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Abstract In the present paper the theory of micro-
polar generalized thermoelastic continua has been em-
ployed to study the propagation of plane waves in mi-
cropolar thermoelastic plates bordered with inviscid
liquid layers (or half-spaces) with varying tempera-
ture on both sides. The secular equations in closed
form and isolated mathematical conditions are derived
and discussed. Thin plate and short wave length re-
sults have also been deduced under different cases and
situations and discussed as special cases of this work.
The results in case of conventional coupled and un-
coupled theories of thermoelasticity can be obtained
both in case of micropolar elastic and elastokinetics
from the present analysis by appropriate choice of rel-
evant parameters. The various secular equations and
relevant relations have been solved numerically by us-
ing functional iteration method in order to illustrate
the analytical developments. Effect of characteristic
length and coupling factors have also been studied on
phase velocity. The computer simulated results in case
of phase velocity, attenuation coefficient and specific
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loss of symmetric and skew symmetric are presented
graphically.
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1 Introduction

Classical continuum theories can explain the mechan-
ical behavior of common solid material like coal,
concrete etc. but it is unable to explain the behav-
ior of complex materials such as bones, blood, cel-
lular solids and polymers. The reason of the com-
plexities lies in the microstructure of the materials.
Therefore, micro-continuum theories were developed
by considering a continuum model embedded with mi-
crostructure which can explain the microscopic mo-
tion and long range material interactions. Several at-
tempts were made to explain these discrepancies that
occur in the case of problems involving elastic vi-
brations of high-frequencies and short wave length,
that is, vibrations due to the generation of ultrasonic
waves. Voigt [1] attempted to eliminate these discrep-
ancies by suggesting that transmission of interaction
between two particles of a body through an elemen-
tary area lying within the material was affected not
solely by the action of a force vector but also by a
moment (couple) vector. This led to the concept of
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couple stresses in elasticity. Cosserat [2] developed a
non-linear theory of elasticity for bars, surfaces and
bodies; Eringen and Şuhubi [3] and Mindlin [4] intro-
duced non-linear micromorphic theory and linear mi-
crostructure respectively by extending classical elas-
ticity to include the effects of the deformations of the
underlying microstructure by inserting new degrees of
freedom into the continuum. These degrees of freedom
are specified to be independent from the usual dis-
placement degrees of freedom. In the case of the mi-
cropolar continuum introduced by Eringen [5] the di-
rectors are rigid and there are three rotational degrees
of freedom in addition to the three classical displace-
ment degrees of freedom. Fatima et al. [6] suggested
that the Cosserat continuum theory is a possible choice
within the whole class of generalized continuum the-
ories for the mechanical modeling of bone. Ander-
son and Lakes [7] showed that classical elasticity the-
ory does not always adequately describe the behavior
of cellular materials and they also proved that Roha-
cell polymethacrylimide foam behaves as a Cosserat
elastic material. Some authors such as Di Carlo et al.
[8] and Masiani et al. [9] showed how to obtain a
macroscopic characterization of a continuum with a
fine microstructure in masonry applications. Masiane
and Trovalusci [10] showed that simplest kind of mi-
crostructure which can be used to describe masonry
like material is the rigid microstructure of the Cosserat
type.

In order to remove the paradox of infinite ve-
locity of heat transportation; a physically impossible
phenomenon, non-classical (generalized) theories of
thermoelasticity have been developed by the authors
such as Lord and Shulman [11] and Green and Lind-
say [12]. Some researchers such as Ackerman et al.
[13], Guyer and Krumhansal [14] and Ackerman and
Overtone [15] experimentally proved for solid helium
that thermal wave (second sound) propagating with fi-
nite, though quite large, speed also exists. A wave like
thermal disturbance is referred to as “second sound”
by Chandrasekharaiah [16]. Dost and Tabarrok [17]
advanced the linear micropolar theory of elastic con-
tinua developed by Eringen [18] to generalized ther-
moelastic solids by using Green and Lindsay [12]
model of non-classical thermoelasticity. Kumar and
Choudhary [19] studied the response of orthotropic
micropolar elastic medium due to various sources. The
study of Lamb wave propagation in elastic plates un-
der fluid loading carried out by Wu and Zhu [20] has

been advanced by Sharma and Pathania [21] for ther-
moelastic plates immersed in liquid. This study was
further extended to cylindrical thermoelastic plates
sandwiched between fluid layers of finite and infinite
thicknesses by Sharma and Pathania [22]. However,
these investigations were subjected to the assumption
that the liquid loading is maintained at uniform tem-
perature, a constraint difficult to follow practically.
Recently Sharma et al. [23] studied the propagation
of Rayleigh surface waves in microstretch thermoelas-
tic continua under inviscid fluid loadings with varying
temperature.

The plate like structure is in frequent use in ap-
plications involving aerospace, navigation, civil engi-
neering structures, chemical pipes, and automobiles
etc. Moreover, capability of Lamb waves in interro-
gating complete plate like structure is quite useful in
the structural health monitoring and for diagnostics of
such structures.

Keeping in view the above facts the present paper
is aimed at to investigate the Lamb wave phenomenon
in micropolar thermoelastic solid plates submerged in
liquid with varying temperature. The linear micropolar
theory of elastic continua developed by Eringen [18]
and advanced by Dost and Tabarrok [17] to general-
ized thermoelastic solids has been employed, to carry
out the investigations.

