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Abstract Optimal material orientation problems of
linear and non-linear elastic three-dimensional aniso-
tropic materials are studied. Most commonly, the en-
ergy based formulation is applied for solving ori-
entational design problems of anisotropic materials,
considering elastic energy density as a measure of
the stress strain state. The same approach is used in
the current study, but the strength criteria based ap-
proaches are also discussed. A simple relation between
the stationary conditions in terms of Euler angles and
the optimality conditions in terms of strains is pointed
out. The complexity analysis of the different exist-
ing optimality conditions has been performed. The so-
lution of the posed optimization problem is decom-
posed into the strain level solution, search for global
extremes and evaluation of Euler angles (parameters).
The results obtained are extended to some nonlinear
elastic material models.
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1 Introduction

Design of the structures (or materials) with maximal
and minimal stiffness are both problems of practical
interest. Latter problem is actual in design of energy
absorbing structures (crash modeling). In the case of
advanced composite materials the stiffness/flexibility
of structure is affected among size, shape, topology,
thermal effects [1, 2] etc. by the material orientation.

The problem of optimal orientation of anisotropic
materials is studied most commonly in energy based
formulation, considering elastic energy density as a
measure of the stress strain state. Such an approach
has been introduced by Banichuk [3] and utilized for
optimal design of 2D linear elastic orthotropic materi-
als by Pedersen [4, 5], Sacci and Rovati [6] etc. In [4]
the closed form analytical solution for optimal mater-
ial orientation problem of linear elastic 2D orthotropic
materials is given including analysis of global and lo-
cal extremes. The results for non-orthotropic 2D linear
elastic materials are given in [7].

In [8–10] different non-linear elastic material mod-
els are proposed for solving oriental design problems.
In all these papers the effective strain (stress) has been
used as a scalar measure of the strain (stress) state. In
[8] and [10] the nonlinear material behavior is simu-
lated on the basis of a power law with one term and
a series expansion, respectively. In [9] the stress strain
relation is described by more general function of ef-
fective strain, given in the implicit form.
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Orientational design problems of 3D orthotropic
materials are studied by Seregin and Troitski [11],
Rovati and Taliercio [12, 13], Cowin [14], etc. In
[11] and [12–14] the potential energy of deformation
and the specific elastic energy density are subjected
to minimization, respectively. In all these papers it is
pointed out, that the stress and strain tensors are coax-
ial at the optimum. In [11] the optimality conditions in
terms of stresses for general orthotropic material are
derived and solution regimes are discussed. In [12] the
optimization problem is formulated in terms of Euler
angles. Collinearity of principal directions of stress
and strain at the optimum is derived from the station-
ary condition of the strain energy density. Complete
analytical solution for body with cubic symmetry in
terms of strains is given. In both, Rovati and Talier-
cio [13] and Cowin [14] thoroughgoing analysis of the
3D optimal material orientation problem is performed.
In these papers the general non-orthotropic material
with 21 independent coefficients is considered and the
coaxiality condition of the stress and strain tensors is
converted into simplified form using decomposition of
the elasticity tensor. The final form of the optimality
conditions, given in [13] and [14] in terms of compli-
ance and constitutive tensors, respectively, is a quite
similar (see details in Sect. 4), but the interpretation
is principally different. In [14] the search for optimal
solution is performed for all stress states, which leads
to condition that all compliance coefficients (mutually
rotated) must vanish. In latter case the closed formed
solution of optimality conditions is not too compli-
cated, but the unique solution does not exist for all ma-
terial symmetries. In [13] a fixed strain (stress) state is
considered. In the latter case the solution of optimality
conditions is complicated task in the case of general
orthotropic or non-orthotropic materials.

