced order modeling) of broad applicability;
e.g., applicable to broad classes of time-variant/time-
invariant, linear/nonlinear, and smooth/non-smooth
dynamical systems. The need for developing such a
system identification technique of broad applicabil-
ity is dictated by the limitations of current system
identification techniques which are either applicable
only to linear systems or are tailored to special classes
of smooth nonlinear systems. The difficulty in devel-
oping nonlinear system identification methodologies
of broad applicability is due to the well-recognized
highly individualistic nature of nonlinear systems,
which restricts the unifying (i.e., the common) dy-
namical features that are amenable to system identi-
fication.
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This paper is structured as follows. In Sect. 2
we briefly review the correspondence between ana-
lytical and empirical slow flows, which provides a
solid theoretical foundation for empirical mode de-
composition; by slow flows we denote the underly-
ing (governing) dynamics of the system once the (sec-
ondary) fast dynamics are averaged out of the prob-
lem [17]. The basic elements of the proposed non-
linear system identification method are then devel-
oped in Sect. 3. Finally, in Sect. 4 we validate our
proposed technique by performing system identifica-
tion of the dynamics of 1:3 transient resonance cap-
ture in a coupled oscillator with essential (nonlin-
earizable) stiffness nonlinearity, and of the triggering
mechanism of aeroelastic instability of a rigid wing
in flow. Our proposed technique relies solely on di-
rect time series measurement and post-processing, and
leads to nonparametric reduced order models of sim-
ple form; i.e., in the form of coupled or uncoupled
oscillators with time-varying or time-invariant coef-
ficients forced by nonhomogeneous terms represent-
ing nonlinear modal interactions. Key to our method
is a slow/fast partition of time series measurements
which leads to the identification of the basic fast fre-
quencies of the dynamics (which also govern the di-
mensionality of the resulting reduced order model),
and the development of slow-flow models describ-
ing the important (governing) dynamics of the sys-
tem.

2 Correspondence between analytical and
empirical slow-flow analyses: a review

We consider an n-degree-of-freedom (DOF) dynami-
cal system

Ẋ = f(X, t), X = {xT ẋT }T ∈ R
2n, t ∈ R (1)

where x and ẋ are the displacement and velocity vec-
tors, respectively. To establish an analytical slow-flow
model for this system, we employ the complexifica-
tion-averaging (CX-A) technique [18, 19], which is
briefly discussed here.

Assume that the dynamics of interest contains N

distinct components at frequencies, ω1,ω2, . . . ,ωN ,
so that the response at each degree of freedom of the
system can be expressed as the sum of N independent
components,

xk(t) = x
(1)
k (t) + x

(2)
k (t) + · · · + x

(N)
k (t) (2)

where x
(m)
k (t), k = 1,2, . . . , n, m = 1,2, . . . ,N , indi-

cates the component of the response of the kth coordi-
nate associated with frequency ωm, with the ordering
ω1 < ω2 < · · · < ωN .

It turns out that even strongly nonlinear dynam-
ical processes can be analyzed by the (analytical)
complexification-averaging (CX-A) technique, first
introduced by Manevitch [19] (for an extensive dis-
cussion of this technique and numerous applications
refer to Vakakis et al. [20]). In particular, for each fre-
quency component in (2) we introduce a new complex
variable defined by

ψ
(m)
k (t) = ẋ

(m)
k (t) + jωmx

(m)
k (t) � ϕ

(m)
k (t)ejωmt (3)

where ϕ
(m)
k (t) ∈ C, k = 1, . . . , n, and ejωmt repre-

sent the ‘slow’ and ‘fast’ (complex) components, re-
spectively, of the mth fast frequency component of
the response of the kth coordinate. It is clear that the
real dependent variables and their time derivatives can
be expressed in terms of the new complex variables
as,

x
(m)
k (t) = 1

2jωm

[
ψ

(m)
k (t) − ψ

(m)∗
k (t)

]

ẋ
(m)
k (t) = 1

2

[
ψ

(m)
k (t) + ψ

(m)∗
k (t)

]
(4)

where asterisk ( )∗ denotes complex conjugate.
In the presence of multiple frequency compo-

nents, the method of multiphase averaging [21] can
be utilized to perform fast-slow partitioning of the
dynamics. Substituting into (1), and averaging out
fast-frequency components other than ejωmt ,
m = 1,2, . . . ,N , we obtain the slow-flow model in the
form,

�̇k = Fk(�k), �k ∈ C
N (5)

where �k = {ϕ(1)
k , ϕ

(2)
k , . . . , ϕ

(N)
k }T , k = 1,2, . . . , n.

We note that the dimension N of this slow-flow model
may exceed the number of degrees of freedom of the
original dynamical system, since the number of fast
frequencies is what determines its dimensionality.

Empirical mode decomposition (EMD) is a numer-
ical technique for decomposing a nonstationary and
nonlinear time series into a set of intrinsic oscillatory
functions (the so-called intrinsic mode functions or
IMFs) at different time scales of the dynamics in an
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ad hoc manner requiring no a priori system informa-
tion. The IMFs form a complete and almost orthogonal
basis for the time series [22].

In order for a function c(t) to be considered an IMF,
it must satisfy the following two basic properties: (i) it
must possess exactly one zero between any two con-
secutive local extrema; and (ii) it must have zero local
mean. The main loop of the algorithm for extracting
the IMFs of a signal x(t) is summarized as follows
[22, 23]: (i) identify all extrema of x(t); (ii) perform
(spline-) interpolations between minima (maxima), re-
sulting in an envelope emin(t) (emax(t)); (iii) compute
the average R(t) = [emin(t) + emax(t)]/2 (considered
a residual); (iv) extract the detail c(t) = x(t) − R(t);
(v) iterate on the residual R(t). In practice, the above
procedure is refined by a sifting process, and the in-
ner loop that iterates (i)–(iv) on the detail c(t) runs
until the average R(t) can be considered zero-mean
to some tolerance (i.e., as a stopping criterion). Once
achieved, the detail c(t) is regarded as the effective
IMF. This procedure will be denoted the standard
EMD method (SEMD).

Suppose that the response of the kth DOF of a dis-
crete dynamical system, xk(t), can be decomposed
into N dominant IMFs, resulting in the decomposition

xk(t) ≈ c
(k)
1 (t) + c

(k)
2 (t) + · · · + c

(k)
N (t) (6)

where c
(k)
m (t), k = 1,2, . . . , n, m = 1,2, . . . ,N , in-

dicates the IMF associated with the dominant fre-
quency ωm. By construction, EMD yields IMFs se-
quentially from higher- to lower-frequency compo-
nents, so an ad hoc multi-scale decomposition of the
dynamics is performed. Moreover, we adopt notation
similar to that used for the analytical slow-flow model;
that is, the IMF with the larger subscript is the higher-
frequency component. This convention will help avoid
confusion when considering the equivalence of the an-
alytical and empirical slow flows.

