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Abstract We study theoretically and computationally
the incompressible, non-conducting, micropolar, bio-
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magnetic (blood) flow and heat transfer through a two-
dimensional square porous medium in an (x, y) co-
ordinate system, bound by impermeable walls. The
magnetic field acting on the fluid is generated by an
electrical current flowing normal to the x–y plane,
at a distance l beneath the base side of the square.
The flow regime is affected by the magnetization B0

and a linear relation is used to define the relation-
ship between magnetization and magnetic field inten-
sity. The steady governing equations for x-direction
translational (linear) momentum, y-direction transla-
tional (linear) momentum, angular momentum (micro-
rotation) and energy (heat) conservation are presented.
The energy equation incorporates a special term des-
ignating the thermal power per unit volume due to the
magnetocaloric effect. The governing equations are
non-dimensionalized into a dimensionless (ξ, η) co-
ordinate system using a set of similarity transforma-
tions. The resulting two point boundary value prob-
lem is shown to be represented by five dependent
non-dimensional variables, fξ (velocity), fη (veloc-
ity), g (micro-rotation), E (magnetic field intensity)
and θ (temperature) with appropriate boundary con-
ditions at the walls. The thermophysical parameters
controlling the flow are the micropolar parameter (R),
biomagnetic parameter (NH ), Darcy number (Da),
Forchheimer (Fs), magnetic field strength parameter
(Mn), Eckert number (Ec) and Prandtl number (Pr).
Numerical solutions are obtained using the finite el-
ement method and also the finite difference method
for Ec = 2.476 × 10−6 and Prandtl number Pr = 20,
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which represent realistic biomagnetic hemodynamic
and heat transfer scenarios. Temperatures are shown
to be considerably increased with Mn values but de-
pressed by a rise in biomagnetic parameter (NH ) and
also a rise in micropolarity (R). Translational velocity
components are found to decrease substantially with
micropolarity (R), a trend consistent with Newtonian
blood flows. Micro-rotation values are shown to in-
crease considerably with a rise in R values but are
reduced with a rise in biomagnetic parameter (NH ).
Both translational velocities are boosted with a rise in
Darcy number as is micro-rotation. Forchheimer num-
ber is also shown to decrease translational velocities
but increase micro-rotation. Excellent agreement is
demonstrated between both numerical solutions. The
mathematical model finds applications in blood flow
control devices, hemodynamics in porous biomaterials
and also biomagnetic flows in highly perfused skeletal
tissue.

Keywords Biomagnetic · Micropolar · Heat transfer ·
Porous · Non-Darcian · Magnetization · Numerical ·
Mechanics of fluids · Prandtl number

Abbreviations
x, y coordinates parallele and perpendicular to base

of square in Fig. 1
u, v x-direction and y-direction translational

velocities
κ vortex viscosity of biomagnetic, micropolar fluid
k∗ permeability of isotropic porous medium
b∗ Forchheimer inertial (quadratic drag) coefficient
ρ density of biomagnetic, micropolar fluid
N micro-rotation component (angular velocity of

micro-elements)
T temperature
ν kinematic viscosity
μ0 magnetic property
γ micropolar spin-gradient viscosity

(gyro-viscosity)
j micro-inertia density
cρ specific heat capacity of biomagnetic,

micropolar fluid
kf thermal conductivity of biomagnetic, micropolar

fluid
E∗ magnetic field intensity
Tc Curie temperature of biomagnetic, micropolar

fluid
Da Darcy number

Fs Forchheimer number
NH biomagnetic parameter
R dimensionless micropolar vortex viscosity ratio
Rl dimensionless micro-inertia density parameter
Mn magnetization numberf
ε dimensionless temperature ratio
Ec Eckert (viscous dissipation) number
Pr Prandtl number

1 Introduction

Mathematical modeling of heat transfer in biomedical
engineering was initiated in the late 1940s in a sem-
inal paper by Pennes [1] which laid the foundations
for conduction heat transfer in tissue and introduced
the celebrated bioheat transfer equation. Subsequently
the field has expanded rapidly to embrace convection
flows in hemodynamics and also radiative heat trans-
fer in thermal ablation biotechnologies. Excellent re-
views of progress in theoretical and numerical model-
ing of bio-heat transfer have been presented by Charny
[2] and more recently by Rubinsky [3]. Research into
convection heat transfer in blood flow in arteries and
other physiological systems has been active since the
late 1960s. Charm et al. [4] derived engineering heat
transfer relations for convective blood flow. Victor and
Shah [5] computed heat transfer rates for uniform heat
flux and also uniform wall temperature cases in fully
developed steady tube blood flows. They extended [6]
this study to consider entrance effects. Further stud-
ies have been communicated by Chato [7], Lagendijk
[8], Bég and Sajid [9], Craciiunescu and Clegg [10],
Craciiunescu [11], Kolios et al. [12], Chakravarty and
Sen [13], Baish [14], Deng and Liu [15], Craciiunescu
and Clegg [16], Consiglieri et al. [17], Davalos et al.
[18], Shrivastava et al. [19] and Gafiychuk et al. [20].
These studies were all confined to Newtonian blood
flow models. However it has long been recognized that
at low shear rates and in narrow blood vessels, the flow
is generally strongly non-Newtonian. Many studies in-
vestigating various aspects of rheological blood flows
have therefore appeared studying viscoelasticity of
cells, hematocrit influence on rheological properties,
shear-thinning and also micro-rotational effects. An
excellent summary of a number of rheological models
for blood was provided by Cokelet [21]. Skalak and
Chien [22] presented an excellent examination of the
non-Newtonian flow of blood, considering erthrocytes
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as soft tissues. Further biorheological blood flow stud-
ies include those by Secomb et al. [23], Rodkiewicz
et al. [24], Quemada [25] (who utilized a Maxwell vis-
coelastic model), Srivastava [26] who employed the
couple-stress (polar) flow model to simulate stenotic
blood flow, Anand and Rajagopal [27] who employed
a generalized Oldroyd elasto-viscous model for steady
and oscillatory blood flow and more recently Choi
and Barakat [28] who used a shear-thinning Carreau
fluid model. The rheological models considered above
do not incorporate micro-structural effects i.e. they
cannot simulate rotary motions and also gyration of
fluid micro-elements which characterize suspensions
in blood e.g. erythrocytes. Eringen [29] therefore for-
mulated the micropolar fluid model to simulate such
effects and subsequently many researchers have ap-
plied micropolar rheological theory to simulate blood
flow in many scenarios. Ariman et al. [30] studied an-
alytically the steady pulsating blood flow using a mi-
cropolar model, deriving solutions for the cell-rotation
i.e. angular velocity and demonstrating this to be con-
sistent with previous experimental findings. The mi-
cropolar theory was therefore shown to be able to re-
alistically estimate low hematocrit blood flows in large
conduits (radius > 80 microns). It was also shown that
the model could satisfactorily simulate blood flows at
any hematocrit in smaller conduits. A rigorous dis-
cussion of the applicability of micropolar theory to
hemodynamics was subsequently reported by Eringen
and Kang [31]. Further micropolar blood flow stud-
ies have been communicated by Riha [32], Chaturani
and Mahajan [33], Hogan and Henriksen [34], Muthu
et al. [35], Atefi and Moosaie [36] and Cimpean et al.
[37], this latter analysis discussing flow in a wavy (si-
nusoidal) channel. These micropolar blood flow stud-
ies were restricted to purely fluid regimes. However
many regimes in biomechanics are in fact porous such
as the lungs, tissue, cartilage, bone etc. Brain tissue
is also known to be porous as are capillary beds, tu-
mors and also soft connective tissue. In cardiovascular
flows also porous media transport is very important.
Generally the Darcy law has been employed to sim-
ulate flows in porous bio-materials at low Reynolds
numbers, for example flow in soft tissues, alveoli sur-
face diffusion etc. However at higher velocities the
flows are no longer viscous-dominated but inertially-
dominated and extensions to the Darcy model are
needed. The most popular is the Darcy-Forchheimer
drag force model which incorporates a second order