In the current paper the optimality conditions in
terms of strains are derived for general 3D orthotropic
material proceeding from stationary conditions of the
strain energy density represented in terms of Euler an-

gles. It is shown, that the optimality conditions de-
rived are simplified form of the direct stationary condi-
tions in terms of Euler angles. The complexity analy-
sis of the existing optimality conditions is performed.
It is shown that the optimality conditions derived in
[11, 13, 14] and current paper have the same complex-
ity with respect to Euler angles (orthotropic symmetry
considered). The solution of the optimality conditions
is decomposed into the strain level solution, search for
global extremes and evaluating of Euler angles (pa-
rameters). According to latter approach the optimal-
ity conditions derived are combined with strain invari-
ants in order to obtain fully determined system of al-
gebraic equations in terms of strains (Majak [15]). The
order of optimality conditions given in terms of strains
is reduced to solving one sixth order algebraic equa-
tion and the closed form analytical solutions are de-
termined for 15 different extremes of the strain energy
density including solutions corresponding to singular
solutions in terms of Euler angles. Numerical algo-
rithm based on global optimization technique (hybrid
GA) is treated as an alternative solution and the results
are compared. The problem studied can be considered
as sub-problem in structural optimization of complex
composite structures [16].

2 Constitutive relations

In the current study, both linear and non-linear elastic
material models are considered. The stress-strain rela-
tion for a three-dimensional orthotropic linearly elastic
material can be expressed as (Hooke’s law)

σ = Cε. (1)

In (1) σ and ε stand for the stress and strain vectors,
respectively and the matrix C is a symmetric positive
definite constitutive matrix with nine independent ma-
terial parameters

σ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ31

σ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0
0 0 0 0 C3131 0
0 0 0 0 0 C1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ε =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε31

2ε12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2)
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The nonlinear elastic material behavior is modeled
most commonly by use of the following power law
stress-strain relation

σ = Eε
p−1
e Cε, (3)

introduced in Pedersen and Taylor [8]. The values of
the power p and elasticity coefficient E in (3) should
be determined experimentally from tensile tests. The
scalar quantity εe stands for the effective strain and is
defined as

ε2
e = εTC∗ε, (4)

where C∗ stand for nondimensional constitutive ma-
trix.

In the current paper the relationship for nonlinear
elastic material is assumed in the form

σ = F(εe,Ei)Cε, (5)

where F(εe,Ei) is a given differentiable function de-
pending on the effective strain and on elasticity co-
efficients. The relation (5) introduced in [9] is more
general and covers the stress-strain behavior described
by power-law, logarithmic, series expansion and etc.
relations. The form of the function F(εe,Ei) and the
elasticity parameters can be specified in accordance
with the stress-strain behavior of the particular prob-
lem considered.

The 3D transversally isotropic material is consid-
ered in (1)–(2) as particular case, where

C2222 = C1111, C2233 = C1133,

C3131 = C2323, C1212 = (C1111 − C1122)/2.
(6)

Transversally isotropic material contains a plane of
isotropy (the symmetry plane is chosen perpendicular
to e3) and different properties in the direction normal
to this plane. The number of independent material pa-
rameters is reduced to 5.

3 Optimality criteria

In the following it is assumed that the optimality of
the objective is local (strength) based on the assump-
tion of fixed strains (or fixed stresses). Two principally
different formulations of the problem of optimal mate-
rial orientation are considered. The energy-based for-
mulation, considering the elastic energy density as a

measure of stress-strain state

JEnergy = 1

2
εTCε → min(max), (7)

and strength criteria based approaches (Hill, Tsai-Wu,
etc., strength criteria)

JStr_Hill = 1

2
σ TRσ → min(max), (8)

JStr_Tsai-Wu = 1

2
σTTσ + 1

2
WTσ → min(max). (9)

The coefficient 1/2 is introduced in strength criteria
in order to obtain similar expressions with the strain
energy based formulation. The matrices R and T in
(8)–(9) characterize the plastic anisotropy of the ma-
terial and can be written in terms of yield strengths
F,G,H,L,M,N (Hill criterion) and Fij (Tsai-Wu
criterion) as

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

G + H −H −G 0 0 0
−H F + H −F 0 0 0
−G −F F + G 0 0 0

0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F11 F12 F13 0 0 0
F12 F22 F23 0 0 0
F13 F23 F33 0 0 0
0 0 0 F44 0 0
0 0 0 0 F55 0
0 0 0 0 0 F66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(10)

The vector W contains the coefficients of the linear
term of the Tsai-Wu criterion given as

WT = {
F1 F2 F3 0 0 0

}
. (11)

The linear term of the Tsai-Wu criterion characterizes
different properties of the material in tension and com-
pression. In the following, the Hill and Tsai-Wu yield
criteria are utilized as anisotropic strength criteria
(limits of linear elastic behavior) and yield strengths
in (10)–(11) are regarded as failure strengths.