To check the orthogonality of the IMFs used in the
decomposition of the signal (6) we compute its square

x2
k (t) ≈

N∑

i=1

[
c
(k)
i (t)

]2 + 2
N−1∑

m=1

N∑

l=m+1

c
(k)
l (t)c(k)

m (t) (7)

Then, the overall index of orthogonality (IO [22]) for
the decomposition (6) is defined by considering the

relative magnitudes of the cross terms in the second
part of (7)

IOk �
T∑

t=0

[
N−1∑

m=1

N∑

l=m+1

c
(k)
l (t)c(k)

m (t)/x2
k (t)

]

(8)

If the decomposition yields completely orthogonal
IMFs or if the signal is an IMF itself, then the IO
should be zero. Moreover, the closer the IO is to zero,
the better the orthogonality between the IMFs. The
quantification of the degree of orthogonality between
IMFs provided by the index (8) paves the way for op-
timizing the extracted basis of IMFs to ensure mini-
mization of the orthogonality index.

In addition to the issue of resolution of the de-
composition, the SEMD method is often incapable of
generating a set of ‘proper’ and/or almost orthogonal
IMFs. The SEMD does not provide a unique decompo-
sition of a signal and strongly depends on a free stop-
ping parameter; that is, the decomposition is not robust
in practice, particularly when the signal corresponds
to a strongly nonlinear transient dynamical process.
Furthermore, it fails to extract high-frequency com-
ponents hidden in a signal containing inflection-like
points.

Although improvement methods for EMD perfor-
mance employ similar principles, in this study we
adopt the use of masking signals with the Matlab codes
developed by Rilling et al. [23]. To make a distinc-
tion from the standard EMD, our suggested enhanced
method will be referred to as advanced EMD method
(AEMD [17]).

Drawing from the analyticity properties of complex
signals, we examine the analyticity of IMFs [24] in
order to establish correspondence or equivalence be-
tween an (analytical) slow-flow model defined by the
complexification-averaging technique and the dom-
inant (proper) IMFs (i.e., the empirical slow flow)
derived by EMD analysis. Taking into account the
properties of the Hilbert transform, we introduce the
following analytic complexification of the mth IMF,
c
(k)
m (t),

ψ̂
(m)
k (t) = c(k)

m (t) + j H[c(k)
m (t)] � Â(k)

m (t)ej θ̂
(k)
m (t) (9)

which by construction is an analytic signal. The in-
stantaneous envelope and phase of this IMF can then
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be computed by

Â(k)
m (t) =

√
c
(k)
m (t)2 + H[c(k)

m (t)]2

θ̂ (k)
m (t) = tan−1[H[c(k)

m (t)]/c(k)
m (t)

]
(10)

and its instantaneous frequency, by

ω̂(k)
m (t)

= d

dt
θ̂ (k)
m (t)

= [c(k)
m (t) d

dt
H[c(k)

m (t)] − ċ
(k)
m (t)H[c(k)

m (t)]]
c
(k)
m (t)2 + H[c(k)

m (t)]2
(11)

It follows that the analytic signal (9) can be partitioned
in terms of slow and fast components according to the
expression,

ψ̂
(m)
k (t) = Â(k)

m (t)ej [θ̂ (k)
m (t)−ωmt]ejωmt (12)

which is in a form similar to the analytical slow flow,
although no a priori slow-fast partition of the dynam-
ics was assumed when decomposing the IMF. Recog-
nizing ejωmt as the fast component of the dynamics
of the IMF, we conclude that the remaining partition

Â
(k)
m (t)ej [θ̂ (k)

m (t)−ωmt] plays the role of the slow com-
ponent of its dynamics. Clearly, for such a slow/fast
partition of the IMF to hold, the instantaneous ampli-
tude, phase and frequency of the IMF must be slowly
varying compared to the corresponding fast frequency
ωm of the IMF. This is an assumption that will be
made throughout this study, in order for the results of
EMD to conform with the following theoretical devel-
opments.

Now, we consider an alternative complexification
of the mth IMF c

(k)
m (t) in the form

ˆ̂
ψ

(m)

k (t) = ċ(k)
m (t) + jωmc(k)

m (t) � ˆ̂
A

(k)

m (t)ej
ˆ̂
θ

(k)

m (t) (13)

which bears similarity to the complexification (3). If

the complex function ˆ̂
ψ

(m)

k (t) is analytic, then so is

the function j
ˆ̂
ψ

(m)

k (t) = −ωmc
(k)
m (t) + j ċ

(k)
m (t). This

implies that its imaginary part is the Hilbert transform
of its real part,

ċ(k)
m (t) = −ωmH[c(k)

m (t)] (14)

Furthermore, if condition (14) is satisfied, then there
should be an equivalence between the analytical slow

flow defined by (2) and the analytical empirical slow
flow defined by (6). This is because both expressions
represent identical decompositions of the time series
in terms of slowly modulated fast components at dis-
tinct frequencies. It follows that the following expres-
sions of equivalence

x
(m)
k (t) = c(k)

m (t) and ẋ
(m)
k (t) = ċ(k)

m (t) (15)

should hold, which implies that ċ
(k)
m (t) should corre-

spond to the mth IMF of the velocity signal ẋ
(m)
k (t).

Then, (13) can be rewritten as

ˆ̂
ψ

(m)

k (t) = ċ(k)
m (t) + jωmc(k)

m (t)

= −ωmH[c(k)
m (t)] + jωmc(k)

m (t)

= jωm

(
c(k)
m (t) + j H[c(k)

m (t)])

= jωmψ̂
(m)
k (t) (16)

Therefore, the analytic signal ψ̂
(m)
k (t) in (9) and the

complex function ˆ̂
ψ

(m)

k (t) (which is also analytic
by (14)) in (13) are equivalent, such that

ψ̂
(m)
k (t) = 1

jωm

ˆ̂
ψ

(m)

k (t) ≡ 1

jωm

ψ
(m)
k (t) (17)

where ψ
(m)
k (t) is derived from a mathematical (or

analytical) model by the (analytic) complexification

in (3), whereas ˆ̂
ψ

(m)

k (t) is obtained by the EMD (or
AEMD) of the (experimental or numerical) measured
time series via (6) and its complexification (13).

Now, we can assert the correspondence between the
analytical and empirical slow flows by noting that (17)
leads to the equivalence of the slow parts resulting
from CX-A analysis and EMD

Â(k)
m (t)ej [θ̂ (k)

m (t)−ωmt] ≈ 1

jωm

ϕ
(m)
k (t) (18)

from which the analytical slow flow can be expressed
in terms of the empirical slow flow as

ϕ
(m)
k (t) ≈ jωmÂ(k)

m (t)ej [θ̂ (k)
m (t)−ωmt] (19)

The equivalence between the analytical and empir-
ical slow flows based on the assumption of analyticity
of the IMFs can then be restated as follows. From (3),
(4) and (15), we write,
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ˆ̂
ψ

(m)

k (t) = ċ(k)
m (t) + jωmc(k)

m (t) ≡ ψ
(m)
k (t)

= ϕ
(m)
k (τ )ejωmt

= |ϕ(m)
k (τ )|ejθ

(m)
k (τ )ejωmt

= |ϕ(m)
k (τ )|ej [ωmt+θ

(m)
k (τ )] (20)

where the slow-time scale τ is introduced to indicate
that the complex variable ϕ

(m)
k (τ ) is a slowly varying

component with respect to the fast-varying part ejωmt .
In this multiscale formulation the slow temporal vari-
able τ is considered to be independent from the fast
temporal variable t [25]. Thus, the slowly varying en-
velope and phase, |ϕ(m)

k (τ )| and θ
(m)
k (τ ), should cor-

respond to the corresponding quantities ωmÂ
(k)
m (t) and

θ̂
(k)
m (t) − ωmt in (19), respectively.

