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Abstract Following our previous works (M. D.
Vivarelli, Celest. Mech. Dyn. Astr., 60:291–305,
1994; Meccanica, 35:55–67, 2000; The amazing
S-code of the conic sections and the Kepler prob-
lem, Polipress, Milano, 2005) on the unified
S-description of the family of confocal conic sec-
tions, we show how the unit circle, which reveals
to play an exceptional role in the family, emerges
naturally as the Julia set of a quadratic complex
map which is strictly related to the regularization
of the classical three-dimensional Kepler problem.

Keywords Kepler problem · Fractal geometry
and dynamics · Conic sections · General
mechanics

1 Introduction

It is well known that the orbits of the classical
three-dimensional Kepler problem are conic sec-
tions. Precisely, in an inertial frame of the ordinary
three-dimensional Euclidean space R3 − {0}, the
motion (Kepler problem) of a particle in a central,
attractive, inverse-square law field is expressed by
the Newtonian nonlinear differential equation
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ẍ + K2

r3 x = 0 (· ≡ d/dt, r =| x |),

where x represents the particle position vector with
respect to the attractive centre and K is a dimen-
sional constant.

The Keplerian orbits (belonging to the fixed
plane through the attractive centre and orthogo-
nal to the constant angular momentum vector per
unit of mass �) are conic sections with focus at
the attractive centre and may be classified by their
constant scalar total mechanical energy per unit of
mass E

E < 0, E = 0, E > 0,

respectively, as

ellipse, parabola, hyperbola

(one branch).

In this classification an exceptional role is played
by the circular orbit, related to the particular neg-
ative value

E = −K4(2�2)−1,

which corresponds to the balance of the centrifugal
force with the effective force.

On the other hand, since a comparison with the
general equation of a conic section shows that the
energy E of the particle is related to the eccentric-
ity e of a conic section by
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e2 − 1 = 2E �2 K−4 ,

the explicit existence of the circular orbit (corre-
sponding to e = 0) turns out to be automatically
related to the negative value E = −K4(2�2)−1.

From the above, we notice that the e-classification
appears as a refinement of the E-classification: it
shows explicitly all the four types of the family of
confocal orbits, namely

circle, ellipse, parabola, hyperbola

corresponding to

e = 0, 0 < e < 1, e = 1, e > 1.

Of course we may consider the explicit e-account
of the circular shape due to the fact that the inter-
pretation of mathematical results may depend very
much on the form in which they are stated.

But, as we are going to show in this paper, the
peculiar exceptional role of the circular orbit in the
conic family is a foretaste of the fact that a circular
orbit (or its paradigma, the unit circle) has a hidden
feature.

This will be unravelled—through the new descrip-
tion of the conic sections via the vector S and its
connection to the regularization of the physical
Keplerian motion [11,12]—by relating the classical
circular shape to a different geometry of shapes,
that is to the fractal geometry of Mandelbrot. In
the following two Sections, we review the main
facts about the genetic vector S of the conic fam-
ily and, although in section “The K(φ, r)-Roto-
dilation map” we develop a map which coincides
with the one we presented in Vivarelli [10], this is
done from a different and autonomous standpoint.

2 The S-equation of the conic sections

Let us recall the plane polar definition of a conic
section as the locus of points in a plane, all of
which satisfy the well known peculiar equation of
constraint

x = p ρ

1 + e cos θ
, (1)

where x represents the position vector of each
point in the standard plane polar coordinate sys-

Fig. 1 The plane polar coordinate frame

Fig. 2 The family of confocal conics

tem (r, θ), with the origin at the fixed point F (the
focus), the two orthogonal unit vectors ρ = ρ(θ),
τ = τ (θ) pointing in the direction of increasing
r and θ and the reference line being θ = 0 (see
Fig. 1).

The constant scalar parameter p > 0 is called
the semi-latus rectum. The constant scalar parame-
ter e represents the eccentricity of the conic section:
the four types of the family of the conics with com-
mon focus are shown in Fig. 2 (for e = 0 the conic
is a circle, for e < 1 an ellipse, for e = 1 a parab-
ola, for e > 1 an hyperbola, the right branch being
excluded by the condition r ≥ 0).