Recently, it is shown by Groenwold and Haftka [17]
that the objective (9) has considerable limitations. It is
pointed out, that the objective function will not maxi-
mize the failure load, when it is carried at a load which
is different from the failure load. Latter limitations
hold good for non-homogeneous criteria like Tsai-Wu
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criterion (9). The use of a safety factor for the objec-
tive function is suggested in order to overcome such a
limitation. In the following, the main attention is paid
to application of the criteria (7) and (8).

4 The necessary optimality conditions

Let us assume that the solid is subjected to a fixed
state of strain assigned through the principal strains.
According to objective (7), the local orientations of
the material axes with respect to principal directions
of strains, which correspond to extreme values of the
strain energy density, should be determined.

As mentioned above, in literature different ap-
proaches have been utilized for the derivation of the
necessary optimality conditions. In the following an
approach proposed by Majak [15] is employed. Latter
approach is based on the solution method developed
by Pedersen [4] for linear elastic 2D materials.

In the following the Euler angles are introduced in
order to describe the finite rotation of local system x1,
x2, x3 as a composition of rotations from a reference
frame. The first rotates the local system about x3 axes

by an angle θ1, next the resulting system of axes is
rotated about new x1 axes by an angle θ2, finally the
resulting system of axes is rotated about new x3 axes
by an angle θ3.

The Euler angles are considered as design variables
(in the case of singular solution, the Euler parameters
are used instead of angles). Thus, the gradient of the
strain energy density with respect to Euler angles θi

(parameters) is equalized to zero

∂JEnergy

∂θi

= εTC
∂ε

∂θ i

= 0. (12)

The Euler angles (parameters) are introduced in strain
energy density through the strain components. In the
case of 3D linear elasticity the transformation formu-
las for strains are given as

εik = εjQjiQjk (13)

where εj (j = I, II, III) denotes the principal strains
and Qji are the components to a second-order orthog-
onal tensor, representing the coordinate transformation

Q =
⎛

⎝
cos(θ3) cos(θ1) − sin(θ3) cos(θ2) sin(θ1) − cos(θ3) sin(θ1) − sin(θ3) cos(θ2) cos(θ1) sin(θ3) sin(θ2)

sin(θ3) cos(θ1) + cos(θ3) cos(θ2) sin(θ1) − sin(θ3) sin(θ1) + cos(θ3) cos(θ2) cos(θ1) − cos(θ3) sin(θ2)

sin(θ2) sin(θ1) sin(θ2) cos(θ1) cos(θ2)

⎞

⎠ .

(14)

Obviously, the orthogonality constraint QQT = I is
trivially satisfied for matrix Q and there is no rea-
son for including it in extended functional (Lagrange
multipliers method). In order to represent the opti-
mality conditions in compact form, the partial deriva-
tives of the strain components with respect to Euler
angles ∂ε

∂θi
are expressed in terms of strain com-

ponents (similarly to 2D case in [4]). The detailed
formulas for all strain components and Euler an-
gles are omitted here for conciseness sake. How-
ever, it is correct to note that the partial derivatives
with respect to Euler angle θ1 contain the strain
components only, but with respect to θ2 and θ3

also Euler angles ( ∂ε11
∂θ1

= 2ε12,
∂ε11
∂θ2

= 2 sin(θ1)ε13,
∂ε11
∂θ3

= 2 cos(θ2)ε12 − 2 sin(θ2) cos(θ1)ε13). Inserting
the expressions of the partial derivatives in (12), one
obtains the stationary condition of the strain energy

density as

∂JEnergy

∂θ1
= 2EQ1 = 0 (15)

∂JEnergy

∂θ2
= 2(cos(θ1)EQ2 + sin(θ1)EQ3) = 0, (16)