The empirical slow flow can then be expressed in
terms of the real and imaginary parts of ψ

(m)
k (t) such

that

c(k)
m (t) = 1

ωm

Im[ϕ(m)
k (τ )ejωmt ]

= 1

ωm

|ϕ(m)
k (τ )| sin

[
ωmt + θ

(m)
k (τ )

]

(21)
ċ(k)
m (t) = Re[ϕ(m)

k (τ )ejωmt ]
= |ϕ(m)

k (τ )| cos
[
ωmt + θ

(m)
k (τ )

]

Recalling that H[cosωt] = sinωt and H[sinωt] =
− cosωt , we derive

H[c(k)
m (t)] = 1

ωm

H
[|ϕ(m)

k (τ )| sin[ωmt + θ
(m)
k (τ )]]

= 1

ωm

|ϕ(m)
k (τ )|H

[
sin[ωmt + θ

(m)
k (τ )]]

= − 1

ωm

|ϕ(m)
k (τ )| cos[ωmt + θ

(m)
k (τ )]

= − 1

ωm

|ϕ(m)
k (τ )| cos[ωmt + θ

(m)
k (τ )]

= − 1

ωm

ċ(k)
m (t) (22)

where Hilbert transformation is carried out only with
respect to the fast time scale. This verifies the condi-
tion (14) for the analytic equivalence between the slow
flow and dominant IMFs. Even without introducing
the slow time scale in (20), one can derive the ana-
lyticity condition (22) by means of the Bedrosian The-
orem [26] based on the analyticity of the slow flow

ϕ
(m)
k (t) with the notation of the fast time scale re-

tained.
Again, we emphasize that we applied the Hilbert

transformation only with respect to the fast time scale
in (22), ignoring the slow time dependence. That is,
if a function behaves as a simple harmonic function,
c(t) = Aejωt (A constant with respect to time varia-
tion), then ċ(t) = jωAejωt = jωc(t). Hilbert trans-
formation of the harmonic function yields H[c(t)] =
−jejωt = −jc(t) so that H[[H[c(t)]] = −c(t). This
leads to the relations ċ(t) = −ωH[c(t)] and
c̈(t) = −ω2c(t) ⇒ c̈(t) + ω2c(t) = 0. This last ex-
pression obviously represents a harmonic oscillator,
and can be applied to proper IMFs. That is, we write

c̈(k)
m (t) + ω2

mc(k)
m (t) = 0 (23)

Moreover, as discussed in Lee et al. [17], the assumed
slow/fast partition of the IMFs and the assumption
of harmonic dependence with respect to the fast time
scale imply the analyticity condition (14) for these
IMFs.

The derivations in this section show that we can as-
sociate the EMD results with the underlying slow-flow
dynamics, a result which provides a physics-based
foundation for EMD. In particular, we showed that if
the analyticity condition (14) is satisfied, then proper
IMFs can be associated with components of the slow
dynamics of corresponding frequencies. In summary,
by associating the EMD results to the slow-flow dy-
namics of a dynamical system we demonstrate that the
IMFs provide significant physical insight to the dy-
namics, a feature that will be employed in this work.
Some demonstrative examples that highlight the cor-
respondence between the EMD results and slow flows
are given in Lee et al. [17].

3 Time-domain nonlinear system identification
(NSI)

Consider a times series generated (computationally or
experimentally) from the response of the n-degree-of-
freedom (DOF) dynamical system (1). Assume that
the governing dynamics contains N distinct com-
ponents at (‘fast’) frequencies, ω1,ω2, . . . ,ωN , so
that the response of each degree of freedom, xk(t),
k = 1,2, . . . , n, can be expressed as the sum of N in-
dependent ‘slowly’ modulated harmonic components.
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Then, based on the equivalence between analytical and
empirical slow-flow analyses discussed in Lee et al.
[17] and summarized in the previous section, it is rea-
sonable to define the following one-to-one correspon-
dence between the representations of the time series in
terms of the CX-A method and numerical EMD

CX-A : xk(t) ≈ x
(1)
k (t) + · · · + x

(m)
k (t)

+ · · · + x
(N)
k (t)

(24)
⇐⇒ EMD : xk(t) ≈ c

(k)
1 (t) + · · · + c(k)

m (t)

+ · · · + c
(k)
N (t)

where m = 1,2, . . . ,N , indicates the component of
the response of the kth coordinate (DOF) associ-
ated with frequency ωm, with the ordering
ω1 < ω2 < · · · < ωN , and k = 1,2, . . . , n. Note that
the correspondence (24) maintains its physical mean-
ing if the frequency components represent dominant
and not spurious harmonics of the response [17].

Based on the correspondence (24) between the an-
alytical and empirical slow-flow analyses, we perform
nonlinear system identification (NSI) which will lead
to a reduced-order model (ROM) or, more generally,
to a nonlinear interaction model (NIM) in terms of in-
trinsic modal oscillators (IMOs). We define IMOs as
the equivalent linear oscillators that can reproduce a
given time series over different time scales. For proper
empirical slow-flow decompositions [17], IMOs are
typically expressed as a set of linear, damped oscilla-
tors having as forcing functions nonlinear modal inter-
actions. A basic requirement is that each IMO should
approximately reproduce the corresponding dominant
IMF, provided that the fast frequencies of the time se-
ries are well-separated (distinct).

It follows that, in order to perform NSI analysis of
the dynamics corresponding to xk(t), we should define
an IMO corresponding to (i.e., reproducing) the mth

component of the kth DOF response in the form

ẍ
(m)
k (t) + 2ζ

(m)
k ωmẋ

(m)
k (t) + ω2

mx
(m)
k (t)

= F
(m)
k (t) (25)

where the coefficients ζ
(m)
k and ωm are assumed to be

constant, and the nonhomogeneous term F
(m)
k (t) rep-

resents a time-dependent forcing term describing the
nonlinear modal interaction of the mth component of

the kth DOF with the other components of the dynam-
ics. In principle, this nonhomogeneous term can be ex-
pressed in terms of slow-fast partitions of all partici-
pating frequency components; that is, we can write

F
(m)
k (t) = Re

[
Λ

(1)
k (t)ejω1t + Λ

(2)
k (t)ejω2t + · · ·

+ Λ
(m)
k (t)ejωmt + · · · + Λ

(N)
k (t)ejωN t

]

(26)

where Re[·] represents the real part. However, because
of the linear structure of the IMO, it should be clear
that the only term that can produce an O(1) dynamic
response is the one with fast frequency ωm (i.e., the
eigenfrequency of the IMO). Hence, it is justified to
approximately express the IMO in the simplified form

ẍ
(m)
k (t) + 2ζ

(m)
k ωmẋ

(m)
k (t) + ω2

mx
(m)
k (t)

≈ Re[Λ(m)
k (t)ejωmt ] = 1

2

(
Λ

(m)
k (t)ejωmt + cc

)
(27)

where Λ
(m)
k (t) (ejωmt ) represents the slow (fast) com-

ponent of the dominant nonlinear modal interaction,
and ‘cc’ denotes complex conjugate.