The reference line θ = 0 may be characterized
by the eccentricity vector e = e ρ(0) which has the
tail at the focus F and points towards the pericentre
(the nearest point to F).

The new sum vector S and the vector S-equation.

In Vivarelli [11,12], we have presented a new
approach to the conic sections which leads to a
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new vector S and to a new vector equation for the
family of the conic sections.

We sketch here that the leading idea and the
main results were obtained by the following:

(1) Reinvestigating the general equation of con-
straint for a point in a plane, commonly writ-
ten in polar form as

x = rρ, (2)

which explicitly involves the radial unit vector
ρ = ρ(θ), which makes a counterclockwise
angle θ with a suitably chosen but implicit
fixed direction through F.

(2) Characterizing this implicit fixed direction by
a unit vector, say ι, so that ι = ρ(0), localized
at F.

The two unit vectors ι and ρ are fundamental in
classifying all the conic sections with a focus at F
(through the joint action of their sum vector ι +
ρ and through two suitable scalar parameters p
and e).
In fact we have presented in Vivarelli [11,12]:
THE VECTOR S-EQUATION OF THE CONIC
SECTIONS.
Let

(a) p be a real positive parameter;
(b) e denote the vector

e ≡ eι (3)

with, respectively,e = 0, 0 < e < 1, e = 1, e > 1;
(c) S be the new sum vector defined by

S ≡ p−1(e + ρ) (4)

or S = S(θ) = B − F with tip point B and
p−1e = p−1e ι = H − F (see Fig. 3).

The equation for the four types of the conic sec-
tions may be written in the simple vector form

S · x = 1, (5)

Fig. 3 The sum vector S

Fig. 4 The covariant components Sx and Sρ

which yields the standard polar equation

r = p
1 + e cos θ

, (6)

where e is the eccentricity of the conic (shape), the
parameter p is the semi-latus rectum (dimension)
and θ = 0 is the reference line.

Notice that the vector S encompasses in a nat-
ural way the triple {p, e, θ} which characterizes a
conic section.

Several geometrical properties of the conics are
S-encoded. For instance, in the case of an elliptic
section, the ratio Sx/Sρ of the two covariant com-
ponents of the vector S (Fig. 4)

Sx = FB0 = p−1(e + cos θ), (7)

Sρ = p−1(1 + e cos θ) = r−1 (8)

encodes the well-known Kepler’s eccentric anom-
aly (see [11]).

3 Unit circle inversion map and genetic S-code
of the ‘conic sections family’

The vector S stems from the standard polar defi-
nition (1) of a conic section. But it is intimately
related to another well-known definition (see Fig. 5)
by which a conic section is the locus of points in a
plane such that the ratio of their distances from
a fixed point F in the plane and from a fixed line
(directrix) in the plane is a constant value e, that is

r
d − r cos θ

= e, (9)
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Fig. 5 The directrix

the circle e = 0 being included, for after setting

p = de, (10)

the circle may be considered as an ellipse with
directrix ‘tending to the infinity’ and the focus
‘tending to the centre’ of the ellipse.

Now, noticing that the vector S has (recall Fig. 3)
two scalar contravariant components:

p−1 along the ρ-direction,

p−1e along the e-direction,

which define two points (I and H) along each direc-
tion, such that

p−1 =| I − F |, p−1e =| H − F |,
we may consider:

(1) the point I as the image (under the opera-
tion of inversion with respect to the unit circle
centered at F) of the point I∗ which lies on
the same ray at distance p from F (such that
p−1p = 1). We shall call the point I∗ a typi-
cal point of the conic orbit, for I∗ − F = pρ

appears in the polar equation (1).
(2) the point H as the image, under the unit circle

inversion map, of the point H∗ which lies on
the direction of e at a distance pe−1 from F,
that is at exactly the distance d of the direc-
trix of the conic orbit from F (recall (10), and
Fig. 5). The point H∗ is the intersection of the
directrix with the line ι = ρ(0) and thus is a
typical point of the conic orbit.