(quadratic) term which dominates impedance effects
at higher Reynolds numbers, usually above 10. Sev-
eral authors have employed porous drag force mod-
els in biofluid simulations. Significant works include
those by Sorek and Sideman [38] who analyzed blood
flow in cardiac vessels using a Darcy-Forchheimer
model, Preziosi and Farina [39] who studied mass ex-
change using an extended Darcy model, Vankan et al.
[40] who considered non-Darcy transport in blood-
perfused tissue and Axtell et al. [41] who discussed
blood circulation in tissues as a multiscale, multiphase
porous media problem by simulating the fluid phase as
a micromorphic continuum. While blood is known to
be Newtonian, it also has electrically-conducting prop-
erties. The presence of iron oxides in the haemoglobin
molecule has been shown [42] to produce strong mag-
netic properties in blood. Under oxygenated condi-
tions blood exhibits diamagnetic properties and un-
der deoxygenated conditions it behaves as a paramag-
netic fluid. Several researchers have therefore stud-
ied magneto-hemodynamic flows over the past few
decades, including Sud et al. [43] for MHD pumping
of blood and Wagh and Wagh [44] who studied numer-
ically the hydromagnetic blood flow in conduits indi-
cating that the magnetic body force retards flow veloc-
ities. A more rigorous study of biomagnetic blood flow
utilizing ferrohydrodynamics was presented by Haik
et al. [45]. Sud and Sekhon [46] studied the magneto-
hemodynamic blood flow via a network of rigid tubes
using a finite element method. Several authors have
also reported on heat transfer in biomagnetofluid flows
including Tzirtzilakis and Tanoudis [47] for biomag-
netic convective heat transfer over a stretching sur-
face and Louckopoulos and Tzirtzilakis [48] for bio-
magnetic flow and heat transfer in a parallel-plate sys-
tem. Bhargava et al. [49] recently presented the first
mathematical model for biomagnetic flow of a mi-
cropolar fluid in a porous medium using finite ele-
ment analysis. We note also that several important
isothermal and non-isothermal biomagnetic flow mod-
els have been developed. Haik et al. [50] have pre-
sented a robust model for biomagnetic flow dynamics.
Tzirtzilakis [51] has extended the model of Haik et al.
[50] by considering large electrical conductivity of the
blood and non-isothermal behavior in the energy equa-
tion formulation. This study however concerned New-
tonian blood flow. Thusfar however the isothermal
biomagnetic heat transfer in a micropolar-fluid satu-
rated non-Darcian porous medium has not been inves-
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tigated despite important applications in hemodynam-
ics and physiological flow control devices. The present
study therefore while isothermal extends the current
literature in three principal areas- the simulation of
transport of the biomagnetic fluid in porous media, mi-
cropolar characteristics of the fluid and also with a fi-
nite element solution methodology. We have as with
the earlier studies [49] utilized a simple geometry and
an elementary porous medium drag force model. Our
objective is to study the general influence of biomag-
netism, micropolarity, magnetic field strength and the
porous impedances on the flow and heat transfer in the
porous regime.

2 Mathematical model

Consider the laminar, viscous, incompressible, non-
conducting, micropolar, biomagnetic blood flow and
heat transfer through a square-shaped two-dimensional
(x, y) porous medium bound by impermeable walls,
as illustrated in Fig. 1. The square regime has dimen-
sions L × L and the x, y axes intersect at the bot-
tom left corner of the square with coordinates (0,0).
A magnetic field acting on the fluid is produced by an
electrical current flowing normal to the x–y plane, at a
distance l beneath the base side of the square. The flow
regime is affected by the magnetization B0 and follow-
ing Tzirtzilakis and Tanoudis [47], a linear relation is
used to define the relationship between magnetization
and magnetic field intensity, E∗ as follows:

B0 = JE∗, (1)