2 Formulation of the problem

We consider a homogeneous isotropic, thermally con-
ducting, cylindrical micropolar elastic plate of thick-
ness 2d initially at uniform temperature T0. The plate
is bordered, both on the top and bottom, with in-
finitely large homogeneous inviscid liquid layers of
thickness h. The plate is axisymmetric with respect
to z-axis as the axis of symmetry. We use cylindrical
coordinates to solve this problem. The origin of co-
ordinate system (r, θ, z) is taken at any point in the
middle surface of the plate and z-axis normal to it
along the thickness. The surfaces z = ±d are subjected
to stress/couple free, thermally insulated/isothermal
boundary conditions. We take the r–z plane as the
plane of incidence. The basic governing equations for
micropolar thermoelastic medium developed by Erin-
gen [15] and Dost and Tabarrok [17] after employing
Lord and Shulman [11] and Green and Lindsay [12]
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models of nonclassical thermoelasticity, in the absence
of body forces and heat sources, are given by

(λ + μ)∇(∇.�u) + (μ + κ)∇2 �u + κ∇ × �φ

− ν

(
1 + t1δ2k

∂

∂t

)
∇T = ρ

∂2 �u
∂t2

, (1)

(α + β + γ )∇(∇ · �φ) − ν∇ × (∇ × �φ) + κ(∇ × �u)

− 2κ �φ = ρj
∂2 �φ
∂t2

, (2)

K∗∇2T = ρC∗
(

∂T

∂t
+ t0

∂2T

∂2t2

)

+ νT0

(
∂

∂t
+ δ1kt0

∂2

∂t2

)
(∇ · �u). (3)

The constitutive relations are given by

σij = λur,rδij + μ(ui,j + uj,i) + κ(uj,i− ∈ijr φr )

− ν

(
T + t1δ2k

∂

∂t

)
δij ,

mij = αφr,r δij + βφi,j + γφj,i , i, j, r = 1,2,3 (4)

where �u = (u,0,w) is the displacement vector, T is
temperature change, �φ = (0, φ,0) is micro rotation
vector. Here λ, μ are Lame parameters and γ , κ , α,
β are micropolar material constants, ρ is density, K∗
is thermal conductivity, ν = (3λ + 2μ + κ)αT ,αT is
coefficient of linear thermal expansion. σij and mij

are respectively the stress tensor and couple stress ten-
sor and δij is Kronecker delta. Here k = 1 for Lord-
Schulman (LS) theory and k = 2 for Green-Lindsay
(GL) theory. The comma notation is used to denote
spatial derivative, a dot denotes time differentiation.

The thermal relaxation time ‘t0’ and ‘t1’ satisfy the
inequalities

t0 ≥ t1 ≥ 0. (5)

The inequalities (5) are not mandatory to be satisfied
as proved by Strunin [24].

We have defined the quantities

r ′ = ω∗r
c1

, z′ = ω∗z
c1

, T ′ = T

T0
,

u′ = ρω∗c1u

νT0
, w′ = ρω∗c1w

νT0
,

t ′ = ω∗t, t ′0 = ω∗t0, t ′1 = ω∗t1,

ε = ν2T0

ρC∗ (λ + 2μ + κ),

ω∗ = C∗(λ + 2μ + κ)

K
, σ ′

ij = σij

νT0
, (6)

δ2 = c2
2

c2
1

, δ2
1 = c2

4

c2
1

,

c2
1 = λ + 2μ + κ

ρ
, c2

2 = μ + κ

ρ
,

c2
3 = K∗

ρC∗ω∗ , c2
4 = γ

ρJ
,

c2
7 = κ

ρJ
, p = κ

ρc2
1

, δ∗ = κc2
1

γω∗2

ω∗ is characteristic frequency of medium, c1 and c2

one longitudinal and shear velocity, C∗ is specific heat.
Moreover Fatima et al. [6] defined the characteristic

length (l) and coupling factor (N) for the material in
terms of material parameters as

γ = 4l2
(

μ + κ

2

)
, N2 = κ

2(μ + k)
(7)

where 0 ≤ N < 1. Here N = 0 corresponds to a clas-
sical elastic material and N = 1 refers to famous cou-
pled stress theory.

Upon using (6) in (1) to (3) we obtain.

(1 − δ2)∇(∇ · �u) + δ2∇2�u + p(∇ × �φ)

−
(

1 + t1δ2k
∂

∂t

)
∇T = ∂2 �u

∂t2
, (8)

∇2 �φ + δ∗(∇ × �u) − 2δ∗ �φ = 1

δ2
1

∂2 �φ
∂t2

, (9)

∇2T −
(

∂

∂t
+ t0

∂2

∂t2

)
T = ε

(
∂

∂t
+ δ1kt0

∂2

∂t2

)
(∇ · �u).

(10)

In order to solve above equations we introduce poten-
tial q and ψ , in the solid defined by

u = q,r + ψ,z, w = q,z − ψ,r − ψ

r
. (11)

Also in the liquid boundary layer we have

uj = φj,r + ψj,z, ωj = φj,z − ψj,r − ψj

r
(12)
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where φj and ψj are scalar velocity potential and vec-
tor velocity components, respectively along the direc-
tion for the bottom liquid layer (j = 1) and top liquid
layer (j = 2), uj and ωj are the r and z components of
particle velocity. Substituting (11), (12) in (8) to (10)
we obtained

(
∇2 − ∂2

∂t2

)
q =

(
1 + t1δ2k

∂

∂t

)
T , (13)

∇2ψ − 1

r2
ψ − 1

δ2
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δ2
φ, (14)

∇2φ − 1

r2
φ − 2δ∗φ − 1

δ2
1

φ̈ = δ2
(

∇2ψ − ψ

r2

)
, (15)

∇2T −
(

∂T

∂t
+ t0

∂2T

∂t2

)

= ε∇2
(

∂q

∂t
+ δ1kt0

∂2q

∂t2

)
, (16)

∇2φj − 1

δ2
L(1 + ε∗)

∂2φj

∂t2
= 0, j = 1,2, (17)

Tj = −ε∗ρL

β̄ρ(1 + ε∗)
∂2φj

∂t2
, j = 1,2 (18)

where

T ′
j = Tj

T0
, ε∗ = β∗2T ∗

0

ρLC∗
V c2

L

, β̄ = β∗

ν
,

β∗ = 3λLα∗, δ2
L = c2

L

c2
1

, cL =
√

λL

ρL

, (19)

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
.