We make a remark at this point regarding the time
invariance of the eigenfrequency and damping of the
IMO in (27). This time invariance is dictated by the
temporal evolution of the corresponding dominant har-
monic of the time series at frequency ωm (which
can be numerically checked by studying the wavelet
spectrum of the time series xk(t) [17]). In cases of
(slow) time variation of the dominant frequency of a
component in the time series representation (24), it
will be necessary to introduce a time-varying IMO
to represent the corresponding dynamics, but this will
not destroy the linear structure of (27). Hence, time
variance or invariance of the IMOs is determined
by the temporal evolutions of the corresponding fre-
quency components of the time series. In this work
we will only be concerned with time invariant IMOs
and leave the issue of time variance of IMOs for fu-
ture work.

The issue now is to identify the modal parameters
of the IMO (27) and, more importantly, its forcing
term representing the nonlinear modal interaction. To
this end, we apply CX-A analysis by introducing the
new complex variable

ψ
(m)
k (t) = ẋ

(m)
k (t) + jωmx

(m)
k (t) � ϕ

(m)
k (t)ejωmt (28)

which, when substituted into (27), yields the complex-
ification of the IMO
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[
ϕ̇

(m)
k + jωmϕ

(m)
k

]
ejωmt

− jωm

2

[
ϕ

(m)
k ejωmt + ϕ

(m)
k

∗
e−jωmt

]

+ 2ζ
(m)
k ωm

1

2

(
ϕ

(m)
k ejωmt + ϕ

(m)
k

∗
e−jωmt

)

+ ω2
m

2jωm

(
ϕ

(m)
k ejωmt − ϕ

(m)
k

∗
e−jωmt

)

≈ 1

2

(
Λ

(m)
k (t)ejωmt + Λ

(m)
k

∗
(t)e−jωmt

)
(29)

Multiplying both sides of (29) by e−jωmt and averag-
ing out fast terms other than ejωmt , we obtain a relation
between the forcing amplitude of the nonlinear modal
interaction and the complex amplitude of the analyti-
cal slow flow

Λ
(m)
k (t) ≈ 2

[
ϕ̇

(m)
k (t) + ζ

(m)
k ωmϕ

(m)
k (t)

]
(30)

This result indicates that, when the CX-A model is
known, the nonlinear modal interaction Λ

(m)
k (t) can

be determined directly from the analytical slow-flow
model via the relation (30). However, when the time
series is obtained from an experiment, a slow-flow
model does not exist so that an alternative approach
needs to be followed. In this case, we invoke the equiv-
alence of the EMD results and the underlying slow
flow governing the dynamics in order to approximate
the amplitudes ϕ

(m)
k in (30) by the slow component of

the respective IMF of the experimental time series de-
rived by EMD analysis. That is, we employ the equiv-
alence (19)

ϕ
(m)
k (t) ≈ jωmÂ(k)

m (t)ejθ
(k)
m (t) (31)

where the envelope Â
(k)
m (t) and the phase

θ
(k)
m (t) = θ̂

(k)
m (t) − ωmt are extracted from direct EMD

analysis of the time series (cf. (9)–(12)). Then, (30)
can be rewritten as

Λ
(m)
k (t) ≈ 2

[
d

dt

(
jωmÂ(k)

m (t)ejθ
(k)
m (t)

)

+ jζ
(m)
k ω2

mÂ(k)
m (t)ejθ

(k)
m (t)

]
(32)

where k = 1,2, . . . , n, and m = 1,2, . . . ,N . This pro-
vides a way for estimating the modal interaction pro-
vided that the eigenfrequency and viscous damping ra-
tio of the IMO are known. The eigenfrequency ωm

is directly determined by performing wavelet analy-
sis of the time series and constructing wavelet spectra
in time [17]. The viscous damping ratio is determined
by an optimization process based on the requirement
that the response of the IMO should reproduce the
IMF corresponding to the dominant frequency ωm;
hence, the damping factor is determined by minimiz-
ing the normalized mean square errors between the en-
velope of the IMF c

(k)
m (t) and the response of the IMO

x
(m)
k (t).

Therefore, the response of the IMO (27) can be
written as

x
(m)
k (t)

= x
(m)
k,h (t) + x

(m)
k,p (t)

= e−ζ
(m)
k ωmt

[
x

(m)
k (0) cosωm,d t

+ 1

ωm,d

{
ẋ

(m)
k (0) + ζ

(m)
k ωmx

(m)
k (0)

}
sinωm,d t

]

+ 1

ωm,d

∫ t

0
e−ζ

(m)
k ωm(t−s) sinωm,d(t − s)

× Re[Λ(m)
k (s)ejωms]ds (33)

where the first term x
(m)
k,h (t) indicates the homoge-

neous or transient solution, and the second term
x

(m)
k,p (t) implies the particular or steady-state solu-

tion; moreover, the initial conditions are matched to
the respective initial conditions of the correspond-
ing IMF, x

(m)
k (0) = c

(k)
m (0), ẋ

(m)
k (0) = ċ

(k)
m (0); and

ω2
m,d = ω2

m(1 − ζ
(m)2
k ). We note that the solution (33)

is valid only for ζ
(m)
k < 1 (i.e., for the underdamped

case). Similar expressions, however, hold for critically
damped or overdamped IMOs.

Since the previous analysis was based on a slow/fast
decomposition of the dynamics (i.e., on the assump-
tion that the IMFs and the dominant harmonics of the
signal are in the form of slowly-modulated narrow-
band oscillations), it is necessary that the quantities
Λ

(m)
k (t), Â

(k)
m (t), and θ

(k)
m (t) are slowly-varying terms

that depend on a slow time scale denoted by τ (that
is, |τ̇ | � 1). Hence, the expression (32) computes the
slow component of the nonlinear modal interaction as-
suming that the fast component is approximately har-
monic (i.e., ejωmt ). Also, substituting the small time
scale τ in (30), we can approximate the forcing ampli-
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tude such that

Λ
(m)
k (τ ) ≈ 2

(
d

dt
ϕ

(m)
k (τ ) + ζ

(m)
k ωmϕ

(m)
k (τ )

)

≈ 2ζ
(m)
k ωmϕ

(m)
k (τ ) (34)

because | d
dt

ϕ
(m)
k (τ )| � 1. If this approximation holds,

it can be shown that the particular solution of the IMO
equation (27) can be obtained as

x
(m)
k,p (t) ≈ c(k)

m (t) (35)

which recovers the equivalence (15) between the IMFs
and the underlying slow-flow dynamics.