∂JEnergy

∂θ3
= 2 cos(θ2)EQ1 + 2 sin(θ2)(sin(θ1)EQ2

− cos(θ1)EQ3) = 0, (17)

where

EQ1 = [(C1111 − C1122 − 2C1212)ε11

− (C2222 − C1122 − 2C1212)ε22

+ (C1133 − C2233)ε33]ε12

+ 2(C3131 − C2323)ε23ε31, (18)
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EQ2 = [(C1122 − C1133)ε11

+ (C2222 − C2233 − 2C2323)ε22

− (C3333 − C2233 − 2C2323)ε33]ε23

+ 2(C1212 − C3131)ε12ε31, (19)

EQ3 = [(C1133 − C1111 + 2C3131)ε11

+ (C2233 − C1122)ε22

+ (C3333 − C1133 − 2C3131)ε33]ε31

+ 2(C2323 − C1212)ε12ε23. (20)

Proposition 1 The optimality conditions (15)–(20)
and the following optimality conditions in terms of
strains

EQ1 = 0; EQ2 = 0; EQ3 = 0; (21)

are equivalent.

Proof A. Assume that the conditions (18)–(21) are
valid. The stationary conditions (15)–(20) are filled
obviously.

B. Assume that (15)–(20) are valid. Obviously
EQ1 = 0 and it implies from (16)–(17) that sin(θ2) = 0
or
{

cos(θ1)EQ2 + sin(θ1)EQ3 = 0,

sin(θ1)EQ2 − cos(θ1)EQ3 = 0.
(22)

B.1. Case sin(θ2) = 0. This solution is included in
(18)–(21), since the second and third equations of (21)
can be expressed as (see relation (13))

{
EQ2 = sin(θ2)G1(Cklmn, θ1, θ2, θ3),

EQ3 = sin(θ2)G2(Cklmn, θ1, θ2, θ3),
(23)

where G1 and G2 are given functions (determined by
(13)) of Euler angles and components of the elasticity
tensor Cklmn.

B.2. Case sin(θ2) �= 0.
B.2.1. Case sin(θ1) �= 0 and cos(θ1) �= 0.
Summarizing the first and second equations of sys-

tem (22) multiplied by cos(θ1) and sin(θ1), respec-
tively one obtains that EQ2 = 0 and EQ3 = 0.

B.2.2. Case sin(θ1) = 0 or cos(θ1) = 0.
It implies from (22) that EQ2 = 0 and EQ3 = 0.
Proposition 1 is proved. �

The conditions (18)–(21) in terms of strains coin-
cide formally with those derived by Seregin and Troit-
ski [11] proceeding from minimum potential energy
criterion, but latter conditions are given in terms of
stresses. The obtained results confirm the commutativ-
ity of the product of stress and strain tensors at the sta-
tionary points of the strain energy density from which
implies that the stress and strain tensors are coax-
ial [12, 13]. An approach proposed above allows to
form some conclusions.

Proposition 2 The optimality conditions in terms of
strains (18)–(21) are simplified form of stationary con-
ditions (15)–(20).

Proof Obviously, the system (15)–(20) is higher or-
der algebraic system than (18)–(21) (both conditions
can be expressed in terms of Euler angles by use
of the transformation formulas for strain components
(13)–(14)).

The Proposition 2 is proved. �

Cowin [14] and Rovati [13] expressed the coaxi-
ality condition of the stress and strain tensors in the
following form

⎧
⎪⎨

⎪⎩

S1144σI + S2244σII + S3344σIII = 0

S1155σI + S2255σII + S3355σIII = 0

S1166σI + S2266σII + S3366σIII = 0

(Cowin),

⎧
⎪⎨

⎪⎩

C1144εI + C2244εII + C3344εIII = 0

C1155εI + C2255εII + C3355εIII = 0

C1166εI + C2266εII + C3366εIII = 0

(Rovati),

(24)

where Sijkl and Cijkl stand for components of the
compliance and constitutive tensors, respectively. The
Euler angles are included in constitutive (compliance)
tensor components through orthogonal rotation tensor
Q (Cijkl = QimQjnQkpQiqC̄mnpq , see (14)). In [14]
it is assumed that all compliance coefficients must van-
ish in (24), since the optimal solution is searched for
all stress states. In [13] a fixed state of strain is con-
sidered and the solution of system (24) is more com-
plicated. In latter case the system (24) can be solved
with respect to the components of the rotation ten-
sor Q or Euler angles. In [13] the solution in terms
of Euler angles is preferred (unconstraint optimiza-
tion problem) and additionally to (24) the condition
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Table 1 Complexity analysis of the optimality conditions (18)–(21) and (24)