Here cL is the velocity of sound in the liquid; λL is the
bulk modulus, ρL is density of the liquid, α∗ is the co-
efficient of volume thermal expansion; C∗

V is the spe-
cific heat of the fluid at constant volume; T1 and T2 are
respectively the temperature deviations in the liquid
layers below and above the thermoelastic micropolar
plate from the ambient temperature T ∗

0 and ε∗ is the
thermomechanical coupling in the liquid. Moreover,
the liquid is assumed to be thermally non-conducting
hypothetical solid and the prime has been omitted for
convenience.

2.1 Boundary conditions

The boundary conditions at the solid liquid interfaces
z = ±d to be satisfied are as follows:

σzz = σL
zz, σzr = σL

zr , w = wL,

mzθ = 0, T,z + H(T − Tj ) = 0, j = 1,2
(20)

where H is the Biot’s heat transfer coefficient.

3 Formal solution of the problem

We assume the solution of the form

(q,ψ,T ,φ,φ1, φ2)

=
{

q(z)J0(ξr),ψ(z)J1(ξr), T (z)J0(ξr),

φ(z)J1(ξr),φ1(z)J0(ξr),φ2(z)J0(ξr)

}

× exp(−iωt) (21)

where c = ω
ξ

is the non-dimensional phase velocity
(c′ = c

c1
), ω(ω′ = ω

ω∗ ) is the non-dimensional circu-

lar frequency, ξ (ξ ′ = c1ξ
ω∗ ) the non-dimensional wave

number; J0 and J1 are Bessel functions of order 0
and 1, respectively. Here primes have been suppressed.

Upon using solution (21) in (13) to (18) and solving
the resulting coupled differential equations the expres-
sions for q , φ, ψ , T , φ1, φ2, T1 and T2 are obtained as

q = (A cosm1z+B sinm1z+C cosm2z + D sinm2z)

× J0(ξr) exp(−iωt), (22)

φ = δ2

p
[(β2 − m2

3)(A
′ cosm3z + B ′ sinm3z)

+ (β2 − m2
4)(C

′ cosm4z + D′ sinm4z)]
× J1(ξr) exp(−iωt), (23)

ψ = (A′ cosm3z + B ′ sinm3z + C′ cosm4z

+ D′ sinm4z)J1(ξr) exp(−iωt), (24)

T = iω−1τ−1[(α2 − m2
1)(A cosm1z + B sinm1z)

+ (α2 − m2
2)(C cosm2z + D sinm2z)]

× J0(ξr) exp(−iωt), (25)
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φ1 = E sinγ [z − (d + h)]J0(ξr) exp(−iωt),

d < z < d + h, (26a)

T1 = ω2ε∗ρL

β̄ρ(1 + ε∗)
E sinγ [z − (d + h)]

× J0(ξr) exp(−iωt), d < z < d + h, (26b)

φ2 = F sinγ [z + (d + h)]J0(ξr) exp(−iωt),

−(d + h) < z < d, (27a)

T2 = ω2ε∗ρL

β̄ρ(1 + ε∗)
B6 sinγ [z + (d + h)]J0(ξr)

× exp(−iωt), −(d + h) < z < d, (27b)

where

m2
k = ξ2(a2

k c
2 − 1), k = 1,2,3,4,

γ 2 = ξ2
(

c2

δ2
L

− 1

)
= m2

5, α2 = ξ2(c2 − 1),

β2 = ξ2
(

c2

δ2
− 1

)
,

u = {−ξ(A cosm1z + B sinm1z

+ C cosm2z + D sinm2z)

− m3(A
′ sinm3z + B ′ cosm3z)

− m4(C
′ sinm4z − D′ cosm4z)}J1(ξr)e−iωt ,

(28)

w = [−m1(A sinm1z − B cosm1z)

+ m2(−C sinm2z + D cosm2z)

− ξ(A′ cosm3z + B ′ sinm3z

+ C′ cosm4z + D′ sinm4z)]J0(ξr)e−iωt ,

a2
1, a2

2 = 1

2
[(1 + τ0 − iωετ ′

0τ1)

± [(1 − τ0 − iωετ ′
0τ1)

2 − 4iωετ ′
0τ1τ0]1/2],

a2
3, a2

4 = 1

2

[
1

δ2
+ 1

δ2
1

+ δ∗

δ2ω2
(p − 2δ2)

±
[

1

δ2
− 1

δ2
1

+ δ∗

δ2ω2
(p − 2δ2)2

+ 4δ∗(p − 2δ2 + 2δ2
1)

ω2δ2δ2
1

]1/2

(29)

where

τ0 = t0 + iω−1, τ ′
0 = t0δ1k + iω−1,

τ1 = t1δ2k + iω−1.
(30)

4 Derivation of secular equations

Invoking the boundary conditions (20) at the surfaces
z = ±d of the plate along with solutions (22)–(27) we
obtain a system of 10 simultaneous linear equations
which has a non-trivial solution if the determinant
of unknown coefficients [A,B,C,D,E,F,A′,B ′,
C′,D′] vanishes. Upon employing the procedure
adopted by Graff [25, pp. 439–446], Wu and Zhu [20]
in elastokinetics and Sharma and Pathania [21, 22] in
thermoelasticity mechanics, after some algebraic re-
ductions and manipulations along with conditions

γ 	= 0, γ h 	= (2n − 1)
π

2
, mid 	= nπ,

(2n − 1)
π

2
, n = 1,2,3, . . . .

The system of equations leads to the following secular
equations.