Accordingly (see Fig. 6) we may state that:
The vector S is the sum of two vectors, localized
at the same focus F, with tip points which are the
images, under the inversion map in the unit circle
with centre at F, of the two typical points H∗ and
I∗ of the conic orbit.

Fig. 6 The typical points I∗ and H∗ of a conic orbit

As shown in Vivarelli [12], the amazing fact
about the diagonal sum vector S is that it appears
as a sort of geometric DNA of the family of the
conic sections, in the sense that it encodes all the
information regarding each of the four members
of the family.

This ‘genetic’ code is written by the ordered cou-
ple of vectors p−1e , p−1ρ.
The couple:

(1) characterizes the shape, the dimension and
the counterclockwise orientation of each conic
member;

(2) generates (besides the sum vector S) the com-
plementary difference vector S−=p−1e−p−1ρ

and therefore creates a double stranded-S
structure, in perfect analogy with the well-
known complementary two stranded structure
of the DNA double helix in molecular biology
(see [11,12]).

Mitochondrial and physical E-encoding

Let us highlight the interesting fact that, for a given
p, all the members of the family share the radial
vector p−1ρ, inherited by the family as a sort of
mitochondrial (Eve) element and shown [12] to be
related to the energy E of the orbits of the classical
Kepler problem.

Several properties stored in a natural way by
the vector S have an immediate relationship to the
physical properties of the classical Kepler problem,
governed by the Newton’s law of gravitation [12].
We mention here the stocking of the mechanical
energy E (through the scalar product S ·S−) and of
the famous Laplace–Runge–Lenz vector (through
the vector product S ∧ S−).
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4 The exceptional unit circle and the Julia set

So far, while revisiting the S-structure of the fam-
ily of the four conic sections, we have found that
one of its members—namely the circle (or its par-
adigma, the unit circle, hereafter briefly denoted
U-circle)—shows up more than once as a peculiar
member of the family. In fact:

(1) the U-circle is a pivotal member of the family,
being the only one which appears explicitly,
via its unit radius, in the conics S-equation
(5);

(2) the U-circle characterizes the S-vector via the
inversion map;

(3) the U-circle is an exceptional element in the
physical energy E-classification of the Kepler
orbits.
On the other hand we notice here the follow-
ing peculiarity:

(4) all the four conic sections are invariant with
respect to scaling (identified as self-similarity,
that is invariance of shape against changes in
size, the scaling factor being the multiplicative
factor p, as explicitly shown by the S-defini-
tion (4)).

Now, self-similarity is a typical phenomenon in
the geometry of shape (the fractal geometry of
Mandelbrot [6,3]: since there is no widely accepted
definition of the term fractal (see for instance [4]),
we focus on self-similarity as the unifying concept
underlying objects presenting scaling invariance of
shape, against changes in size.

Moreover, in the fractal theory of Mandelbrot
a relevant role is played by the iteration maps in
the complex plane, maps which generate crucial
and beautiful sets of boundary points, commonly
called Julia sets.

Incredibly, the unit circle is found to be the Julia
set for the most famous iteration map, the simplest,
paradigmatic complex quadratic map

f (z) = z2, z ∈ C,

which iterates a point z in the complex plane by
squaring its magnitude | z | and by doubling its
angle: in the common complex parameterization,
if z = reiθ , then z2 = r2e2iθ .

The squaring and doubling properties of the
map f (z) = z2 defines the U-circle structure, since
the points z which satisfy:

| z |< 1, that is the points lying within the
U-circle, converge to 0,
| z |> 1, that is lying outside the U-circle,
converge to infinity,
| z |= 1, that is lying on the U-circle, remain
on the circle forever.

Thus, in the fractal language, the U-circle is the
Julia set of the map, for it maps onto itself and
it is the separating boundary between two basins
of attractions (the inside of the circle with fixed
attracting point 0 and the outside of the circle with
attracting point ∞).

The powerful application of the Julia sets in the
study of dynamical systems (that is physical sys-
tems, such as the planetary orbits, analyzed by
means of iterative processes) is enhanced by the
beautiful and colorful visualization techniques real-
ized by modern computer graphics. A fine color-
coded information may be found, for instance, in
Alpigini and Russel [1].