Alternatively but equivalently to (32), we can cal-
culate the nonlinear modal interaction Λ

(m)
k (t) directly

in terms of the IMFs. To this end, rewrite (30) by mul-
tiplying both sides by ejωmt

1

2
Λ

(m)
k (t)ejωmt

≈ (
ϕ̇

(m)
k (t) + jωmϕ

(m)
k (t)

)
ejωmt

− jωmϕ
(m)
k (t)ejωmt + ζ

(m)
k ωmϕ

(m)
k (t)ejωmt (36)

Recalling the equivalence between the analytical and
empirical slow flows based on (15), we rewrite (21) as

c(k)
m (t) = 1

ωm

Im[ϕ(m)
k (t)ejωmt ]

ċ(k)
m (t) = 1

ωm

Im
[(

ϕ̇
(m)
k (t) + jωmϕ

(m)
k (t)

)
ejωmt

]

(37)
= Re[ϕ(m)

k (t)ejωmt ]
= −ωmH[c(k)

m (t)]
where the fast time scale t is retained. Then, the imag-
inary part of (36) can be written as

1

2ωm

Im[Λ(m)
k (t)ejωmt ]

≈ ċ(k)
m (t) + ζ

(m)
k ωmc(k)

m (t)

− Im[jϕ
(m)
k (t)ejωmt ] (38)

Noting that

Im[jϕ
(m)
k (t)ejωmt ] ≡ Re[ϕ(m)

k (t)ejωmt ] (39)

and using (37), we can simplify (38) to

Im[Λ(m)
k (t)ejωmt ] ≈ 2ζ

(m)
k ω2

mc(k)
m (t) (40)

The real part of the nonlinear modal interaction can
then be calculated directly from the approximate ex-
pression of the IMO (27) by substituting the equiv-
alence relation between the analytical and empirical
slow flows,

Re[Λ(m)
k (t)ejωmt ]

≈ c̈(k)
m (t) + 2ζ

(m)
k ωmċ(k)

m (t) + ω2
mc(k)

m (t)

≈ 2ζ
(m)
k ωmċ(k)

m (t) = −2ζ
(m)
k ω2

mH[c(k)
m (t)] (41)

where the condition (23) for analyticity of the IMF and
its harmonic dependence are utilized. In fact, although
the result (41) is sufficient to compute the response of
the IMO (27), we express the forcing amplitude di-
rectly in terms of the IMFs to prove that the resulting
relation is equivalent to (34). Indeed, combining (40)
and (41), we obtain

Λ
(m)
k (t)

= {
Re[Λ(m)

k (t)ejωmt ] + j Im[Λ(m)
k (t)ejωmt ]}e−jωmt

≈ 2jζ
(m)
k ω2

m

[
c(k)
m (t) + j H[c(k)

m (t)]]e−jωmt (42)

Note that, replacing the analytical slow flow with the
corresponding IMF and using the analyticity condi-
tion (14), we can rewrite (28) as

ψ
(m)
k (t) = ċ(k)

m (t) + jωmc(k)
m (t)

= jωm

{
c(k)
m (t) + j H[c(k)

m (t)]}

≡ ϕ
(m)
k (t)ejωmt (43)

This simplifies (42) into

Λ
(m)
k (t) ≈ 2ζ

(m)
k ωmϕ

(m)
k (t) (44)

which verifies that the derivation (34) is correct un-
der the assumption of analyticity of the IMF and its
harmonic dependence. Note here that the forcing am-
plitude in (34) or (44) is a simplified approximation
to the slowly-varying nonlinear modal interaction, and
is valid only when the IMF possesses a perfect har-
monic dependence. In practice, the EMD analysis of
a time series does not generate IMFs amenable to
perfect slow/fast partition and possessing exact har-
monic dependence on the fast time scale; hence, the
time derivative term in the expression for the nonlin-
ear modal interaction (30) may not always be negligi-
ble, in which case implementation of the more com-
plete expression (32) is preferable. Nonetheless, we
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will demonstrate that the approximation (34) or (44) is
still useful as an alternate and simple way to compute
the nonlinear modal interactions between the IMOs.

We emphasize at this point that the basic assump-
tions for constructing IMOs of the general form (27)
are: (i) that their fast frequencies are well-separated;
(ii) that the wavelet spectrum of the kth DOF response
possesses nearly constant (i.e., narrowband) fast fre-
quency components; and (iii) that it is possible to in-
troduce a slow-fast partition of the dynamics for each
fast frequency component. In summary, the IMO mod-
eling the component of the dynamics in the vicinity
of frequency ωm of the kth DOF is in the form of a
linear oscillator with a forcing term representing the
nonlinear modal interaction of this component with
other such components. Such forcing terms provide us
with information on the level and the (slow) temporal
dependence of nonlinear modal interactions between
different harmonic components of the time series. The
use of linear models for studying even strongly non-
linear dynamical interactions is enabled by the ac-
curate identification of the dominant frequencies at
which these interactions occur, and by the demon-
strated equivalence between the IMFs computed by
EMD and the underlying slow-flow dynamics [17].
The basis for the aforementioned reduced order mod-
eling procedure is the construction of IMOs that accu-
rately reproduce the dominant IMFs of the measured
time series. This is not an ad hoc requirement since,
as discussed in Lee et al. [17], the slowly varying en-
velopes and phases of the dominant IMFs of the re-
sponses of coupled oscillators coincide with the slow
flow of the problem. Hence, the construction of the
IMOs is formal; in fact, the equivalence between EMD
and slow flow dynamics provides a theoretical under-
pinning of, and gives physical meaning to, the domi-
nant IMFs [17].

4 Applications of the NSI method

The correspondence between the analytical and em-
pirical slow flows was demonstrated in Lee et al. [17]
for the following dynamical processes: (i) 1:3 tran-
sient resonance capture in a coupled oscillator with
essential stiffness nonlinearity [27]; and (ii) triggering
mechanism of aeroelastic instability in a rigid wing in
flow [28]. In this section, we apply the proposed non-
linear system identification to construct nonlinear in-
teraction models (NIMs) of these two systems. At this

point we mention that NIMs are not necessarily re-
duced order models (ROMs) of the dynamics. The rea-
son is that the dimensionality of NIMs coincides with
the number of dominant harmonics participating in the
nonlinear modal interactions under consideration; in
certain cases (such as in the dynamical processes con-
sidered herein), the dimensionality of the NIMs might
be greater than the dimensionality of the original dy-
namical systems generating the dynamics, since the
number of dominant harmonics participating in the dy-
namics might be greater than the number of degrees of
freedom of the dynamical system. This is especially
true in strongly nonlinear dynamics where a number of
fundamental, subharmonic or combination harmonics
might significantly affect the evolutions and bifurca-
tions of the dynamical processes. In cases, however,
where the dimensionality of the original dynamical
systems is large (e.g., finite element models of fluid-
structure interaction systems, or large-scale structural
systems) the identified NIMs will indeed be ROMs of
the dynamics, capturing the important dynamics in re-
duced low-dimensional phase spaces.