Equation cos(θ2) cos(2θ3) cos(2θ1) sin(2θ3) sin(2θ1)

Eq. 1 in (24) 3 2 2 1 1

Eq. 2 in (24) 3 2 2 1 1

Eq. 3 in (24) 4 2 2 1 1

|C∗| = 0 4 2 3 1 1

Eq. 1 in (21) 4 2 2 1 1

Eq. 2 in (21) 3 2 2 1 1

Eq. 3 in (21) 3 2 2 1 1

|C∗| = 0 is pointed out, where |C∗| stands for deter-
minant of the system in (24) (Rovati). Latter condition
is obviously necessary for existence of non-trivial so-
lutions for system (24) and it can be used for deter-
mining Euler angle(s) (instead of any equation of the
system (24)).

It is interesting to compare the complexity of the
optimality conditions (18)–(21) and (24). Let us con-
sider orthotropic symmetry and assume that some
preliminary simplification of the equations is per-
formed (both optimality conditions are previously fac-
torized using MAPLE 10 software package, also the
rank of the equations is reduced by introducing dou-
ble angles for θ1 and θ3). In Table 1 the ranks of
the algebraic equations with respect Euler angles are
pointed out.

It can be seen from Table 1, that in general the com-
plexity of the optimality conditions (18)–(21) and (24)
is the same. The system (24) is linear with respect to
principal strains, but the system (18)–(21) is quadratic.
The equation |C∗| = 0 has higher rank with respect
to Euler angles, but it does not depend on principal
strains. The equation |C∗| = 0.

It is shown by authors that complexity of the op-
timality conditions (21) can be reduced significantly
(details in next section).

Next, the strength criterion (8) is focused on. Using
the Hooke’s law (1), the strength criterion (8) can be
rewritten in terms of strains as

JH = 1

2
εT(CRC)ε → min(max). (25)

The objective function (25) can be transformed to form
similar with energy based formulation by introducing
the matrix A as

A = CRC. (26)

The stiffness-strength matrix A is orthotropic since
both its components, the Hill’s strength matrix R and
stiffness matrix C are orthotropic matrices. Thus, the
minimization of the strength functional (25) can be
performed similarly with the energy based formulation
discussed in detail above.

5 Solution of the optimization problem

Let us proceed from optimality conditions (18)–(21)
given in terms of strains. Corresponding to approach
proposed in Majak [15], the solution of the optimiza-
tion problem posed is divided into strain level solution,
search for global extremes and determination of Euler
angles (or parameters) corresponding to global ex-
tremes. In order to obtain completely determined sys-
tem in terms of strains the optimality conditions (18)–
(21) are combined with the strain invariants (6 strain
component and 6 equations)

ε11 + ε22 + ε33 − εI + εII − εIII = 0,

ε11ε22 + ε11ε33 + ε22ε33 − εI εII

− εI εIII − εIIεIII = 0, (27)

ε11ε22ε33 + 2ε12ε23ε31

− ε11ε
2
23 − ε22ε

2
31 − ε33ε

2
12 − εI εIIεIII = 0.

Obviously, the solution of the system (18)–(21),
(27) is covered with the following cases (similar
regimes for stresses are given in [11])

(a) ε12 = 0, ε23 = 0, ε31 = 0, (28)

(b) ε12 = 0, ε31 = 0, f2 = 0, (29)
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(c) ε23 = 0, ε31 = 0, f1 = 0, (30)

(d) ε12 = 0, ε23 = 0, f3 = 0, (31)

(e) ε12 �= 0, ε23 �= 0, ε31 �= 0, (32)

where

f1 = (C1111 − C1122 − 2C1212)ε11 − (C2222 − C1122

− 2C1212)ε22 + (C1133 − C2233)ε33, (33)

f2 = (C1122 − C1133ε11 + (C2222 − C2233

− 2C2323)ε22 − (C3333 − C2233 − 2C2323)ε33,

(34)

f3 = (C1133 − C1111 + 2C3131)ε11 + (C2233

− C1122)ε22 + (C3333 − C1133 − 2C3131)ε33.