Fig. 1 Physical model and coordinate system

where E∗ is the magnetic field intensity and J is a con-
stant. The magnetic field applied is of adequate mag-
nitude to saturate the biomagnetic fluid. The porous
medium is modeled using a Darcy-Forcheimmer drag-
force formulation, following Bég et al. [49]. Using the
analogy to ferrohydrodynamic flows, the biomagnetic
fluid model of Tzirtzilakis [51] shows that since the
magnetic field used is that of a dipole and thereby for
sufficiently sharp magnetic field gradient, the electri-
cal conductivity of blood can be neglected. Also [51]
indicates that for low velocity flows (as encountered in
porous media transport), the Lorentz force generated
by the electrical conductivity of the blood can be ne-
glected. We have extended the analysis of [51] with the
micropolar fluid theory herein but considered only the
isothermal case. The micropolar biomagnetic flow and
convection heat transfer in a two-dimensional Darcy-
Forcheimmer porous medium, with zero-pressure gra-
dient can then be shown to be described by the follow-
ing conservation equations:
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where all terms are defined in the nomenclature, at
the end of the paper. In the x and y momentum
conservation equations, (3) and (4) separate Darcian
porous body force terms, are present, − vu

k∗ ,− vυ
k∗ re-

spectively and also separate Forcheimmer second or-

der drag force terms, − b∗u2

k∗ and − b∗υ2

k∗ . In (3), the

term μoB0
ρ

∂E∗
∂x

denotes the magnetic force per unit

mass along the x-axis and in (4) μoB0
ρ

∂E∗
∂y

designates
the magnetic force per unit mass along the y-axis. The
term μ0T

∂B0
∂T

(u∂E
∂x

+ v ∂E
∂y

) of (6) represents the ther-
mal power per unit volume due to the magnetocaloric
effect [51]. In the present formulation, as well as in
that of biomagnetic fluid density, the blood is actu-
ally considered as electrically nonconducting mag-
netic fluid. Thus, for variation of magnetization, with
the magnetic field intensity and temperature, the fol-
lowing relation, derived experimentally for a magnetic
fluid by Matsuki et al. [52], is considered. This equa-
tion has also been utilized in the models described in
[47] and [48].

B0 = K∗E∗(Tc − T ). (7)

Following Tzirtzilakis and Tanoudis [47], magnetiza-
tion B0 is assumed to be a function of magnetic field
intensity E∗. The magnitude of the latter at any point
in the square medium (x, y) is given by [50]:

E∗(x, y) = γ ∗

2π

[
1

(x − L
2 )2 + (y − l)2

]
, (8)

where γ ∗ denotes the magnetic field strength at x =
L/2, y = −l i.e. at the point in Fig. 1, where elec-
tric current is flowing, distance l beneath the centre
point of the base of the square medium. The appro-
priate boundary conditions for the problem are given
by:

x = 0, u = 0, υ = 0,
(9a)
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∂x
,
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= 0,

x = 1, u = 0, υ = 0,
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3 Transformation of model

Introducing the dimensionless function f (η) and g(η)

such that the continuity equation is automatically sat-
isfied and taking the similarity transformation:
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where E∗
0 is the magnetic field intensity at the point

(L/2,0):
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The governing equations (3) to (6) then reduce to the
following set of differential equations:
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fξ
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The corresponding boundary conditions also trans-
form to:

ξ = 0, fξ = 0, fη = 0,
(17a)

g = 0.5
∂fη

∂ξ
,

∂θ

∂ξ
= 0,

ξ = 1, fξ = 0, fη = 0,
(17b)

g= 0.5
∂fη

∂ξ
,

∂θ

∂ξ
= 0,

η = 0, fξ = 0, fη = 0,
(17c)

g= −0.5
∂fξ

∂η
, θ = 0,

η = 1, fξ = 0, fη = 0,
(17d)

g= −0.5
∂fξ

∂η
, θ = 1.

We note that the parameter, Mn, appears in a number
of biomagnetic fluid dynamics studies and has been
derived in the analysis presented in [48] and also in the
models by Tzirtzilakis and Tanoudis [47] in the con-
text of stretching sheet flow. With regard to the micro-

rotation boundary condition in (17c) regarding the ro-
tary motions of micro-elements at the wall, several al-
ternative versions of this condition have been used.
While it is apparent that the magnetic field close to the
boundary (η = 0) is strong and the rotational move-
ments of the micro-elements of the biomagnetic mi-
cropolar fluid (blood) i.e. corpuscles will be drastically
reduced due to equilibrium magnetization, they will
not necessarily vanish completely. While the argument
for zero spin at the wall is justified to some extent (mi-
croelements are physically incapable of rotating at the
wall), however Ahmadi [55] has shown rigorously that
the wall gradient of the gyration vector must approach
zero at the wall. This approach has been adopted by
many studies where greater accuracy is needed at the
wall. For example Dey and Nath [56] have employed
this approach, which incidentally is more consistent
with the framework of boundary layer growth at the
wall, then the simple reduction to a vanishing micro-
rotation boundary condition. Of course micro-element
rotary motions will be inhibited at the wall but not nec-
essarily totally eliminated; the rate of change of micro-
rotation will be zero owing to arguments from thermo-
dynamics as described by Ahmadi [55]. Of interest in
engineering applications are the average value of Nus-
selt number on the horizontal wall, which is defined
by:

Nu =
∫ 1

0

(
∂θ

∂η

)
η=1

dξ. (18)

4 Numerical solutions

Computational solutions to the transformed model
have been obtained using the finite element method
and also the finite difference method. We shall discuss
now briefly the numerical formulations for both meth-
ods.

4.1 Finite element method

4.1.1 Variational formulation

The variational form associated with equations (13) to
(16) over a typical square element is given by:
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where w1, w2, w3 and w4 are arbitrary test functions

and may be viewed as the variation in fξ , fη, g and θ

respectively.
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∂fη

∂η

)
, (26)

∫
Ωe

w3

(
fξ

∂g

∂ξ
+ fη

∂g

∂η

)
dξdη

− R1R

∫
Ωe

w1

(
2g + ∂fξ

∂ξ
+ ∂fη

∂η

)
dξdη

+
(

1 + R

2

)∫
Ωe

w1

(
∂g

∂ξ
+ ∂g

∂η

)
dξdη

=
∮

wqn3ds, (27)

qn3 = −
(

nξ

∂gξ

∂ξ
+ nη

∂gη

∂η

)
(28)

∫
Ωe

w4

(
∂2θ

∂ξ2
+ ∂2θ

∂η2

)
dξdη

− Pr
∫

Ωe

w4

(
fξ

∂θ

∂ξ
+ fη

∂θ

∂η

)
dξdη

− MnEcPr
∫

Ωe

w4E(θ − ε)

×
(

fξ

∂E

∂ξ
+ fη

∂E

∂η

)
dξdη

=
∮

wqn4ds, (29)

qn4 = −
(

nξ

∂θξ

∂ξ
+ nη

∂θη

∂η

)
. (30)

From an inspection of the boundary term in the
above equations, it is found that the specification of the
function constitutes the essential boundary condition,
and hence these functions are the primary variables.
The specification of the coefficient of the weight func-
tions in the boundary expression constitutes the nat-
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ural boundary condition: Here q ′
nis are the secondary

variables of the formulation.