4.1 Dynamics of 1:3 transient resonance capture in a
coupled oscillator

As a first example, we consider a linear oscillator (LO)
coupled to a nonlinear oscillator through an essential
stiffness nonlinearity of the third degree. In previous
work the nonlinear oscillator was termed a nonlinear
energy sink (NES) due to its capacity to passively ab-
sorb and locally dissipate energy from the LO over
broad frequency ranges [20]. In this section we focus
on performing the NSI to study the dynamics of 1:3
transient resonance capture (TRC) between the NES
and the LO, assuming no a priori system information
and performing direct analysis of the time series. The
details of the dynamics of this system and the equiva-
lence between the analytical and empirical slow flows
can be found in Kerschen et al. [27] and Lee et al. [17],
respectively.

For the time series depicted in Fig. 1, Fourier trans-
form (FT) and wavelet transform (WT) spectra show
that the response of the LO, y(t), possesses a dominant
frequency at ω2 = 0.16 Hz (or ω2 ≈ ω0 = 1 rad/s,
where ω0 is the linearized natural frequency of the
LO), whereas that of the NES, v(t), a major harmonic
component at ω1 = 0.053 Hz (or ω1 ≈ ω2/3 rad/s)
and a minor component at ω2. We denote the ω1- and
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Fig. 1 Frequency components of the numerical responses during 1:3 TRC: (a) LO displacement, y(t); (b) NES displacement, v(t) [17]

ω2-components by LF (low-frequency) and HF (high-
frequency) components, respectively.

When advanced EMD (AEMD [17]) analysis of the
time series is performed, we obtain the dominant IMFs
depicted in Fig. 2. Neglecting the spurious component

(i.e., LF LO c
(1)
1 (t)), the resulting decompositions are

expressed, respectively, as

x1(t) � y(t) ≈ c
(1)
2 (t)

x2(t) � v(t) ≈ c
(2)
1 (t) + c

(2)
2 (t)

(45)

where super- and subscripts of the IMFs indicate the
orders of the system (DOF) and frequency compo-
nents, respectively. Compatible with the WT spectra
of the respective decompositions, the IMFs are well-
separated or ‘proper’ [17].

Based on these results we construct a NIM describ-
ing the strongly nonlinear interaction (1:3 resonance
capture) between the LO and the NES in the form of a
set of uncoupled but forced IMOs

HF LO : ẍ(2)
1 (t) + 2ζ

(2)
1 ω2ẋ

(2)
1 (t) + ω2

2x
(2)
1 (t)

≈ Re[Λ(2)
1 (t)ejω2t ]

LF NES : ẍ(1)
2 (t) + 2ζ

(1)
2 ω1ẋ

(1)
2 (t) + ω2

1x
(1)
2 (t)

(46)
≈ Re[Λ(1)

2 (t)ejω1t ]
HF NES : ẍ(2)

2 (t) + 2ζ
(2)
2 ω2ẋ

(2)
2 (t) + ω2

2x
(2)
2 (t)

≈ Re[Λ(2)
2 (t)ejω2t ]

The forcing terms are in the form of ‘fast’ oscillat-
ing terms ejωmt , m = 1,2, modulated by the ‘slowly-
varying’ complex amplitudes Λ

(m)
k (t), k = 1,2, which

implies that the forcing amplitudes Λ
(m)
k (t) vary

much slower than the corresponding carrying sig-
nals ejωmt .

As discussed in Sect. 3, the main motivation for
constructing the NIM (46) is that the response of the
respective IMOs approximately reproduces the corre-
sponding dominant IMF of the time series of the 1:3
TRC between the NES and the LO. Since the superpo-
sition of the IMFs reconstructs the original time series
(cf. Lee et al. [17]), the same should hold for the com-
bined response of the IMOs in (46); that is, the syn-
thesis of the IMOs should reproduce the original time
series, y(t) ≈ x

(2)
1 (t) and v(t) ≈ x

(1)
2 (t) + x

(2)
2 (t). The

reasoning behind the specific structure of the IMOs
(46) (i.e., in the form of a set of linear damped and
forced oscillators) lies in the fact that each of the
dominant IMFs of the LO and the NES responses
possesses two constant fast frequencies approximately
equal to the linearized natural frequency of the LO
(i.e., ω2 = ω0) and one third of it (i.e., ω1 = ω0/3), re-
spectively. It follows that, at least in principle, each of
the dominant IMFs can be regarded as the response of
the damped linear oscillator (i.e., an IMO) with a nat-
ural frequency equal to either one of the two dominant
frequencies ω0 and ω0/3, and linear viscous damping
factors ζ

(m)
k , k,m = 1,2.
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Fig. 2 Comparison of respective frequency components of dis-
placements derived from the analytical slow flow and the IMFs,
(a) for the LO, and (c) for the NES; the wavelet spectra of the

corresponding IMFs are depicted in (b) and (d), respectively;
the instantaneous frequencies of the IMFs are superimposed to
the wavelet spectra [17]

Also, we note that the forcing terms in (46) are
approximated as modulated periodic signals with fast
frequencies equal to the eigenfrequencies of the IMOs.
The rationale for this is that any excitations possess-
ing frequencies other than the ones selected will be
off-resonance and, therefore, their contributions to the
resulting dynamics would be less significant, of a sec-
ondary nature. In essence, these forcing terms repre-
sent the nonlinear modal interactions between the LO
and the NES occurring at the dominant fast frequen-
cies of the dynamics (cf. Sect. 3).

Computation of the amplitudes of the nonlinear
modal interactions in (46) is performed in three ways
as described in Sect. 3. Since the analytical slow flow

resulting from CX-A analysis has been performed al-
ready for this system [27], we may employ it for
directly estimating the nonlinear modal interactions
through expressions similar to (30). Alternatively, we
may utilize the numerical IMFs and estimate the am-
plitudes of the nonlinear modal interactions by means
of relation (32) or its simplified form (34). Hence, we
will use three alternative ways to estimate the forcing
terms in the NIM (46), all of which will be employed
in the following numerical computations. We reiterate
at this point that when no slow-flow model of the dy-
namics is known (e.g., in cases where we consider ex-
perimentally obtained time series) we can only utilize
expressions (30) or (34) to estimate the amplitudes of
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Fig. 3 Nonlinear modal interactions (30) computed from the analytical slow flow: (a) HF LO (ζ (2)
1 = 0.006); (b) HF NES (ζ (2)

2 = 0.2);

(c) LF NES (ζ (1)
2 = 0.011)

the nonlinear modal interactions by means of the nu-
merically derived IMFs (instead of the more accurate
analytically-based expression (46)).