At this point, being convinced that there is a
hidden aspect lurking behind all the above char-
acteristic topics (i.e. the geometrical and physical
Keplerian peculiarities presented by the U-circle as
a conic orbit, together with its self-similarity exhib-
ited as an object of the complex map f (z) = z2

of the fractal theory) we expect to find this par-
adigmatic complex map also in the context of the
classical Euclidean conic orbits arena.

By following the chain of features

classical − − → fractal − − → dynamical,

we find the ultimate felicitous link, provided by the
following considerations:

(1) The family of the conic sections lives in a
plane, say the plane orthogonal to the unit
vector K of the fixed orthogonal right-handed
unit frame {F, I, J, K} with the origin at F in
the 3-dimensional Euclidean space.

(2) The unit position vector ρ of an arbitrary
point on the U-circle may be obtained by an
active rotation about the origin F applied to
the unit vector K.

(3) The position vector rρ of a point on a conic
section in the plane IFJ may be obtained by
the previous active rotation (applied to the
unit vector K and about the origin F) followed
by a dilation by the scale factor r.
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The genesis of this compound roto-dilation,
which rotates the unit vector K about the origin
F and stretches it by the radial distance factor r, is
the subject of the following sections. The standard,
powerful and hypercomplex quaternion descrip-
tion for roto-dilations is reformulated in a particu-
lar and simple form.

5 The K(φ, r)-roto-dilation map

As it is well known, a general active rigid rotation
in the ordinary Euclidean space R3 about a direc-
tion (axis of rotation) through a fixed point O is
characterized by the unit vector n along the axis
of rotation and by a right-handed angle �. Thus
a rotation is characterized by the four real Euler–
Rodrigues β-parameters (β0, β1, β2, β3) = (β0, β)

defined by

β0 = cos �/2, β = sin (�/2)n,

which satisfy the normalizing condition β2
0 + β2

1 +
β2

2 + β2
3 = 1, that is define the surface of the unit

sphere S3 in a four-dimensional Euclidean space
R4.

If b = (β0 +β) = β0 +(β1I+β2J+β3K) denotes
a unit quaternion with vector part β and with con-
jugate b−1 = (β0 − β), a rotation acting on K and
bringing it to an arbitrary unit vector x in the space
is given by the product of the three unit quater-
nions b, K, b−1, or explicitly by:

x = b K b−1. (11)

But we may rewrite this standard rotation-
product (and therefore a standard compound
roto-dilation acting on K) in terms of only two qua-
ternions.

Precisely, we identify the space R4 with the real
algebra of quaternions, H, in such a way that a qua-
ternion q ∈ H is given by

q = (u1 + u2I + u3J) + u4K,

where the term between parentheses denotes the
3-vector part (being R3 = im{1, I, J}).

It follows that:

(1) a vector x = x1 + x2I + x3J is a quaternion
with the fourth null component;

(2) the norm-preserving correspondence between
a standard (non-unit) quaternion

m = √
r b = √

r (β0, β)

= √
r (β0 + β1I + β2J + β3K)

and our (non-unit) quaternion q, is given by

m → q : q = √
r (β3 + β1I + β2J − β0K)

(12)

(for unit quaternions the correspondence
requires r = 1);

(3) by (11), a roto-dilation reads x = r(bKb−1) =
mKm−1.

Consequently, after having defined for any
quaternion q the anti-involute q∗ as q∗ = K q̄ K−1,
that is, explicitly,

q∗ ≡ u1 + u2I + u3J − u4K

we find that a general compound roto-dilation
K→x in R3 given by

x = m K m−1

may be expressed, via the correspondence m → q,
by the simple product qq∗ of two non-unit quater-
nions

x = qq∗ (13)

that is, explicitly by

x = (u1 + u2I + u3J + u4K) (u1 + u2I + u3J − u4K)

or equivalently in real form

x1 = u2
1 − u2

2 − u2
3 + u2

4, x2 = 2(u1u2 − u3u4)

x3 = 2(u1u3 + u2u4), x4 = 0,

which corresponds to the compact matrix form
⎛
⎜⎜⎝

x1
x2
x3
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u1 −u2 −u3 −u4
u2 u1 −u4 u3
u3 u4 u1 −u2
u4 −u3 u2 −u1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1
u2
u3
u4

⎞
⎟⎟⎠

(recall that I2 = J2 = K2 = −1; IJ = K = −JI and
so on, in a cyclic order). Notice that

| x |= r = | q |2 .