4.1.2 Shape functions

Triangular, rectangular as well as square element can
be chosen according to the shape of the domain. Here
square elements with linear interpolation functions are
used because they are more appropriate than the trian-
gular or rectangular elements. Details of the descrip-
tion of elements are available in Reddy [57]. In the
present computations ψ1, ψ2, ψ3 and ψ4 are taken as
linear interpolation functions for a square element Ωe

which are excluded here for brevity.

4.1.3 Finite element formulation

The structure domain defined as: 0 ≤ ξ ≤ 1 and
0 ≤ η ≤ 1 is discretized into square elements of same
size using the finite element approximations:

fξ =
n∑

j=1

fξjψj (ξ, η), fη =
n∑

j=1

fηjψj (ξ, η),

g =
n∑

j=1

gjψj (ξ, η), θ =
n∑

j=1

θjψj (ξ, η),

(31)

where n = 3,4,6 and 8 is for linear triangular element,
linear rectangular element, quadratic triangular ele-
ment and quadratic rectangular element respectively.
Effectively the finite element model of the equations
thus formed is given by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] [K13] [K14] [K15] [K16]
[K21] [K22] [K23] [K24] [K25] [K26]
[K31] [K32] [K33] [K34] [K35] [K36]
[K41] [K42] [K43] [K44] [K45] [K46]
[K51] [K52] [K53] [K54] [K55] [K56]
[K61] [K62] [K63] [K64] [K65] [K66]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{fξ }
{fη}
{ψ}
{θ}
{φ}
{g}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{r1}
{r2}
{r3}
{r4}
{r5}
{r6}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

[K11] =

⎡
⎢⎢⎢⎢⎣

K11
11 K11

12 K11
13 K11

14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤
⎥⎥⎥⎥⎦ ,

(33)

{fξ } =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fξ1

fξ2

fξ3

fξ4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, {r1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1
1

r1
2

r1
3

r1
4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where

fξ =
4∑

i=1

ψifξi, fη =
4∑

i=1

ψifηi . (34)

The whole domain is divided into 100 square elements
of length 0.1. Each element is four nodded therefore
whole domain contains 121 nodes. At each node 4
functions are to be evaluated hence after assembly
of the element equations, we obtain a system of 484
equations which is non linear therefore an iterative
scheme is used for solving it. The system is linearized
by incorporating the functions fξ and fη, which are
assumed to be known. The system of linear equations
has been solved by using Gauss elimination method
by maintaining an accuracy of 0.0005. It has been ob-
served that in the same domain the accuracy is not ef-
fected even if the number of elements are increased by
decreasing the size of the elements, else it increases
the computational time only. The technique has been
used extensively by the authors in many other ther-
mofluid dynamics studies. For example Takhar et al.
[58] used the finite element method to study the tran-
sient 3-dimensional micropolar stagnation point con-
vection heat transfer. Bhargava et al. [59] analyzed the
mixed convection micropolar flow stretching flow us-
ing finite elements. More recently Bég et al. [60] stud-
ied the third order viscoelastic hydromechanics in a
non-Darcian porous medium with wall transpiration
using the finite element method.

4.2 Finite difference method

For the comparison purpose the same system of equa-
tions (13) to (16), subject to boundary conditions
(17) are solved numerically using the finite difference
method. This technique is equally efficient for ordi-
nary as well as partial differential equations in bound-
ary value problems as well as initial value problems.



Meccanica (2008) 43: 391–410 399

Implementing central difference formulae, the set of
equations (13) to (16), can be written as:

fξi,j

(fξi+1,j − fξi−1,j )

2he
+ fηi,i

(fξi,j+1 − fξi,j−1)

2ke

= (1 + R)

(
(fξi+1,j − 2fξi,j + fξi−1,j )

he2

+ (fηi,j+1 − 2fηi,j + fηi,j−1)

ke2

)

+ NH

(
Ei+1,j − Ei−1,j

he

)
− fξi,j

Da
− Fsf 2

ξi,j

Da2

+ R

(
gi+1,j − gi−1,j

2he
+ gi,j+1 − gi,j−1

2ke

)
, (35)

fξi,j

(fηi+1,j − fηi−1,j )

2he
+ fηi,i

(fηi,j+1 − fηi,j−1)

2ke

= (1 + R)

(
(fηi+1,j − 2fηi,j + fηi−1,j )

he2

+ (fηi,j+1 − 2fηi,j + fηi,j−1)

ke2

)

+ NH

(
Ei+1,j − Ei−1,j

2he

)
− fηi,j

Da
− Fsf 2

ηi,j

Da2

+ R

(
gi+1,j − gi−1,j

2he
+ gi,j+1 − gi,j−1

2ke

)
, (36)

fξi,j

(gηi+1,j − gηi−1,j )

2he
+ fηi,i

(gηi,j+1 − gηi,j−1)

2ke

=
(

1 + R

2

)(
(gηi+1,j − 2gηi,j + gηi−1,j )

he2

+ (gηi,j+1 − 2gηi,j + gηi,j−1)

ke2

)

− R1R

(
2gi,j+1

fξi+1,j − fξi−1,j

2he

+ fξi,j+1 − fξi,j−1

2ke

)
, (37)

Pr

(
fξi,j

(θηi+1,j − θηi−1,j )

2he

+ fηi,i

(θηi,j+1 − θηi,j−1)

2ke

)

+ PrMnEcEi,j (θi,j − ε)

×
(

fξi,j

(Ei+1,j − Ei−1,j )

2he

+ fηi,i

(Ei,j+1 − Ei,j−1)

2ke

)

=
(

(θηi+1,j − 2θηi,j + θηi−1,j )

he2

+ (θηi,j+1 − 2θηi,j + θηi,j−1)

ke2

)
, (38)

where i, j = 2,3, . . . ,10; he and ke are the step length.
Since the above equations are non-linear and coupled,
hence analytical solutions are intractable. Therefore an
iterative scheme is necessary. Casting the equations in
the form:

xi = F(l1, l2, . . . , ln), (39)

where each li is the function of the variable fξ , fη, g

and θ , xi is any of the variable fξ , fη, g and θ . Now
starting with initial guess values, new iterate values are
obtained. This process continues till the absolute error
|xi −xi−1| is less than the accuracy required. The con-
dition of convergence of the scheme is checked before
implementing the iterative scheme.