(35)

In the cases (a)–(d) the equations (18)–(21) are sat-
isfied trivially and the nonzero strain components can
be determined from the strain invariants (27) and equa-
tion Fi = 0 (cases (b)–(d)) analytically. All these cases
lead to solutions where at least one (cases (b)–(d)) or
all (case (a)) strain component(s) are equal to princi-
pal strain. Here the details of the solution are omitted
due to conciseness sake (the strain invariants have re-
duced form and the solution is simplified). The results
of the solution for cases (a) and (b) are given in Ta-

Table 2 Solutions in terms of strains (case (a))

ε11 ε22 ε33

εI εII εIII

εI εIII εII

εII εI εIII

εII εIII εI

εIII εI εII

εIII εII εI

bles 2 and 3, respectively, where

r1 = C1122 − C1133,

r2 = C2222 − C2233 − 2C2323, (36)

r3 = C2222 + C3333 − 2C2333 − 4C2323.

The cases (c) and (d) can be treated similarly to the
case (b). Obviously, the regime (a) generates 6 and
regimes (b), (c), (d) each 3 different extremes of the
strain energy density, respectively (the values of the
shear strains with sign ± in Table 3 correspond to
same value of the strain energy density). Thus, the
regimes (a)–(d) together generate 15 extreme values
of the strain energy density with closed form analyti-
cal solution in terms of strains.

In the case of regime (e) the rank of the algebraic
system (18)–(21), (27) can be reduced by solving the
system (18)–(21) with respect to the shear strains

ε23 = ±
√

f1

D1

f3

D3
, ε12 = ±

√
f3

D3

f2

D2
,

ε31 = ±
√

f1

D1

f2

D2
(

ε12ε23ε31 = f1

D1

f2

D2

f3

D3

)

(37)

and substituting the results in strain invariants (27)

ε11ε22 + ε22ε33 + ε33ε11 − f2

D2

f3

D3

− f1

D1

f2

D2
− f1

D1

f3

D3

= εI εII + εIIεIII + εIIIεI . (38)

ε11ε22ε33 + 2
f1

D1

f2

D2

f3

D3
− ε11

f1

D1

f3

D3

− ε22
f1

D1

f2

D2
− ε33

f2

D2

f3

D3

= εI εIIεIII . (39)

Table 3 Solutions in terms of strains (case (b))

ε11 ε22 ε33 ε23

εI (r1εI + r2(εII + εIII))/r3 εII + εIII − ε22 ±√
ε22ε33 − εIIεIII

εII (r1εII + r2(εI + εIII))/r3 εI + εIII − ε22 ±√
ε22ε33 − εI εIII

εIII (r1εIII + r2(εII + εI ))/r3 εI + εII − ε22 ±√
ε22ε33 − εI εII
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In (37)–(39) Fi (i = 1,2,3) are determined with the
relations (33)–(35) and

D1 = 2(C2323 − C3131),

D2 = 2(C3131 − C1212),

D3 = 2(C1212 − C2323).

(40)

The equations (38)–(39) can be solved together with
first strain invariant with respect to the strain com-
ponents ε11, ε22 and ε33. The total rank of this sys-
tem is 6 and its solution can be transformed into solu-
tion of the one 6-th order equation (for example with
respect to ε11) and evaluation of other strain com-
ponents (ε22 and ε33) from linear expressions (using
CAS-es method). Thus, the complexity of the opti-
mality conditions (24) or (18)–(21) is reduced signifi-
cantly (see Table 1). When ε11, ε22 and ε33 are deter-
mined, the shear strains can be computed using rela-
tion (37).