(
T1

T3

)±1

− m1(m
2
1 − α2)

m2(m
2
2 − α2)

(
T2

T3

)±1

+ ω4ρLm1(m
2
2 − m2

1)T5

ργ (m2
2 − α2)[T3]±1P 2

− m1m3(m
2
2 − m2

1)Q
2

(m2
2 − α2)LP 2

= H
m3m1Q

2

m2LP 2

[
T1T2

T3

]±1

×
[(

1 − ω4ρLLT5

ργQ2m3T
±1
3

)((
T1

T3

)∓1

− m2(m
2
1 − α2)

m1(m
2
2 − α2)

(
T2

T3

)±1)

− (m2
1 − m2

2)LP 2

m1m3(α2 − m2
2)Q

2

+ iω5τ1ε
∗LT5ρL

β̄(1 + ε∗)γ (α2 − m2
2)ρm1m3Q2

×
((

T1

T3

)∓1

− m2

m1

(
T2

T3

)∓1)]
(31)
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where Tk = tanmkd (k = 1,2,3,4), T5 = tanγ h,

L = (1 − a2
4δ2)

(a2
4 − a2

3)δ2

[
1 − m3(1 − a2

3δ2)[T3]±1

m4(1 − a2
4δ2)[T4]±1

]
,

P = δ2
(

β2 − ξ2 + p
ξ2

δ2

)
,

Q = 2δ2ξ

(
1 − p

2δ2

)
, α = ξ2(c2 − 1).

Here superscript +1 corresponds to skew symmetric
and −1 refers to symmetric modes of wave propa-
gation. Equation (31) is the secular equation which
governs the propagation of circular crested micropolar
generalized thermoelastic waves in a plate sandwiched
between two inviscid liquid layers. The secular equa-
tion for such waves in a plate sandwiched between two
liquid half spaces (H → ∞) can be written from (31)
by replacing tanγ h with −i. The former case may also
be referred as non leaky Lamb type waves and latter
one as leaky Lamb waves in micropolar generalized
thermoelastic plates.

The secular equation in case of generalized ther-
moelastic plate and micropolar elastic plate immersed
in liquid can be obtained by setting respectively κ =
0 = p and ε = 0 in (31). The results for thermoelas-
tic, elastic and micropolar elastic can also be obtained
from secular (31) by taking ρL → 0 along with above
choice of thermoelastic coupling and micropolarity
parameters. The deduced results agree with Sharma
and Pathania [21, 22], Sharma and Singh [26], Sharma
et al. [27] and Graff [25].

5 Plane waves in plate

In this section we consider a plane wave in infinite
plate. We take origin of the Cartesian coordinate sys-
tem (x, y, z) on the middle surface of the plate. The
x–y plane is chosen to coincide with the middle sur-
face of the plate and z-axis normal to it along the thick-
ness of the plate. The surfaces z = ±d are assumed
to be stress free, thermally insulated or isothermal
boundaries of the plate. The non-dimensional basic
governing equations of micropolar generalized ther-
moelasticity in this case are again given by (13) to (18)

with ∇2 = ∂2

∂x2 + ∂2

∂z2 , x′ = ω∗x
c1

and the operator ∇ is in
Cartesian coordinates instead of cylindrical one here.

The boundary conditions at the solid liquid interfaces
z = ±d to be satisfied are as follows:

σzz = σL
zz, σzy = σL

zy,

w = wL, mzy = 0,

T,z + H(T − Tj ) = 0, j = 1,2

(32)

and the potential functions q and ψ in the solid defined
by

u = q,x + ψ,z, w = q,z − ψ,x (33)

where q and ψ are velocity potential function of longi-
tudinal and shear waves in the solid plate Substituting
expressions (33) in (8) to (10), we obtained

(
∇2 − ∂2

∂t2

)
q =

(
1 + t1δ2k

∂

∂t

)
T , (34)

∇2ψ − 1

δ2
ψ̈ = p

δ2
φ, (35)

∇2φ − 2δ∗φ − 1

δ2
1

φ̈ − δ2∇2ψ = 0, (36)

∇2T −
(

∂T

∂t
+ t0

∂2T

∂t2

)
= ε∇2

(
∂q

∂t
+ δ1kt0

∂2q

∂t2

)
.

(37)

In the fluid medium, we have

u1 = φ1,x + ψ1,z, w1 = φ1,z − ψ1,x (38)

where φ1 and ψ1 are the scalar and vector velocity po-
tential, u1 and w1 are the x and z components of par-
ticle velocity in the medium, respectively. Because the
inviscid liquid does not support the shear motion so
shear modulus of liquid vanishes and hence ψ1 = 0.
The potential function φ1 in the case of liquid satisfies
the equation

∇2φj − 1

δ2
L(1 + ε∗)

φ̈j = 0, j = 1,2,

Tj = −ε∗ρL

β̄ρ(1 + ε∗)
φ̈j , j = 1,2

(39)

where δ2
L = c2

L

c2
1

, cL =
√

λL

ρ
L

being velocity of sound in

liquid. Here ρL is the density and λL is bulk modulus
of the liquid.
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Here we take the wave solution of the form

(q,ψ,T ,φ,φ1, φ2)

= {q(z),ψ(z), T (z),φ(z),φ1(z),φ2(z)}
× exp(iξ(x − ct)). (40)

Upon using solution (40) in (34) to (39) the formal
solution in this case is obtained as

q = (A∗ cosm1z + B∗ sinm1z + C∗ cosm2z

+ D∗ sinm2z) exp(iξ(x − ct)), (41)

φ = δ2

p
[(β2 − m2

3)(A
′ ∗ cosm3z + B ′ ∗ sinm3z)

+ (β2 − m2
4)(C

′ ∗ cosm4z + D′ ∗ sinm4z)]
× exp(iξ(x − ct)), (42)

ψ = (A′ ∗ cosm3z + B ′ ∗ sinm3z + C′ ∗ cosm4z

+ D′ ∗ sinm4z), exp(iξ(x − ct)), (43)