5 Special cases of the flow model

We shall now discuss several pertinent special cases
of the flow model. In all cases the mass conservation
and energy conservation equations are unaffected, and
only modifications to the fξ and fη translational mo-
mentum equations are performed.

Case I: Purely hydrodynamic micropolar flow in a
fluid regime

With NH = 0, all magnetic effects disappear from the
momentum equations (13) and (14). Also as Da → ∞
and Fs → 0, then the regime becomes purely fluid and
Darcian and Forcheimmer drag forces disappear. The
translational momentum equations now become:

fξ

∂fξ

∂ξ
+ fη

∂fξ

∂η
= (1 + R)

(
∂2fξ

∂ξ2
+ ∂2fξ

∂η2

)

+ R

(
∂g

∂ξ
+ ∂g

∂η

)
, (40)
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fξ

∂fη

∂ξ
+ fη

∂fη

∂η
= (1 + R)

(
∂2fη

∂ξ2
+ ∂2fη

∂η2

)

+R

(
∂g

∂ξ
+ ∂g

∂η

)
. (41)

The microrotation (angular velocity) conservation
equation and energy equations remains unchanged
from (15) and (16), as do the general case boundary
conditions (17).

Case II: Biomagnetic micropolar flow in a purely
fluid regime

With Da → ∞ and Fs → 0, then the regime becomes
purely fluid and Darcian and Forcheimmer drag forces
disappear. The translational momentum equations now
become for non-zero NH :

fξ

∂fξ

∂ξ
+ fη

∂fξ

∂η
= (1 + R)

(
∂2fξ

∂ξ2
+ ∂2fξ

∂η2

)

+ NH

∂E

∂ξ
+ R

(
∂g

∂ξ
+ ∂g

∂η

)
, (42)

fξ

∂fη

∂ξ
+ fη

∂fη

∂η
= (1 + R)

(
∂2fη

∂ξ2
+ ∂2fη

∂η2

)

+ NH

∂E

∂ξ
+ R

(
∂g

∂ξ
+ ∂g

∂η

)
. (43)

Case III: Biomagnetic micropolar flow in a Darcian
porous medium

With Fs → 0 only Forcheimmer drag forces disappear
i.e. the model is valid for creeping flows with only
Darcian bulk matrix impedance. The momentum equa-
tions now become for non-zero NH :

fξ

∂fξ

∂ξ
+ fη

∂fξ

∂η
= (1 + R)

(
∂2fξ

∂ξ2
+ ∂2fξ

∂η2

)

+ NH

∂E

∂η
− fξ

Da
+ R

(
∂g

∂ξ
+ ∂g

∂η

)
,

(44)

fξ

∂fη

∂ξ
+ fη

∂fη

∂η
= (1 + R)

(
∂2fη

∂ξ2
+ ∂2fη

∂η2

)

+ NH

∂E

∂η
− fη

Da
+ R

(
∂g

∂ξ
+ ∂g

∂η

)
.

(45)

Case IV: Purely hydrodynamic micropolar flow in a
Darcian porous medium

With NH = 0, and with Fs → 0, then biomagnetic ef-
fects and inertial drag effects vanish and the momen-
tum equations now become:

fξ

∂fξ

∂ξ
+ fη

∂fξ

∂η
= (1 + R)

(
∂2fξ

∂ξ2
+ ∂2fξ

∂η2

)
− fξ

Da

+ R

(
∂g

∂ξ
+ ∂g

∂η

)
, (46)

fξ

∂fη

∂ξ
+ fη

∂fη

∂η
= (1 + R)

(
∂2fη

∂ξ2
+ ∂2fη

∂η2

)
− fη

Da

+ R

(
∂g

∂ξ
+ ∂g

∂η

)
. (47)

The boundary conditions remain unchanged in all
four cases, from the conditions given in (17). These
four cases can also be modified for the case of New-
tonian flow by setting R → 0, which negates the mi-
cropolarity effects.

6 Results and discussions

The velocity, microrotation, temperature are computed
for the controlling thermophysical parameters namely,
the micropolar parameter, R, biomagnetic parameter,
NH , Darcy number, Da, Forcheimmer number, Fs
and magnetic field strength, Mn. The geometrical pa-
rameters, namely L and l are given nominal val-
ues 1.0 m, 0.01 m respectively, following [49, 50].
Eckert number Ec = 2.476 × 10−6 and Prandtl num-
ber Pr = 20, following [47]. For a magnetic field of
8 Tesla, blood has the following (dimensional) prop-
erties: kinematic viscosity = 3.1 × 10−6 m2/s and
density = 1050 kg/m3, for which blood has reached
a saturated magnetization of 60 A/m, as described by
Haik et al. [50]. A magnetic field of 8 Tesla is very
strong but is nominal for the derivation of the Mn pa-
rameter. Loukopoulos and Tzirtzilakis [53] have also
implemented this value and the validity of the derived
Mn values is provided in [53]. A similar approach
was used by Tzirtzilakis et al. [54]. We note that this
value of 8 Tesla is excessive and there may be practi-
cal problems in creating such a magnetic field. How-
ever in numerous applications, for example magnetic
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drug targeting, magnetic nanoparticles are injected in
the blood in order to utilize them as a drug deliv-
ery system for localized therapy. Similar nanospheres
have been constructed in order to increase the mag-
netization of blood. These nanospheres attach to the
erythrocytes (red blood cells) and as a consequence,
the magnetization of blood may be enhanced by one
or two orders of magnitude. Thus with the addition
of magnetic nanoparticles in blood, it is possible to
achieve the same magnetic number, Mn, using a mag-
netic field of order 1 Tesla. Further details are pro-
vided in the studies by Kashan et al. [61] and Haik
et al. [62] which analyze stenotic orifice and throm-
bus biomagnetic Newtonian flows respectively. In ac-
tual numerical computations, sensitivity analysis has
been performed to establish a good range of NH and
Mn values which illustrate graphically the influence
of varying such a parameter on velocity and micro-
rotation profiles. More exact scenarios using physi-
cally accurate data are still under study by the au-
thors and future articles will elaborate more exten-
sively thereof.