In Table 1, we summarize the hypercomplex
forms of the K(φ, r)-map which describes a K → x
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Table 1 The hypercomplex K(φ, r)-roto-dilation map

Hypercomplex notation Real notation Matrix notation

x1 + x2I + x3J = qq∗

x1 = u2
1 − u2

2 − u2
3 + u2

4

x2 = 2(u1u2 − u3u4)

x3 = 2(u1u3 + u2u4)

x4 = 0

⎛
⎜⎜⎝

u1 −u2 −u3 −u4
u2 u1 −u4 u3
u3 u4 u1 −u2
u4 −u3 u2 u1

⎞
⎟⎟⎠

roto-dilation which carries the unit vector K onto
the position vector x of an arbitrary point of R3.

Geometrical comments. The hypercomplex quater-
nion map qq∗ is a Hopf fibering S3 → S2 of the
sphere S3 since it is unaffected by the gauge trans-
formation q → qekθ = q(cos θ + k sin θ) (with
k = K), whence the whole one-dimensional set
(fiber) of unit quaternions wekθ with ww̄ = 1—
corresponding to a unit circle S1 = {wekθ } of the
unit 3-sphere S3 = {u | u2

1 + u2
2 + u2

3 + u2
4 = 1} in

the space R4—is mapped by ww∗ onto the single
point x of S2 in the ordinary space R3.

6 The K(π/2 , r)-roto-dilation map in the conic
sections arena

Getting back to the plane conic sections, we first
restrict our attention to the particular K-rotation
K → ρ , which carries the unit vector K onto the
unit vector x = ρ which lies in the {I, J}-plane (that
is on a point on the U-circle). This rotation is char-
acterized by

� = π

2
, n = nxI + nyJ

with nx
2 + ny

2 = 1.
If one works via the standard β-quaternion

description and thus adopts the rotation relation
(11), one has:

ρ = bKb−1 =
(√

2
2

+
√

2
2

nxI +
√

2
2

nyJ

)

K

(√
2

2
−

√
2

2
nxI −

√
2

2
nyJ

)
,

which upon calculation gives the unit vector

ρ = ny I − nxJ .

Of course the two resulting components of the vec-
tor ρ keep track of the fact that, by construction,
the unit vectors ρ and n are orthogonal vectors in
the (π/2)-rotation of K about n.

But what is important here is that the same result
may be obtained as the product of only two unit
quaternions.

Owing to our quaternion map (13) and to the
correspondence (12) with r = 1, we recover the
unit vector ρ by the product of the unit quaternion
w =

√
2

2 nxI +
√

2
2 nyJ −

√
2

2 K and its anti-involute
w∗, that is explicitly by

ρ = ww∗

or

ρ =
(√

2
2

nxI +
√

2
2

nyJ −
√

2
2

K

)

×
(√

2
2

nxI +
√

2
2

nyJ +
√

2
2

K

)
= ny I − nxJ.

Let us now effect a dilation by r, in order to
obtain a compound roto-dilation

K → ρ → rρ

for each n.
The collection of all these roto-dilations (for each
n) may be represented by a ‘crazy fountain’ pic-
ture (see Fig. 7) where circular sprays, spreading
in a circular fashion from the arrowed point of K,
reach the point ρ on the plane and then spring away
horizontally to reach the point x = rρ on the same
plane.
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Fig. 7 The crazy fountain picture

The compound roto-dilation K → ρ → rρ ,
characterized by the quaternion

q = √
rw

and which unfolds as

rρ = qq∗ = r (nyI − nxJ) , (14)

is the key map which plays a crucial role in finding
the hidden character of the U-circle.