T = iω−1τ−1[(α2 − m2
1)(A

∗ cosm1z + B∗ sinm1z)

+ (α2 − m2
2)(C

∗ cosm2z + D∗ sinm2z)]
× exp(iξ(x − ct)), (44)

φ1 = E∗ sinγ [z − (d + h)] exp(iξ(x − ct)),

d < z < d + h,

T1 = ω2ε∗ρL

β̄ρ(1 + ε∗)
E∗ sinγ [z − (d + h)]

× exp(iξ(x − ct)), d < z < d + h, (45)

φ2 = F ∗ sinγ [z + (d + h)] exp(iξ(x − ct)),

− (d + h) < z < d,

T2 = ω2ε∗ρL

β̄ρ(1 + ε∗)
F ∗ sinγ [z + (d + h)]

× exp(iξ(x − ct)), −(d + h) < z < d, (46)

where mi , ai ; i = 1,2,3,4, etc. are defined in (28)
and (29). Upon invoking boundary conditions (32) at
the plate surfaces z = ±d and using (41)–(46), we ob-
tain a coupled system of twelve simultaneous linear
equations which provides a non-trivial solution if the
determinant of the amplitudes [A∗,B∗,C∗,D∗,E∗,
F ∗,A′ ∗B ′ ∗,C′ ∗,D′ ∗] vanishes. The determinant
equation so obtained, after applying lengthy reduc-
tions and manipulations, again leads to the secular

equation (31) for the micropolar generalized ther-
moelastic rectangular plate bordered both on the top
and bottom with infinitely large homogeneous inviscid
liquid layers of thickness h with stress free isothermal
and thermally insulated boundaries.

Therefore it is noticed that the Rayleigh–Lamb type
equation governs plane wave motion in a micropolar
generalized thermoelastic plate as in case of elastoki-
netics and thermo mechanics. Although, the frequency
wave number relationship holds whether waves are
straight or circularly crested, the displacements, tem-
perature change, stresses and couple stress in case
of crested waves vary according to Bessel functions
rather than trigonometric functions as far as the radial
coordinate is concerned. For large values of r , we have

J0(ξr) → sin ξr + cos ξr√
πξr

,

J1(ξr) = sin ξr − cos ξr√
πξr

.

Thus far from the origin the motion becomes periodic
in r . Actually “far” occurs rather rapidly, within four
to five zeros of Bessel functions. As r becomes very
large the straight crested behavior is the limit of circu-
lar crested waves.

6 Discussion of the secular equations

6.1 Wave of short wave length

Let us consider the case when the transverse wave-
length with respect to the thickness of the plate is
quite small, so that ξd ≥ 1. In this case the char-
acteristic roots are of the type α2 = −α′2, β2 =
−β ′2, m2

k = −m′2
k , k = 1,2,3,4 so that mk = iαk ,

k = 1,2,3,4 are purely imaginary or complex num-
bers. This ensures that the superposition of partial
waves has the property of exponential decay. The sec-
ular equation is written from (31) by replacing circu-
lar tangent functions of α,β and mk , k = 1,2,3,4
with hyperbolic tangent function of α′, β ′ and αk

(k = 1,2,3,4) and some information on the asymp-
totic behavior is also obtainable by putting ξd →
∞,

tanhαkd
tanhα3d

→ 1, k = 1,2 so that the resulting fre-
quency equation reduces to

A

[
α2

1 + α2
2 + α1α2 − α′2
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∓ iω2δ2(−β ′2 + ξ2)(α1 + α2)ρLα1α2 tanγ h

ργP 2

]

+ α1α2α3
(a2

4 − a2
3)(α1 + α2)δ

2Q2

(1 − a2
4δ2)P 2

= ±H
α3(a

2
4 − a2

3)δ2Q2

(1 − a2
4δ2)P 2

×
[(

1 ∓ iω2ρL(−β ′2 + ξ2)(1 − a2
4δ2) tanγ h

ργα3(a
2
4 − a2

3)Q2

)

× (α1α2 − α′2)

+ (1 − a2
4δ2)(α1 + α2)P

2A

(a2
4 − a2

3)δ2Q2

± i
ω4ε∗(1 − a2

4δ2) tanγ h

β̄(1 + ε∗)γ (a2
4 − a2

3)α3Q2

]
,

A =
[

1 − α3(1 − m3δ
2)

α4(1 − m4δ2)

]
. (47)

Equation (47) is the dispersion equation for microp-
olar thermoelastic Rayleigh waves of an infinite half-
space solid bordered with a homogeneous liquid layer
of finite thickness. The dispersion relation in case of
Rayleigh waves of an infinite solid half-space under-
lying a homogeneous liquid half space is written from
(47) by replacing tanγ h with 1 therein. The results of
classical thermoelastic plate can be obtained by ignor-
ing the micropolar effect.

6.2 Long wavelength waves

Let us consider the case when the transverse wave
length with respect to thickness to the plate is quite
large ξd ≤ 1. When the characteristic roots are of the
type α2 = −α′2, β2 = −β ′2, m2

k = −m′2
k ,

k = 1,2,3,4 so that α = iα′, β = iβ ′, mk = iαk ,
k = 1,2,3,4 are purely imaginary or complex num-
bers. In this case the symmetric case has no root. The
skew symmetric case on retaining the first two terms
in the expansion of hyperbolic tangents and frequency
(H → 0) reduces to

(α2
3 + α2

4 − β ′2)

(
β ′2 + ξ2 − p

ξ2

δ2

)2

×
(

1 − d2

3

(
α4

3 + α4
4 + α2

3α2
4 − β ′2(α2

3 + α2
4)

α2
3 + α2

4 − β ′2

)

×
(

1 − α′2d2

3
+ ω2ρL(ξ2 − β ′2) tanγ h

ρdγ δ2

)

= 4ξ2
(

1 − p

2δ2

)
α2

3α2
4

(
1 − α2

3
d2

3

)(
1 − α2

4
d2

3

)
.