Figure 2 illustrates the ξ -direction translational
velocity (fξ ) profile versus dimensionless ξ coordi-
nate for various micropolar parameter R values, with
Da = 1.0, Fs = 1.0 and NH = 106 fixed. The flow
regime is therefore micropolar biomagnetic Darcy-
Forcheimmer flow. The case for R = 0 corresponds
to Newtonian fluid flow where micro-rotational ef-
fects vanish. The peak velocity occurs for R = 0 and
equals 0.001. As micropolar effects increase, R rises
(i.e. greater vortex viscosity) and peak velocities are
depressed. Hence for a maximum value of R (=4) the
lowest fξ velocity is observed. For the case of R = 1,

Fig. 2 Velocity (fξ ) for different R (NH = 106, Fs = 1.0,
Da = 1.0)

the profile is shifted to the right; in all other cases it
is skewed to the left. The case of R = 1 corresponds
to when the micropolar vortex viscosity is identical
to the fluid dynamic viscosity. In all cases the pro-
files are bell-shaped and decrease as ξ tends to the
end of the range i.e. edge of the square regime. These
trends are consistent with other micropolar flow simu-
lations reported in the literature, for example by Gorla
et al. [63].

Figure 3 depicts the dimensionless η-direction ve-
locity profiles versus η coordinate for various R val-
ues. For all cases (R = 0,1,2,3,4) the profiles rise
monotonically and then decrease asymptotically to-
wards the η axis as η tends to the end of the range.
As with the fξ velocity, the maximum value of fη is
observed for the case of R = 0 for which it has a value
of 0.18. This peak value is approximately halved to
0.09 for the case of R = 1 and to 0.03 for the case of
R = 4 (strong micropolarity). Clearly as withfξ , the
fη values are reduced with increasing R so that in-
creasing micropolarity decelerates the fluid flow.

Figure 4 illustrates the variation of micro-rotation
(g) with ξ coordinate with various micropolar para-
meters (R). In all cases the profiles are positive up to
ξ ∼ 0.1 after which they become negative. The maxi-
mum micro-rotation (angular velocity) magnitude cor-
responds to the case of R = 0, for which the flow is
Newtonian. With increasing vortex viscosity, the angu-
lar velocities are reduced progressively in magnitude,
indicating a deceleration in the micro-element spin.

Figure 5 illustrates the profile for dimensionless
temperature (θ ) versus dimensionless ξ coordinate for
different value of R. The flow regime is therefore mi-
cropolar biomagnetic Darcy-Forcheimmer flow. The

Fig. 3 Velocity (fη) for different R (NH = 106, Fs = 1.0,
Da = 1.0)
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Fig. 4 Microrotation for different R (NH = 106, Fs = 1.0, Da = 1.0)

Fig. 5 Temperature for different R (NH = 106, Fs = 1.0,
Da = 1.0)

peak velocity occurs for R = 0 and equals 0.9. As mi-
cropolar effects increase, R rises (i.e. greater vortex
viscosity) and peak temperature are depressed. Hence
for a maximum value of R, the lowest temperature
is observed, indicating that the presence of micro-
constituents i.e. suspended particles in the micropolar
blood, causes cooling of the flow regime.

Figures 6 to 9 show the distribution of fξ , fη, g

and θ profiles with ξ for the effects of biomagnetic
parameter NH . In all cases Da = 1.0, Fs = 1.0 and
R = 1.0, so that the flow regime is micropolar and
non-Darcian. The profiles of fξ versus ξ for NH =
1000000 up to 5000000. As discussed earlier, the se-
lected values of the biomagnetic number is important,
these are characteristic of blood flow in a magnetic
field of flux density of 8 Tesla, following Haik et al.
[45], which are in turn based on data derived from

Rosensweig [64] concerning ferrohydrodynamic liq-
uids.

Figure 6 indicates that a rise in the value of
NH from 1000000 up to 5000000, depresses the ξ -
directional dimensionless translational velocity (fξ )
with distance along the ξ coordinate. Peak velocity is
therefore observed for the lowest value of NH . The
magnetic field dissipates kinetic energy in the microp-
olar blood and thereby has a retarding effect on the
blood flow regime in the square zone. fξ values are
therefore depressed considerably with increasing NH

values. The location of the magnetic field applied is
also significant and as such can be used to control the
blood flow in medical devices. A maximum value of
fξ of 0.005 is computed for NH = 1000000, dimin-
ishing to approximately 0.004 for NH = 2000000. All
profiles are parabolic and skewed to the left, so that
the peak velocities in the ξ -domain are obtained prior
to the mid-point of the range. All profiles descend as-
ymptotically to zero as ξ tends to 1.

Figure 7 depicts the fη distributions with η-coordi-
nate for various NH values. The profiles are more con-
stricted than in the case of the fξ/ξ plots, with peak
velocities being attained in the vicinity of η = 0.2 the
maximum velocities correspond again to the weakest
biomagnetic field case i.e. NH = 1000000. All profiles
descend after peaking to zero at η = 1. Clearly again
therefore NH induces an impeding effect on the mo-
mentum in the η direction, causing a deceleration in
the flow.