Next, the global extremes of the strain energy den-
sity can be determined by evaluating the functional
(7) for all solutions corresponding to regimes (a)–(e).
The Euler angles corresponding to global extremes of
the strain energy density can be obtained by solving
system (13) with respect to Euler angles. The latter
system has closed form analytical solution. Here the
details are omitted (for conciseness sake) and the re-
sults are pointed out for most general case (e) where
ε12 �= 0, and ε23 �= 0 and ε31 �= 0.

sin2(θ2)

= (ε33 − εIII)(ε33 + εIII − εI − εII) + ε2
31 + ε2

23

(εI − εIII)(εIII − εII)
,

(41)

sin2(θ1) = ε2
23 − ε22ε33 − ε11εIII + εIII(εI − εII)

sin2(θ2)(εI − εIII)(εIII − εII)
,

(42)

cos(2θ3)

= 2
εIII − 1

2 (εI + εII) − (εIII − ε33)/ sin2(θ2)

(εII − εI )
.

(43)

The singular solutions, corresponding to the case
sin(θ2) = 0, can be determined from (13) by replacing
the matrix A with the following transformation matrix

given in terms of Euler parameters

AP = 2

(
e2

0 + e2
1 − 1/2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1/2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1/2

)

.

(44)

The closed form analytical expressions for 32 sin-
gular solutions are obtained, which determine 16 op-
timal material directions, since the solutions with sign
± ahead of e0 correspond the same direction but op-
posite straight. In the case e0 = 0 the opposite straight
is determined by sign ei (i = 1,2,3; i �= 0).

Finally, the solutions determined in terms of Euler
angles can be transformed to Euler parameters us-
ing the relation between Euler angles and parameters.
An alternative solution is treated by use of hybrid GA
algorithm and the results are compared (details in next
section).

Note, that closed form theoretical analysis of the
global and local extremes remains open, since the
global extremes may correspond to numerical so-
lutions (3D orthotropic material). However, using
(18)–(20), it can be shown, that the solutions depend
not more than seven non-dimensional material para-
meters.

6 Numerical results

Let us consider the 3D optimal material orientation
problem in the case of a E-Glass/vinylester as an ex-
ample. The properties of the material are described
with the following values of engineering parame-
ters E1 = 25 GPa, E2 = 24.8 GPa, E3 = 8.5 GPa,
G12 = 6.5 GPa, G13 = 4.2 GPa, G23 = 4.5 GPa,
ν12 = 0.1, ν13 = 0.28, ν23 = 0.3 (stiffness characteris-
tics).

The plot of the strain energy density is given in
Fig. 1 in order to get some perception on its behav-
ior (εI = 8, εII = −7, εIII = −6). The value of the
Euler angle θ1 is fixed (θ1 = π/4) in order to obtain
3D plot and the values of the principal strains are cho-
sen so that the most general case of the strain level
solution (32) realizes.

Obviously, the objective function has a number of
local extremes that refers to the complexity of the
posed problem. The optimal material orientations cor-
responding to the global minimum of the strain energy
density are given in Table 4. In order to validate the re-
sults, an alternative solution has been performed by the
use of hybrid GA (global search by the use of GA and
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Table 4 Minimum value of the strain energy density and corresponding values of the Euler angles

Method Min strain energy den. θ∗
1 θ∗

2 θ∗
3

Decomposition method 1590.8347 0.7456 1.5261 0.5326

GA + Gradient 1590.8347 0.7456 1.5261 0.5326

GA 1590.9651 0.7508 1.5344 0.5423

Fig. 1 The strain energy density as function of Euler angles θ2
and θ3 (θ1 = π/4) and principal strains

local search by the use of gradient method) [18, 19].
The hybrid GA algorithm is realized in terms of Euler
angles (by substituting the strain components (13) in
optimality conditions (21)) in order to keep optimiza-
tion problem unconstrained.

It can be seen from Table 4 that solutions obtained
by the use of decomposition method proposed and hy-
brid GA algorithm, respectively coincide and are close
to the solution obtained by the use of GA algorithm
(last row of the table in Table 4). It is correct to note,
that the content of the last row of the table in Table 4
(GA) depends on the random variables (mutation rate,
random variables used for parent selection) and may
vary in different runs of the program.