7 The K(π/2 , r)-map: a complex quadratic map.
Its Julia set: the U-circle

If, as usual, we identify the plane {I, J} with the
complex plane {1, i} we find that the vector rρ given
by (14) corresponds to the complex number z ∈ C

z = r ny − r nxi . (15)

On the other hand, being x3 = 0, we have that (see
Table 1):

u3 = 0, u4 = 0 . (16)

From (15) and (16) and Table 1, we find that

r ny = u2
1 − u2

2, −r nx = 2u1u2, (17)

which, upon resolution with respect to the
unknowns u1, u2, gives:

u1 = −
√

2r
2

nx√
1 − ny

, u2 =
√

2r
2

√
1 − ny .

We may now write (17) as

x1 = u2
1 − u2

2, x2 = 2u1u2 (18)

which may be epitomized in the following complex
form

z = x1 + ix2 = (u1 + iu2)
2, (19)

which reveals as a complex quadratic squaring map.
This simple squaring map (19) is a particular

case of the famous complex quadratic map often
rendered in the form

zn+1 = z2
n + c, c ∈ C,

which is paradigmatic in the fractal theory of Man-
delbrot [6,3], representing a nonlinear iteration
procedure in C, which constructs the sequence {zn}
of complex numbers via a repeated application
(squaring and addition by c).

Our quadratic map (19), being of the type
f (z) = z2, corresponds to the value c = 0 for the
complex growth parameter (unperturbed map) and
shows up as the first iteration. Moreover, the U-cir-
cle is its Julia set (see section “The exceptional unit
circle and the Julia set”).

Thus, by (19), we have reached the crucial result
searched for in section “The exceptional unit cir-
cle and the Julia set”: by identifying the Euclidean
{I, J}-plane of a conic section with the standard
complex {1, i}-plane, we have found that the pe-
culiar roto-dilation in R3 (which rotates the unit
vector K onto the plane position vector x = rρ
of a point on the conic) is exactly the complex
quadratic squaring map paradigmatic in the frac-
tal theory, the U-circle showing up as its Julia
set.

8 The complex map and the regularization
of the Kepler problem

Now, chained to the above strictly geometrical
peculiarities of the complex map (19), there is a
physical one, related to the Kepler problem.

If we identify the algebra of complex numbers C
with im{1, i} in the quaternion algebra H, we have
that, by definition, the anti-involute of a complex
number c ∈ C satisfies c = c∗ whence, for each
c = u1 + iu2 ∈ C the square (u1 + iu2)

2 may be
expressed by the product cc∗, that is

(u1 + iu2)
2 = cc∗ .
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Table 2 The hypercomplex roto-dilation hierarchy

Hypercomplex notation Real notation Matrix

x1 + x2i + x3j = qq∗

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = u2
1 − u2

2 − u2
3 + u2

4
x2 = 2(u1u2 − u3u4)

x3 = 2(u1u3 + u2u4)

x4 = 0

⎛
⎜⎜⎝

u1 −u2 −u3 −u4
u2 u1 −u4 u3
u3 u4 u1 −u2
u4 −u3 u2 u1

⎞
⎟⎟⎠

x1 + x2i = (u1 + u2i)2 = cc∗

{
x1 = u2

1 − u2
2

x2 = 2u1u2

(
u1 −u2
u2 −u1

)

x1 = u2
1 = u1u1∗ x1 = u2

1

(
u1

)

Thus the complex map (19) is a particular case of
the hypercomplex quaternion map qq∗. In Table 2,
we summarize the natural hierarchical structure
of the roto-dilation map in its three mathematical
forms (for simplicity the boldfaced symbols, say I,
are replaced by the standard quaternion symbols,
say i).

Now, the complex map (19) coincides exactly
with the peculiar map constructed by Levi-Civita
[5] in order to regularize at the origin the differen-
tial equations of the physical planar Kepler prob-
lem (which are singular at the collision point
r = 0). As clearly remarked by Levi–Civita, the
plane Levi–Civita map is not extensible to the three
dimensions, since a matrix of the Levi–Civita’s type
is only either a 2 × 2, or 4 × 4 or 8 × 8 matrix.
A 3-dimensional extension was successfully con-
structed by Kustaanheimo (see [9]) who found a
regularizing matrix map (the KS-map). Remark-
ably, our map qq∗ is the simple quaternion repre-
sentation of the matrix regularizing KS-map (see
[10]).