Dimensionless micro-rotation i.e. angular veloc-
ity profiles (g) versus ξ coordinate are illustrated in
Fig. 8, for various NH values. Angular velocity shows
a positive trend up to approximately ξ = 0.1, after
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Fig. 6 Velocity (fξ ) for different NH (Da = 1.0, Fs = 1.0, R = 1.0)

Fig. 7 Velocity (fη) for different NH (Da = 1.0, Fs = 1.0, R = 1.0)

Fig. 8 Microrotation for different NH (Da = 1.0, Fs = 1.0, R = 1.0)

which values become negative. A reversal in microele-
ment spin occurs at about ξ ∼ 1, after which gvalues
are sustained as negative for the remainder of the ξ

range. Maximum magnitudes of g correspond to a
maximum NH value (5000000) and minimum mag-
nitudes to the minimum value of NH (1000000). Bio-
magnetic field therefore has a positive effect on the
particle spin, which would imply that blood corpus-

cles (microelements) spin faster in stronger magnetic
fields. All profiles tend steadily in a monotonic fashion
to zero as ξ → 1.

Figure 9 depicts the θ distributions with ξ -coordi-
nate for various NH values. The maximum tempera-
ture correspond to the weakest biomagnetic field case
i.e. NH = 1000000. As NH increases all profiles are
parabolic and skewed to the left, so that the peak ve-
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Fig. 9 Temperature for different NH (Da = 1.0, Fs = 1.0, R = 1.0)

Fig. 10 Velocity (fξ ) for different Da (NH = 106, R = 1.0, Fs = 1.0)

locities in the ξ -domain are obtained prior to the mid-
point of the range.

The effects of porous medium hydrodynamic im-
pedance, embodied in the Darcy number (Da) and the
Forcheimmer number (Fs), on the profiles of fη, g,
versus ξ or η coordinate, are illustrated in Figs. 10 to
12 and 13 to 15 respectively.

In Fig. 10 fξ distributions versus ξ for Da = 1,
50, 100 are obtained. As Da rises from 1 to 100,
the regime becomes increasingly porous i.e. more
and more fluidic. Bulk solid matrix resistance, i.e.
Darcian drag therefore decreases (inverse relationship
with Da). The fluid flow therefore accelerates and fξ

velocities are increased from a peak of 0.0007 (for
Da = 1) to 0.001 (for Da = 100). All profiles rise
monotonically from fξ = 0, peak at ξ ∼ 0.3, then fall
steadily to zero as ξ → 1. The rate of descent of the
profiles is less than the rate of ascent, indicating that
momentum is boosted in the range ξ = 0 to ξ = 0.3,
but decreases after ξ = 0.3.

Figure 11 shows the fη velocity distribution with η

coordinate for Da = 1,50,100. As for the fξ velocity
profiles the fη velocities peak early in the η-domain
at η ∼ 0.2. All profiles grow faster prior to ξ ∼ 0.2,
peak and then descend after ξ ∼ 0.2 tending to zero
as η → 1. As with the fξ velocities, the maximum fη

velocity corresponds to Da = 100 (fη ∼ 0.09) and the
minimum fη velocity occurs for the case of Da = 1
(fη ∼ 0.083); the profile maxima are closer than for
the fξ velocity plots. Da = 1 physically relates to the
least porous of the three cases i.e. lowest permeabil-
ity, corresponding to the maximum matrix resistance
of the solid particles in the flow regime. In a biome-
chanical context these would be generated by the tis-
sue structure through which the blood is flowing. It is
observed that there is only a fractional increase in fη

velocity as Da is doubled from 50 to 100, but a much
larger rise when it increases by a factor of 50 from 1
to 50.
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Fig. 11 Velocity (fη) for different Da (NH = 106, R = 1.0, Fs = 1.0)

Fig. 12 Microrotation for different Da (NH = 106, R = 1.0, Fs = 1.0)

Figure 12 depicts the variation of g profiles with
ξdirection coordinate in the square porous (tissue)
regime for Da = 1, 50, 100. In this case (as with the
other g plots for the case of varying NH and R) the
angular velocities begin positive (all at g ∼ 0.075) at
ξ = 0, and then reduce rapidly to zero at ξ ∼ 0.1 (in-
dicating no spin of the blood corpuscles i.e. microele-
ments) at this location, and then assume negative val-
ues for the remainder of the flow regime. The curves
all reach a minimum at ξ ∼ 0.03 and then ascend
back to zero at ξ = 1. The lowest value of g is ob-
served for Da = 1 i.e. the most negative angular veloc-
ity. For Da = 100, the least negative i.e. most positive
value of g is observed. Micro-rotation values therefore
also increase i.e. become more positive with a rise in
the Darcy number, indicating that for an increasingly
fluid regime, the non-deformable blood microelements
(corpuscles) spin faster. It would therefore appear that

in highly porous tissue zones, blood cells can rotate
faster in the flow regime.

The effects of inertial porous drag parameter, Fs,
on the fξ , fη, and g profiles are illustrated in Figs. 13
to 15. As with other profiles we have fixed NH =
1000000, and the other parameters to unity (i.e. R,
Da). Higher Forcheimer numbers imply greater iner-
tial drag effects so that the flow velocities decrease.
In this regime, the Darcian linear drag force effects
begin to be dominated by inertial (quadratic) drag ef-
fects, so that the creeping (viscous-dominated) flow
is swamped out. As Fs is increased from 0.1 to 100,
the fξ velocity profile (depicted in Fig. 13) clearly
decreases substantially from 0.0013 to 0.001. The fξ

profiles increase sharply from zero at ξ = 0 to peak at
approximately ξ = 0.27, and then decrease smoothly
to zero as ξ tends to 1. For higher Fs values the pro-
files in the vicinity of the peaks are also flatter.



406 Meccanica (2008) 43: 391–410

Fig. 13 Velocity (fξ ) for different Fs (NH = 106, R = 1.0, Da = 1.0)

Fig. 14 Velocity (fη) for different Fs (NH = 106, Da = 1.0, R = 1.0)

Figure 14 shows the fη velocity distribution with
η coordinate for Fs = 0.1, 1, 10, 50, 100. Again we
see that the minimum fη velocity corresponds to the
maximum Fs value i.e. when inertial effects are most
dominant. The peak velocity falls from fη ∼ 0.12 for
Fs = 0.1 to fη ∼ 0.095 for Fs = 100. All the curves
grow steadily from fη = 0 at η = 0 to a peak at ap-
proximately η = 0.2 and then descend gradually to
zero at η = 1. The rate of ascent of fη with η up to
the peak points is seen to be greater than the rate of de-
scent, as compared with the rate of ascent of fξ with ξ ,
and its subsequent descent rate.