(48)

On discarding the terms of higher order than ( c
δ
)4, we

get

c = 2ξdδ

√
(1 − p

2δ2 ){(3 − δ2)(1 − p

2δ2 ) − 2}
3

×
{

1 − ρLh

ρd2
+ 4δ2

(
1 − p

2δ2

)

×
[(

a2
3 + a2

4 − 1

δ2

)

− δ2
(

1 − p

2δ2

)
a2

3a2
4

]}−1/2

. (49)

In the absence of micropolarity (p → 0), (49) be-
comes

c = 2ξdδ

√
1 − δ2

3

{
1 − ρLh

ρd

}−1/2

. (50)

This agrees with Sharma and Pathania [22]. In the ab-
sence of liquid (ρL → 0), (50) reduces to

c = 2ξdδ

[
1

3
(1 − δ)2

]1/2

. (51)

This result with linear dependence of c on ξ agrees
with that derived from classical plate theory in elas-
tokinetics. From (49)–(51) it has been observed that
thermomechanical coupling or thermal relaxation time
are not affecting thin plates in this case. How ever the
presence of liquid on both sides of the plate and mi-
cropolarity affects the phase velocity of flexural vibra-
tion mode as a periodic function of liquid layer width.

When two of the characteristic roots are of the
type α2 = −α′2, m2

k = −m′2
k , k = 1,2, then the fre-

quency equation can be obtained from (31) by replac-
ing only the circular tangent functions of mk , k = 1,2
with hyperbolic tangent functions. In this case the anti-
symmetric case no roots and secular equation in the
symmetric case becomes

(α2
1 + α2

2 − α′2) − ω2ρL(β2 + ξ2)α2
1α2

2d tanγ h

ργ δ2(β2 − ξ2 + pξ2

δ2 )2
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= 4ξ2(1 − p

2δ2 )α2
1α2

2

(β2 − ξ2 + p
ξ2

δ2 )2
. (52)

This on simplification provides us

c =
2δ

√
(1 − δ2)(1 − p

2δ2 )(1 + p

2(1−δ2)
)√

1 + 4δ2(1 − p

2δ2 )(a2
1 + a2

2 − 1) − 4δ2a2
1a2

2(1 − p

2δ2 )2 − ρLhξ2d

ρδ2

. (53)

In the absence of micro polarity (κ = 0 = p), (53) re-
duces to

c = 2δ
√

(1 − δ2)√
1 − 4iωδ2ετ ′

0τ1 − ρLhξ2d

ρδ2

. (54)

This in case of coupled thermoelasticity becomes

c = 2δ
√

(1 − δ2)√
1 + 4iω−1δ2ε

. (55)

The above equation in uncoupled thermoelasticity
(ε = 0) further reduces to

c = 2δ
√

(1 − δ2). (56)

This is the thin plate or plane stress analogue of bar ve-
locity of longitudinal rod theory in elastokinetics; see
Graff [25]. This shows that thin plate results in this
mode are affected by thermoelastic coupling and ther-
mal relaxation times.

7 Numerical results and discussion

Following Gauthier [28] the relevant physical con-
stants for aluminum-epoxy composite as micropolar
elastic solid are

ρ = 2.19 × 103 kg/m3, λ = 7.59 × 1010 N/m2,

μ = 1.89 × 1010 N/m2, T0 = 20◦C,

κ = 0.0149 × 1010 N/m2, γ = 0.268 × 106 N,

j = 0.196 × 10−4 m2, β̄ = 280,

t0 = 0.6131 × 10−13 s, t1 = 0.8765 × 10−13 s,

ε = 0.073,
ω

ω2
0

= 10.

Table 1 Specific heat of water at different temperatures

T ∗
0 (◦C) 0 15 35 50 100

C∗
V (J/kg ◦C) 1.008 1.00 0.997 0.998 1.006

Here the values of the thermal relaxation time t0 have
been estimated from (2.5) of Chandrasekharaiah [16]
and the values of t1 are taken proportional to that
of t0. The fluid taken for the purpose of numerical
discussion is water, the velocity of sound in which is
cL = 1.5×103 m/s and density ρL = 1000 kg/m3. The
specific heat of water at different temperatures is given
in Table 1.

In general, wave number (ξ) and hence the phase
velocity (c) of the wave is complex quantity. We write

c−1 = V −1 + iω−1Q (57)

so that ξ = R + iQ, R = ω
V

, where V and Q are real.
The exponent in the plane wave solution (40) becomes
iR(x − V t) − Qx. This shows that V is the propaga-
tion speed and Q is the attenuation coefficient of the
waves. The complex secular (31) is solved via repre-
sentation (57) by using functional iteration numerical
technique to compute phase speed (V ) and attenua-
tion coefficient (Q) of Lamb waves for different values
of the wave number (R) for micropolar thermoelastic
(MPT) and thermoelastic (TE) solid plates.

Here the specific loss of energy (SL) and relative
frequency shift (RFS) are also computed. The spe-
cific loss is the rate of energy dissipation (�W

W
) in a

stress cycle of the specimen when the strain is maxi-
mal, W being the strain energy density function. It is
given by

∣∣∣∣�W

W

∣∣∣∣ = 4π

∣∣∣∣ Im(ξ)

Re(ξ)

∣∣∣∣,
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Fig. 1 Phase velocity profiles of symmetric modes with wave
number in micropolar thermoelastic plate (MPT) plate

ξ being complex. Here we have

SL =
∣∣∣∣�W

W

∣∣∣∣ = 4π

∣∣∣∣V Q

ω

∣∣∣∣. (58)

The relative frequency shift is defined by the relation
as given below

RFS =
∣∣∣∣ω(ρL) − ω(0)

ω(0)

∣∣∣∣ (59)

where ω(ρL), ω(0) are the frequencies in the pres-
ence and absence of fluid loading, respectively. The
computer simulated results have been presented graph-
ically in Figs. 1 to 12.