Summing up: the exceptional U-circle is the Julia
set of the map (19) which (from a geometrical point
of view) is a roto-dilation map in R3 and (from a
physical point of view) regularizes at the origin the
planar Kepler problem.

Let us finally report that each regularizing map
(in the ‘bottom to top order’: R → C → H of
Table 2) may be derived from the previous one
by a technique which Deprit, Elipe and Ferrer [2]
call a doubling technique and which, (implemented
in software [2] by fashioning hypercomplex num-
bers as saturated binary trees) provides interesting
extensions of the KS-map, the algebraic difficulties
being solved by a current good symbolic processor.

9 Comments and outlook

Needless to say, the fact that a ‘unit circle’ is the
Julia set of the complex quadratic map z → z2 is a
well-known result. What is then the novelty of this
paper? It is the discovery that a particular conic
section emerges from its own family and reveals
a hidden, new facet: the ‘Julia set’ facet. And this
through the natural introduction in the arena of the
roto-dilation map (19) and through a simple, nat-
ural recourse to the S-approach (which has gently
opened the door to the remarkable ‘Julia set fea-
ture’ exhibited by one of the members of the conic
family).

It is remarkable that the U-circle (although a
classical object and not a fractal one) shows the
coexistence of both the traditional aspects and the
recent fractal ones. The vector S itself exhibits by
definition a two-fold character through its ‘real’
component p−1e and its ‘complex’ p−1ρ one.

The U-circle defines the vector S via the inver-
sion map, which interchanges the two attracting
regions | z | <1 and | z | >1 of the complex plane
(the ‘prisoner’ and the ‘escape’ set of the fractal
theory). Adding to this that concentric circles are
the equipotential curves in the attractive gravita-
tion field, it may be interesting to study the physical
implications, on the same line followed for the elec-
trostatic field by Douady and Hubbard (see [8]). At
this juncture, we remark that the real and imagi-
nary parts (18) of the complex map satisfy

∂x1

∂u1
= ∂x2

∂u2
,

∂x1

∂u2
= − ∂x2

∂u1
,

that is the Laplace equation 
2 x1 = 
2 x2 = 0,
which is paradigmatic in potential theory [7].
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Last, but not least, it is interesting to note that
the key relations

S · x = 1, x = cc∗
have an aesthetic appeal, being expressed in a very
simple form (the recourse to the complex domain
revealing itself fundamental, according to the
motto ‘complexify to simplify’).

Let us close by observing that the S-approach,
in that it brings together traditional and recent as-
pects, may open a door to applications centered
around the ‘elusive origin of complexity’ in geo-
metrical and dynamical phenomena. For instance,
recall that A.A.Turing proposes a symmetry break-
ing characterization as the origin of morphogene-
sis. Thus, we do not think that it is casual that the
‘first point’ of our vector S is exactly the focus of the
conic sections: the geometric centre of the conics
being abandoned in favour of this centre of attrac-
tion. The perfect symmetry is abandoned.

Remark In the literature (see [6,7]) one encoun-
ters an array of several phenomena related to the
famous complex quadratic map f (z) = z2.

In this paper this famous map is stricly related to
the peculiar roto-dilation K(π/2, r) in R3 and to the
regularization of the unperturbed Kepler problem.

In this setting it will be interesting to study the
‘perturbed Kepler problem’

ẍ + K2

r3 x = f

(where f is the perturbing force per unit of mass)
by connecting it to the ‘perturbed complex map’

f (z) = z2 + c,

where, starting from c �= 0 small enough, the Julia
set boundary is a U-circle which slightly distorts
into a ‘quasi’-circle and so on, becoming a fractal
curve. In this context, modern computer graphics
(see section The exceptional unit circle and the
Julia set) will be crucial in suggesting, finding and
understanding hidden features.
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