Figure 3 depicts the computation of the ampli-
tudes of the nonlinear modal interactions using the

analytical slow flow derived through CX-A (expres-
sion (30)). Superimposed on these plots are the mag-
nitudes 2|ϕ̇(m)

k (t)| and |2ζ
(m)
k ωmϕ

(m)
k (t)| in order to

check which term significantly contributes to the am-
plitudes of the nonlinear modal interactions |Λ(m)

k (t)|
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Fig. 4 Computation of normalized mean square errors (NMSEs, %) to determine optimal damping factors for (a) HF LO; (b) LF NES

(cf. relation (30)). We note that low-pass filtering was
used in the computation of the amplitudes depicted
in Fig. 3 in order to remove high-frequency content
and other numerical artifacts from the dynamics. We
also note that, except for the HF LO, the amplitudes
of the nonlinear modal interactions coincide with the
magnitudes of |2ζ

(m)
k ωmϕ

(m)
k (t)| while the LO and

the NES are engaged in 1:3 TRC (i.e., for t � 650).
From this observation, we conjecture that the contri-
bution from the time derivative of the slow flow to
the resulting dynamics is negligible, although its ef-
fect should not be neglected when interpreting non-
linear modal interactions (cf. Sect. 3). We will ver-
ify this conjecture by considering the IMO solutions
in Fig. 6, and reconstructing the original solutions in
Fig. 9.

The damping factors ζ
(m)
k employed in the compu-

tations of the nonlinear modal interactions of Fig. 3
were determined by computing the minimum normal-
ized mean square errors (NMSEs) between the en-
velopes of the dominant IMFs and the corresponding
IMO solutions. The formula for computing the NM-
SEs is

NMSE = E[‖ Â
(k)
m (t) − Ã

(k)
m (t) ‖2]

E[‖ Â
(k)
m (t) − E[Â(k)

m (t)] ‖2]
(47)

where E[·] implies the expected or mean value; ‖ · ‖,
the norm between two vectors; Â

(k)
m (t), the envelope

of the dominant IMF c
(k)
m (t); and Ã

(k)
m (t), the en-

velope of the corresponding IMO solution x
(m)
k (t).

These envelopes can be computed by complexifica-
tion through the application of the Hilbert transform.
The time interval for the NMSE computation is taken
as t ∈ [0.2tf , 0.7tf ], where tf is the end time of
the window under consideration. The reason for this
is to minimize contamination of the NMSE resulting
from end effects (i.e., from EMD). We note that this
optimization problem is not set for pointwise match
(i.e., in the fast time scale), but rather for pursuing
‘global’ match (i.e., in the slow time scale) between
c
(k)
m (t) and x

(m)
k (t). Figure 4 presents computational

results determining the optimal damping factors for
the HF LO and LF NES components. In some cases
when the NMSEs decrease gradually but slowly as
the damping factor increases, one may select as an
acceptable damping value the one corresponding to
significant drop of the NMSEs to a sufficiently low
value.

We now consider alternative computations of the
nonlinear modal interactions based solely on the re-
sults of EMD (i.e., on the IMFs). To this end, we
compute the amplitudes of the nonlinear modal in-
teractions by means of relation (32) or its simplified
form (34). These results are compared in Fig. 5. Both
results exhibit similar trends and their differences are
attributed to the contribution of the first term (i.e., the
time derivative in the slow flow) in (32). Also, com-
paring the orbits of the respective frequency compo-
nents in the complex plane in Fig. 5 to those in Fig. 3,
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Fig. 5 Nonlinear modal interactions (30) computed from the slow parts of the IMFs using (32) and (34) for, (a) the HF LO component
(ζ (2)

1 = 0.11; 0.2); (b) the HF NES component (ζ (2)
2 = 0.2; 0.2); (c) the LF NES component (ζ (1)

2 = 0.35; 0.25)

we find similarity between them; that is, multiplied by

jωm, the orbits in Fig. 5 coincide approximately with

those in Fig. 3. This demonstrates the equivalence re-

lation (19) and validates our premise that the EMD

results indeed correspond to the underlying slow dy-

namics of the system.

We note that the (optimal) damping factors used

for computing the previous nonlinear modal interac-

tions are not unique, consistent with the fact that, in

general, nonlinear system identification methods re-

sult in non-unique models of the dynamical phenom-

ena of interest. The validity of the NIMs (46) identi-
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Fig. 6 Responses of the NIM (46) using formula (30) for com-
puting the nonlinear modal interactions from the analytical slow
flows, and comparisons with the corresponding IMFs for, (a) HF

LO; (b) HF NES; (c) LF NES; the exact solutions by (33) are
superimposed to these results

fied previously can be checked by comparing the so-
lutions of the IMOs and their corresponding domi-
nant IMFs. In addition, the accuracy of the proposed
NSI method can be verified by checking if the rela-
tions

y(t) ≈ x
(2)
1 (t) and v(t) ≈ x

(1)
2 (t) + x

(2)
2 (t) (48)

are satisfied; that is, if the synthesis of the IMOs
accurately reproduces the original time series. Fig-
ures 6–8 compare the IMO solutions to the corre-
sponding dominant IMFs. As was the case when com-
paring the analytical approximation to the exact so-
lution, the validity of the IMOs is expected to hold
only before escape from the 1:3 TRC occurs (i.e.,
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Fig. 7 Responses of the NIM (46) using formula (32) for computing the nonlinear modal interactions, and comparisons with the
corresponding IMFs for, (a) HF LO; (b) HF NES; (c) LF NES; the exact solutions by (33) are superimposed to these results

until t ≈ 650). Moreover, comparing the IMO solu-
tions in Figs. 6 and 8, we may conclude that con-
struction of the nonlinear modal interactions by means
of (34) (involving one-step further simplification) will
be more useful and time-saving compared with us-
ing the more complete expression (32). This obser-
vation can also be derived from the comparison of
the reconstructed time series (the sum of the IMO
solutions) to the original time series (Fig. 9). The

IMO solutions and reconstructed time series based
on (32) seem to undergo initial overshoots, whereas
those based on (34) involve negligible initial under-
shoots.

4.2 Triggering mechanism of aeroelastic instability

As a second example, we apply the NSI method to
studying the triggering mechanism for limit cycle os-
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Fig. 8 Responses of the NIM (46) using formula (34) for computing the nonlinear modal interactions, and comparisons with the
corresponding IMFs for (a) HF LO; (b) HF NES; (c) LF NES; the exact solutions by (33) are superimposed to these results

cillations (LCOs) of a rigid wing in flow studied in
Lee et al. [28]. Analytical study and a demonstra-
tion of the equivalence between the analytical and em-
pirical slow flows for this system were performed in
Lee et al. [17, 28], respectively. A typical generation
of aeroelastic instability in the form of an LCO is
depicted in Fig. 10; as discussed in Lee et al. [28]
an initial 1:1 transient resonance capture (TRC) be-

tween the heave and pitch modes acts as ‘trigger’ for
a 1:3 permanent resonance capture (PRC) between the
same modes and gives rise to the LCO. Here we fo-
cus only on system identification from the time se-
ries depicted in Fig. 10 by presuming no a priori sys-
tem information, except for the fact that y(t) (α(t))
is the computational time series of the heave (pitch)
mode.
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Fig. 9 Reconstruction of the original time series from the NIM (46) when the nonlinear modal interactions are computed by, (a) CX-A;
(b) Equation (32); (c) Equation (34)