From Fig. 1 it is observed that phase velocity of the
lowest symmetrical mode in micropolar thermoelastic
plate is significantly reduced and affected in the pres-
ence of liquid in the wave number range 0 ≤ R ≤ 1.5
and it exhibits non-dispersive behavior for R ≥ 1.5.
The phase velocity of higher modes attain large values
at small wave numbers which approaches asymptoti-
cally to the thermoelastic Rayleigh wave velocity with
increasing wave number.

It is observed from Fig. 2 that the phase velocity
of lowest asymmetric mode increases from zero value
at vanishing wave number to become closer to the ve-
locity of thermoelastic Rayleigh wave at large wave
numbers. It is also reduced and affected due to pres-
ence of liquid. For optical modes the phase velocity
is quite large at vanishing wave number which again
approaches asymptotically to thermoelastic Rayleigh
wave velocity as experienced in the case of symmet-
ric mode. This asymptotic behavior is attributed to the

Fig. 2 Phase velocity profiles of asymmetric modes with wave
number in micropolar thermoelastic plate (MPT) plate

Fig. 3 Phase velocity profiles of fundamental modes (symmet-
ric and asymmetric) with wave number in thermoelastic (TE)
and micropolar thermoelastic plates (MPT) plates

fact that for short wavelengths, the material plate be-
haves like a thick slab and hence coupling between
upper and lower boundaries is reduced because of
which the symmetric and asymmetric motion of the
plate becomes more and more similar. This behavior
of phase velocity profiles of symmetric and skew sym-
metric modes agrees with that of thermoelastic plate
bordered with liquid layers of inviscid liquid at uni-
form temperature (Sharma and Pathania [17]) except
slight changes in magnitudes.

In view of the importance of the fundamental mode
in various applications like liquid sensors, NDT, corro-
sion testing etc. comparison of both symmetrical and
asymmetrical modes has been given in Fig. 3 in cases
of micropolar thermoelastic and thermoelastic mate-
rial plates in the context of non-classical theory of
thermoelasticity (GL theory) under fluid loadings. It
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Fig. 4 Attenuation profile of fundamental modes (symmetric
and asymmetric) with wave number in thermoelastic (TE) and
micropolar thermoelastic (MPT) plates

has been observed that phase velocity of symmetric
acoustic modes gets reduced in magnitude consider-
ably because of the micropolar effects. However, sym-
metrical modes for both classes of material plates are
behaving alike hence remains unaffected due to mi-
cropolarity.

Variations of attenuation of fundamental (acoustic)
modes for both symmetric and skew symmetric have
been plotted in Fig. 4 with respect to wave number in
the presence and in absence of micropolar effects in
thermoelastic plates. The magnitude of attenuation of
asymmetric mode behaves in Gaussian manner with
its maximum value at R = 1 in the wave number
range 0 ≤ R ≤ 2.5 and remains dispersionless after-
wards. The behavior of this quantity in case of sym-
metric modes is also noticed to be Gaussian with max-
imum value at R = 5 for MPT (symmetrical) and at
R = 2 for TE (symmetrical) in the wave number range
0 ≤ R ≤ 3.5, however the latter is slightly platokur-
tic towards increasing wave number values. The mag-
nitude of attenuation in case of symmetric modes is
atleast about one-third times to that of skew symmet-
ric ones. Moreover, the attenuation of skew symmet-
ric modes increases due to micropolarity while it de-
creases in case of symmetric motion of the plate.

Figure 5 represents the behavior of specific loss fac-
tor of energy dissipation of symmetric and asymmetric
modes with respect to wave number. The specific loss
is noticed to be significant in the wave number range
0 ≤ R ≤ 2 for asymmetric motion and in the range
0 ≤ R ≤ 3 for symmetric motion of the plate. These
profiles exhibit Gaussian behavior with peak values at
R = 1 in both cases of the motion. However, the spe-
cific loss is one-sixth time less in case of asymmetric

Fig. 5 Specific loss profile of fundamental modes (symmetric
and asymmetric) with wave number in thermoelastic (TE) and
micropolar thermoelastic plates (MPT) plates

Fig. 6 Phase velocity profile of fundamental modes (symmetric
and asymmetric) with ambient temperature of liquid medium in
thermoelastic (TE) and micropolar thermoelastic (MPT) plates

mode as compared to symmetric one. Thus asymmet-
rical modes are more viable for practical applications.

The variations of phase velocity and attenuation of
asymmetric modes with respect to liquid layer tem-
perature are plotted in Figs. 6 and 7 respectively for
different theories of non-classical elasticity viz. (CT,
LS and GL). It is noticed that phase velocity increases
monotonically with increasing liquid temperature in
the considered material plates. The magnitude of this
quantity increases both due to micropolarity as well as
thermal relaxation time. It is obvious from Fig. 7 that
the attenuation coefficient also increases monotoni-
cally with increasing liquid layer temperature; how-
ever profiles become stable and steady at higher tem-
perature of the liquid loading. The magnitude of atten-
uation decreases both due to micropolarity and ther-
mal relaxation effect. The effect of thermal relaxation
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Fig. 7 Attenuation profile of fundamental modes (symmetric
and asymmetric) with ambient temperature of liquid medium in
thermoelastic (TE) and micropolar thermoelastic (MPT) plates

Fig. 8 Phase velocity profiles of fundamental modes (sym-
metrical and asymmetrical) with respect to thickness of liquid
layer in thermoelastic (TE) and micropolar thermoelastic (MPT)
plates

is quite significant on the attenuation as compared to
that on the phase velocity at all values of the liquid
loading temperature.