In the case of values of the material parameters and
principal strains used above, the system (38)–(39) pro-
duce 4 real and 2 complex solutions in terms of strains.
The global extremes of the energy density are deter-
mined by comparing the values of the objective func-
tion corresponding to these 4 real-valued solutions and
all solutions corresponding to regimes (a)–(d). The
Euler angles are determined for global extremes of the
energy density only using closed form analytical rela-

tions ((41)–(43) for regime (e)). The system (41)–(43)
determines four solutions in terms of Euler angles in
interval [0,π ] satisfying the conditions (37). These so-
lutions in terms of Euler angles correspond to the same
extreme value of the strains energy density. The corre-
sponding solutions in terms of strains differ by signs
of the shear strains. Table 4 only one of the solutions
in terms of strains is given. The remaining three solu-
tions in terms of Euler angles are determined as

θi = θ∗
i , θj = π − θ∗

j ,

i = 1,2,3, j ∈ {1,2,3}, j �= i, (45)

where θ∗
i stands for solution given in Table 4.

The solution corresponding to maximal value of
the strain energy density is determined by regime (a)
and is given in terms of strains as ε11 = εI , ε22 = εII ,
ε33 = εIII , ε12 = ε31 = ε23 = 0. This solution cor-
responds to singular case where sin(θ2) = 0 (see
(41)) and cannot be determined uniquely in terms
of Euler angles. Corresponding solutions can be de-
termined in terms of Euler parameters using formu-
las (13) and (44) as e1 = e2 = e3 = 0, e0 = ±1 and
e1 = e2 = e0 = 0, e3 = ±1. The hybrid GA algo-
rithm converges in latter case to the solution where
θ1 = θ2 = θ3 = 0. Note, that the maximal value of the
strain energy density corresponds to the most flexible
structure and may be useful in design of energy ab-
sorbing structures.

7 Reference discussions with 2D solutions

An approach proposed in the current paper has been
tested by authors on 2D orthotropic materials in [20].
The decomposition method based solution procedure
allows to reduce the optimization problem to solving
set of linear equations. Firstly, the closed form analyt-
ical solutions have been determined terms of strains.
Next the transformation formula for strain component
has been utilized in order to determine the rotation
angle. The obtained results coincide with well-known
solution derived by Pedersen for linear elastic 2D or-
thotropic material in [4].
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In the case of current approach, here are several
possibilities how to manage the constraints. In certain
cases it may be simpler to solve some constraints with
respect to design variables and substitute these vari-
ables in objective function. For example, expressing
the shear strain ε2

12 and ε22 (or ε11) from the strain in-
variants and substituting in objective function results a
quadratic function of one variable (2D orthotropic ma-
terial). It can be concluded that decomposition method
proposed allows to simplify the solution of the optimal
material optimization problem also in the case of 2D
materials.

8 Conclusions

Current paper is focused on solving optimal ma-
terial orientation problems of linear elastic three-
dimensional orthotropic materials. The existing opti-
mality conditions given by Seregin and Troitski [11],
Rovati and Taliercio [13], Cowin [14] are analyzed
and compared. The optimality conditions in terms of
strains are derived. The decomposition method, in-
cluding the strain level solution, search for global ex-
tremes and evaluating of Euler angles, is developed.
The solutions, corresponding to regimes (a)–(d) and
(e) are determined analytically and numerically, re-
spectively. The numerical solution of the complex
nonlinear system is reduced to the solution of the one
sixth order algebraic equation. The obtained results
are validated against an alternative solution performed
by the use of hybrid GA algorithm.

Although there are at least four different approaches
used in order to derive optimality conditions for op-
timization problem considered, the most general ap-
proach is still not used in opinion of authors of the
current paper. Namely, the optimization problem can
be formulated in strain space, considering the strain
components as design variables. In latter case, the
strain invariants should be included as constrains. In
the case of 3D orthotropic linear elastic material such
an approach results the optimality conditions derived
in the current paper (here other considerations have
been used).

Following [9] it can be shown, that the results ob-
tained for linear elastic 3D material hold good also for
some nonlinear elastic material models.
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