In Fig. 15 the variation of g i.e. angular velocity
with ξ direction coordinate in the square porous (tis-
sue) regime for Fs = 0.1, 1, 10, 50, 100 is plotted. It is
clear that the most positive values of g are associated
again with the maximum Fs value (Fs = 100) and the
most negative g values with Fs = 0.1 (g ∼ −0.17).
The least angular velocities therefore correspond to
the lowest Fs values, with increasing inertial effects

the angular velocities rise i.e. become more positive
and tend to zero at ξ ∼ 1. In all cases g values de-
scend from 0.08 at ξ = 0. At ξ ∼ 0.08 micro-rotations
become zero indicating that spin of blood corpuscles
i.e. microelements is inhibited at this location. Reverse
spin is observed from ξ ∼ 0.08 for the remainder of
the range to ξ = 1.

Figure 16 shows the θ distributions versus ξ for
different values of Mn = 315, 215, 115. As Mn rises,
the temperature attains its maximum value at 0.8. The
temperature peaks will diminish with the decrement in
Mn i.e. they rise with an increase in Mn which is ex-
plained by the heating of the fluid by increasing mag-
netic field intensity, boosting temperatures in the flow
regime.

A comparison of the computations with the finite
element and finite difference methods has also been
conducted for selected values of Mn, Pr, Ec, NH , R,
Da and Fs. Excellent agreement is observed between
both methods, as illustrated in Table 1, where the re-
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Fig. 15 Microrotation for different Fs (NH = 106, Da = 1.0, R = 1.0)

Fig. 16 Temperature for different Mn (NH = 106, Da = 1.0, Fs = 1.0, R = 1.0)

Table 1 Comparison of the results (FEM-finite element vs
FDM-finite difference)

η fξ fη

FEM FDM FEM FDM

0 0.000000 0.000000 0.000000 0.000000

0.2 0.020610 0.020654 0.085590 0.085572

0.4 0.011420 0.011438 0.072390 0.072368

0.6 0.003332 0.003359 0.028750 0.028741

0.8 0.000129 0.000176 0.008553 0.008527

1 0.000000 0.000000 0.000000 0.000000

sults for both methods can be seen to agree up to
four decimal places. A comparison of accuracy ob-
tained with three different finite element meshes is
also shown in Table 2, where we have computed the
variation of the fξ translational velocity component
with η coordinate for 80, 100 and 120 element sce-

Table 2 Velocity function fξ for η direction with different
number of elements (NH = 106, R = 1.0, Fs = 1.0)

ξ No. of elements

80 100 120

0.0 0 0 0

0.2 0.05722 0.05720 0.05721

0.4 0.07518 0.07524 0.07522

0.6 0.05891 0.05895 0.05896

0.8 0.02948 0.02952 0.02954

1.0 0 0 0

narios. The results concur up to three decimal places.
Additionally we have computed Nusselt numbers for
a wide range of parameters which provide a basic idea
of the heat transfer rates in the porous tissue medium.
These results are however not included here for con-
servation of space.
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7 Conclusions

Computational solutions have been obtained for the
two-dimensional, laminar, incompressible, biomag-
netic, micropolar blood flow and heat transfer in a two-
dimensional Darcian porous medium. The magneto-
thermo-hydrodynamic coupling has been simulated by
both temperature function and magnetic field inten-
sity function. Appropriate velocity, temperature and
micro-rotation boundary conditions have been pre-
scribed at the walls. A number of special cases of the
general flow model have been presented which are per-
tinent in benchmarking the computations with earlier
non-biomagnetic and Newtonian studies. Our compu-
tations have shown that:

(i) A rise in micropolar vortex viscosity parameter
(R) reduces the transformed translational veloc-
ity components i.e. fξ , fη implying that increas-
ing micropolarity decelerates the fluid flow.

(ii) Increasing micropolar vortex viscosity para-
meter (R) decreases the angular velocity (g)
i.e. micro-rotation progressively indicating that
the biofluid micro-elements rotate slower with
greater vortex viscosity.

(iii) Increasing micropolar vortex viscosity parame-
ter (R) induces a decrease in peak temperature
values (θ ) indicating that increasing micropolar-
ity cools the blood flow.

(iv) Increasing biomagnetic number (NH ) causes
a decrease in the ξ -directional dimensionless
translational velocity (fξ ) with distance along
the ξ coordinate i.e. flow is decelerated by ris-
ing NH .

(v) Increasing biomagnetic number (NH ) generally
induces a fall in fη values with η-coordinate i.e.
again causes a deceleration in the flow.

(vi) Increasing biomagnetic number (NH ) boosts the
micro-rotation (g) values.

(vii) Increasing biomagnetic number (NH ) reduces
the temperatures (θ ) in the flow domain.

(viii) Increasing Darcy number (Da) increases fξ ve-
locity plotted against ξ implying an acceleration
in the flow as the regime becomes increasingly
permeable.

(ix) Increasing Darcy number (Da) boosts fξ veloc-
ity versus η again indicating that the flow is
accelerated as the regime becomes increasingly
permeable.

(x) Increasing the Darcy number, Da substantially
increases the micro-rotation (g) in the porous
domain.

(xi) An increase in Forchheimer inertial number (Fs)
decreases the fξ velocity values indicating that
flow is decelerated.

(xii) An increase in Forchheimer inertial number (Fs)
decreases the fη velocity values again implying
that flow is decelerated; however the effects are
less dramatic than in the case of the fξ velocity
components.

(xiii) An increase in Forchheimer inertial number (Fs)
increases the angular velocity (micro-rotation)
values (g).

(xiv) An increase in the magnetic field intensity para-
meter (Mn) considerably increases temperature
(θ ) values with η distance throughout the porous
domain.

The study reported here constitutes a steady state
flow regime. An important extension is therefore to
consider transient effects. Additionally the porous
medium model can be further refined to represent
more accurately-defined geometries encountered in
actual biomechanical situations and efforts in this di-
rection are underway.
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