The variations of phase velocity and attenuation co-
efficient of symmetric and skew symmetric motion of
the plates with respect to liquid layer thickness are
plotted in Figs. 8 and 9 respectively. It is noticed that
magnitudes of both phase velocity and attenuation co-
efficient increases monotonically with increasing liq-
uid layer thickness. The magnitude of phase velocity is
slightly large in case of symmetric motion of the plate
as compared to asymmetric one, though micropolar-
ity results in reduction of phase velocity magnitude at
all thickness values in case of former and in the range
0 ≤ d ≤ 0.02 for asymmetric one. The phase veloc-

Fig. 9 Attenuation profiles of fundamental modes (symmetric
and asymmetric) with respect to layer thickness of liquid layer in
thermoelastic (TE) and micropolar thermoelastic (MPT) plates

Fig. 10 Relative frequency shifts of fundamental modes (sym-
metric and asymmetric) due to fluid loading with wave number
in micropolar thermoelastic plates (MPT) plate

ity of asymmetric mode increases due to micropolarity
for d ≥ 0.02. The magnitude of attenuation in case of
skew symmetric motion of the plate is slightly more
as compared to symmetric one. The micropolarity re-
sults in decreasing the magnitudes of attenuation for
both asymmetrical and symmetrical though very small
in case of symmetric modes.

In Fig. 10 the relative frequency shift due to liq-
uid loading of the plate is plotted with respect to
wave number in case of symmetric and skew symmet-
ric motion of the plate. The frequency shift decreases
monotonically in both the cases with increasing wave
numbers (decreasing wave lengths). However the pro-
files of relative frequency shift in case of symmetrical
motion is smooth while that of skew symmetric is sub-
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(a) (b)

Fig. 11 (a) Phase velocity profile of acoustic symmetric mode with characteristic length for different values of coupling factor under
free conditions (Normalized with classical value). (b) Phase velocity profile of acoustic symmetric mode with characteristic length for
different values of coupling factor under fluid loading (normalized with classical value)

(a) (b)

Fig. 12 (a) Phase velocity profile of acoustic asymmetric mode with characteristic length for different values of coupling factor under
free conditions (normalized with classical value). (b) Phase velocity profile of acoustic asymmetric mode with characteristic length for
different values of coupling factor under fluid loading (normalized with classical value)

jected to many sign reversals throughout the thickness
of the plate.

The phase velocity profile of symmetric acousti-
cal modes have been plotted for different values of
coupling factor with respect to characteristic length in
Figs. 11(a) and 11(b) under free and fluid loaded con-
ditions. In order to have estimate of the polarity ef-
fects the normalization of the profiles have been done
with respect to its corresponding classical values un-
der free conditions. Phase velocity profiles show dis-
persion at higher values of characteristic lengths and
coupling factors. Maximum dispersion is obtained at

l = 0.9. At lower characteristic lengths phase veloci-
ties are less than their corresponding classical values
for all curves. However a significant decrease is ob-
served in case of profile corresponding to N = 0.75
an impact of coupling factor. Though phase velocities
are quite similar to the profiles in the absence of fluid
loading for N = 0, 0.25, 0.5 a significant effect of fluid
loading has been observed for the profiles correspond-
ing to for N = 0.75 at smaller characteristic lengths as
phase velocity increases considerably.

Figures 12(a) and 12(b) show the phase velocity
profiles of asymmetric acoustical modes for different
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values of coupling factor with respect to character-
istic length. The profiles are again normalized with
their corresponding classical values under free condi-
tions. Phase velocity profiles show dispersion at higher
values of characteristic lengths and coupling factors.
Maximum dispersion occurred obtained at l = 0.9. At
small values of the characteristic lengths the phase ve-
locity has smaller values than their corresponding clas-
sical values in each case. However a significant de-
crease in the magnitude of deviation is observed in
case of the profile corresponding to N = 0.75 which
clearly depicts the impact of coupling factor. Though
phase velocity profiles are quite similar to the profiles
in the absence of fluid loading for N = 0, 0.25, 0.5 a
significant effect of fluid loading has been observed in
case of N = 0.75 at smaller characteristic lengths.

8 Conclusions

Significant effect of fluid loading is observed on the
phase velocity, attenuation coefficient and specific
loss factor of symmetric and asymmetric modes of
wave propagation in micropolar thermoelastic plates.
Though in case of optical modes the phase veloc-
ity profiles for symmetrical and asymmetrical modes
are in good agreement, they behave differently for
acoustic modes. It has been observed that the phase
velocity of symmetric acoustic mode considerably
gets reduced in magnitude because of micropolar ef-
fects. The magnitude of attenuation in case of sym-
metric modes is about one-third times to that of skew
symmetric ones. The attenuation of skew symmet-
ric modes increases due to micropolarity while it de-
creases in case of symmetric motion of the plate. The
specific loss is one-sixth times less in case of asym-
metric modes as compared to symmetric one. When
studied with respect to liquid loading temperature,
the magnitudes of phase velocity and attenuation both
increase due to micropolarity as well as thermal re-
laxation time. Though, the effect of thermal relax-
ation is quite significant on the attenuation as com-
pared to that on the phase velocity at all values of
the liquid loading temperature. Magnitudes of both
phase velocity and attenuation coefficient increases
monotonically with increasing liquid layer thickness.
The magnitude of attenuation in case of skew sym-
metric motion of the plate is slightly more as com-
pared to symmetric one. The micropolarity results

in decreasing the magnitudes of attenuation for both
asymmetrical and symmetrical though very small in
case of symmetric modes. Significant effect of charac-
teristic length and coupling factor has been observed
on phase velocities. The instant study is useful in in-
frastructural health monitoring and may find applica-
tions in aerospace, navigation, civil engineering struc-
tures, chemical pipes, and automobiles industry. In
biomedical engineering this model can be extended
to model complex system of bones (micropolar) and
prosthesis (elastic) in contact with fluids (blood etc.).
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