Referring to the computational results of Fig. 10,

the FT and WT spectra show that the heave mode,

y(t), possesses two dominant (fast) frequencies at

ω1 = 0.135 Hz (or ω1 ≈ ωα = 1 rad/s, where ωα cor-

responds to the uncoupled linearized natural frequency

of the pitch mode), and at ω2 = 0.453 Hz (or ω2 ≈

3ωα), whereas the pitch mode, α(t), possesses a single

dominant (fast) frequency at ω1 = 0.152 ≈ ωα Hz. We

denote the ω1- and ω2-components by MF (middle-

frequency) and HF (high-frequency), respectively, in

order for easy comparison with the previous analyti-

cal work in Lee et al. [28]. Since we learned in Lee
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Fig. 10 Frequency components of aeroelastic responses during LCO formation (triggering): (a) heave mode y(t); (b) pitch mode
α(t) [17]

et al. [17] that the choice of proper frequency val-
ues can reveal drawbacks in accuracy of the corre-
sponding dominant IMFs, in the following analysis
we use the previous frequency values identified from
the FT and WT spectra. Note that the frequencies for
the MF heave and pitch components are not exactly
identical, yet they approximately satisfy a condition
of 1:1 resonance during the initial triggering of the
LCO.

Considering the results of AEMD analysis of the
transient responses depicted in Fig. 11, two dominant
IMFs (for the MF and HF components) for the heave
mode, and a single dominant IMF (for the MF compo-
nent) for the pitch mode are identified [17]. Then, the
resulting empirical decomposition can be written as

x1(t) � y(t) ≈ c
(1)
1 (t) + c

(1)
2 (t)

x2(t) � α(t) ≈ c
(2)
1 (t)

(49)

Based on our previous discussion, we create a 3-
DOF NIM in this case, and write the IMOs reproduc-
ing the dominant IMFs as

HF heave : ẍ(2)
1 (t) + 2ζ

(2)
1 ω2ẋ

(2)
1 (t) + ω2

2x
(2)
1 (t)

≈ Re[Λ(2)
1 (t)ejω2t ]

MF heave : ẍ(1)
1 (t) + 2ζ

(1)
1 ω1ẋ

(1)
1 (t) + ω2

1x
(1)
1 (t)

(50)
≈ Re[Λ(1)

1 (t)ejω1t ]

MF pitch : ẍ(1)
2 (t) + 2ζ

(1)
2 ω1ẋ

(1)
2 (t) + ω2

1x
(1)
2 (t)

≈ Re[Λ(1)
2 (t)ejω2t ]

The next step is to compute the nonlinear modal in-
teractions for respective IMOs (cf. Fig. 12); in this case
we compute these interactions directly from the nu-
merical IMFs utilizing the approximate formula (34).
The validity of the results is checked by comparing
the IMO solutions to the respective IMFs in Fig. 13;
in addition, the IMOs are validated by comparing
the reconstructed time series resulting from synthe-
sis of the IMO solutions with the original time series
(cf. Fig. 14). Except for the initial overshoot in the
MF pitch component (and thus in the reconstructed
pitch mode) and a slight phase mismatch, the re-
constructed time series eventually exhibit reasonable
match with the original time series, which demon-
strates the validity of the derived NIM and the NSI
method.

In summary, we modeled the dynamics of inter-
est (1:3 TRC between the LO and the NES; and the
transition from 1:1 TRC to 3:1 PRC which consti-
tute the triggering mechanism of aeroelastic instabil-
ity) in terms of a NIM in the form of a set of un-
coupled but forced IMOs, and demonstrated valid-
ity of the IMOs by comparing the reconstructed and
original time series. In doing so, it was presumed
that there is no a priori information about the sys-
tem (such as masses, spring characteristics, and so
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Fig. 11 Comparison of respective frequency components of
displacements derived from the analytical slow flow and the
IMFs, (a) for the heave mode, and (c) for the pitch mode;

the wavelet spectra of the corresponding IMFs are depicted in
(b) and (d), respectively; the instantaneous frequencies of the
IMFs are superimposed to the wavelet spectra [17]

on), since the system identification was based only on
the numerical post-processing of the original time se-
ries.

5 Concluding remarks

Based on the correspondence between the analytical
and empirical slow-flow analyses [17], we developed
a time-domain nonlinear system identification (NSI)
technique. This NSI method is based on direct analy-
sis of measured time series, and is capable of ana-
lyzing strongly nonlinear, complex, multi-component
systems. For this purpose, we established expressions
for intrinsic mode oscillators (IMOs), which are de-
fined as the linear equivalent oscillators that can re-
produce a given time series at different time scales. For
proper empirical slow-flow decompositions, IMOs are

typically expressed as a set of linear, damped oscilla-
tors with nonhomogeneous terms providing the non-
linear modal interactions at the different time scales
of the dynamics. Both analytical and empirical slow
flows were utilized to calculate the nonlinear modal
interactions, which were validated by comparing the
IMO solutions and the corresponding intrinsic mode
functions obtained from empirical mode decompo-
sition. Finally, the overall validity of the proposed
method was demonstrated by comparing the recon-
structed time series (as synthesis of IMO solutions)
to the original time series. A main advantage of our
proposed technique is that it is nonparametric, elimi-
nating the necessity for a priori assumption of func-
tional forms for stiffness and damping nonlinearities,
which might restrict system identification. Hence, at
least in principle, it is applicable to a broad range of
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Fig. 12 Nonlinear modal interactions (30) computed from the slow parts of the IMFs using (34), for (a) the HF heave component
(ζ (2)

1 = 0.3); (b) the MF heave component (ζ (1)
1 = 0.6); (c) the MF pitch component (ζ (1)

2 = 0.6)

linear as well as nonlinear dynamical systems, includ-
ing systems with smooth or non-smooth nonlineari-
ties (such as clearances, vibroimpacts, and dry fric-
tion), and strong (even nonlinearizable) or weak non-
linear effects; this is due to the fact that the pro-
posed method directly analyzes the actual measured

time series which contain full information of the dy-
namics and do not rely on computed characteristics
of the signals (such as FT analysis). In addition, it is
multi-scale and directly provides a measure of the di-
mensionality of the underlying dynamics (which can
be of much smaller order—indeed, many orders of
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Fig. 13 Responses of the NIM (50) employing (34), and their comparisons with the corresponding IMFs for, (a) the HF heave
component; (b) the MF heave component; (c) the MF pitch component

magnitude smaller) than the dimensionality of the un-
derlying computational model. Finally, the method
is computationally tractable, conceptually meaning-
ful, and can be used for the construction of accu-
rate low-order models of the dynamics that fully cap-

ture the basic resonant interactions between compo-

nents that give rise to complex and rich dynamical

phenomena, such as sudden nonlinear transitions, for-

mation of instabilities, and multi-frequency behav-

ior.



648 Meccanica (2011) 46:625–649

Fig. 14 Reconstruction of the original time series from the NIM (50)
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