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Abstract An analysis is made of the steady two-
dimensional stagnation-point flow of an incom-
pressible viscoelastic fluid over a flat deformable
surface when the surface is stretched in its own
plane with a velocity proportional to the distance
from the stagnation-point. It is shown that for a vis-
coelastic conducting fluid of short memory (obey-
ing Walters’ B′ model), a boundary layer is formed
when the stretching velocity of the surface is less
than the inviscid free-stream velocity and velocity
at a point increases with increase in the Hartmann
number. On the other hand an inverted boundary
layer is formed when the surface stretching veloc-
ity exceeds the velocity of the free stream and the
velocity decreases with increase in the Hartmann
number. A novel result of the analysis is that the
flow near the stretching surface is that correspond-
ing to an inviscid stagnation-point flow when the
surface stretching velocity is equal to the veloc-
ity of the free stream. Temperature distribution in
the boundary layer is found when the surface is
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held at constant temperature and surface heat flux
is determined. It is found that in the absence of
viscous and Ohmic dissipation and strain energy
in the flow, temperature at a point decreases with
increase in the Hartmann number.
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flow · Electrically conducting fluid · Heat flux ·
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1 Introduction

Flow of an incompressible viscous fluid over a
stretching surface has important applications in
polymer industry. For instance a number of tech-
nical processes concerning polymers involves the
cooling of continuous strips (or filaments) extruded
from a die by drawing them through a stagnant
fluid with controlled cooling system and in the pro-
cess of drawing, these strips are sometimes
stretched. The quality of the final product depends
to a large extent on the rate of heat transfer at
the stretching surface. Crane [1] gave a similarity
solution in closed analytical form for steady two-
dimensional incompressible boundary layer flow
caused by the stretching of a sheet which moves
in its own plane with a velocity varying linearly
with the distance from a fixed point. Carragher and
Crane [2] investigated heat transfer in the above
flow in the case when the temperature difference
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between the surface and the ambient fluid is pro-
portional to a power of distance from the fixed
point. Temperature distribution in the flow over
a stretching surface subject to uniform heat flux
was studied by Dutta et al. [3]. Recently, Chiam [4]
analyzed steady two-dimensional stagnation-point
flow of an incompressible viscous fluid towards a
stretching surface.

All the above investigations are, however, con-
fined to flows of Newtonian fluids. In recent years,
non-Newtonian fluids have become more impor-
tant industrially. For instance in certain polymer
processing applications, one deals with flow of a
non-Newtonian fluid over a stretching surface. Sim-
ilarity solutions for the velocity distribution in the
flow of a power-law fluid past a stretching sur-
face were given by Andersson and Dandapat [5].
The same flow was examined by Siddappa and
Khapate [6] for a special class of non-Newtonian
fluids known as second-order fluids, which are vis-
coelastic in nature. Bhattacharyya et al. [7] inves-
tigated the temperature distribution in the steady
boundary layer flow of a second-order fluid (vis-
coelastic) past a stretching surface. Chen et al. [8]
studied the flow and heat transfer in the bound-
ary layer of a viscoelastic fluid of Walters’ liquid B′
model (which characterizes a viscoelastic fluid with
short memory) over a stretching surface subject to
either constant temperature or uniform heat flux.
Interestingly, the boundary layer equations for the
steady two-dimensional flow studied in Refs. [7]
and [8] are identical. This coincidence is, however,
not fortuitous. It stems from the fact that the con-
stitutive equation for the second-order fluid [9]
is valid for low shear rates such that the charac-
teristic time scale associated with the flow is very
large compared with the memory of the fluid. Ma-
hapatra and Gupta [10] investigated steady, two-
dimensional stagnation-point flow of a viscoelastic
fluid (obeying Walters’ liquid B′ model) toward a
stretching surface. Temperature distribution in the
boundary layer was found in the case when the
stretching surface is kept at constant temperature
and heat flux at the surface was also calculated.
Flow of an electrically conducting non-Newtonian
fluid past a stretching surface was studied by An-
dersson [11], Abel et al. [12] when a uniform mag-
netic field acts transverse to the surface.

In this paper, we investigate steady, two-dimen-
sional magnetohydrodynamic stagnation-point
flow of a viscoelastic fluid (obeying Walters’ liquid
B′ model) toward a stretching surface. Tempera-
ture distribution in the boundary layer is found
in the case when the stretching surface is kept at
constant temperature.

2 Flow analysis

Consider the steady two-dimensional flow near a
stagnation point at a surface coinciding with the
plane y = 0, the flow being in the region y > 0.
Two equal and opposing forces are applied along
the x-axis so that the surface is stretched keeping
the origin fixed as shown in Fig. 1. The velocity
distribution in the frictionless flow in the neigh-
borhood of the stagnation point at x = y = 0 is
given by

u = ax, v = −ay, (1)

where the constant a(> 0) is proportional to the
free stream velocity far away from the stretching
surface.

For the constitutive equation of viscoelastic fluid
we adopt Walters’ liquid B′ [13] model given by (in
cartesian tensor notation)

o
u = cx ,   v = 0 

u = ax ,   v = −ay

Region of non−zero

x

y
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vorticity 

B B                                 B          B
0000

Fig. 1 A sketch of the physical problem
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τik = −pδik + 2µeik − 2k0

×
[
∂eik

∂t
+ vj

∂eik

∂xj
− eij

∂vk

∂xj
− ejk

∂vi

∂xj

]
, (2)

where τik, p and eik denote, respectively, the stress
tensor, pressure and the rate-of-strain tensor. Fur-
ther µ and k0 stand for the limiting viscosity at
small rate of shear and the elastic coefficient, respec-
tively. It should be noted that the above model for
the fluid is valid for a viscoelastic fluid with short
memory.

Using (1) and (2), the steady two-dimensional
boundary layer equations for the electrically con-
ducting viscoelastic fluid flow are given by
∂u
∂x

+ ∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

= a2x + ν
∂2u
∂y2 − k0

ρ

[
∂

∂x

(
u

∂2u
∂y2

)
+ ∂u

∂y
∂2v
∂y2 + v

∂3u
∂y3

]

−σB2
0

ρ
(u − ax), (4)

∂p
∂y

= O(δ), (5)

where (u, v) are the velocity components with ν =
µ/ρ, ρ being the fluid density. In deriving these
equations it is tacitly assumed that in addition to
the usual boundary layer approximations, the con-
tribution due to the normal stress is of the same
order of magnitude as that due to shear stresses
so that both ν and k0/ρ are of O(δ2), δ being the
boundary layer thickness. Note that k0 > 0. Fur-
ther in (4), it is assumed that the induced magnetic
field is negligible. This is a valid assumption for
flow at small magnetic Reynolds number as in the
case of a viscoelastic electrically conducting fluid
like Olive oil.

The boundary conditions are

u = cx, v = 0 at y = 0, (6)

u → ax as y → ∞, (7)

where c is a positive constant.
A little inspection shows that the boundary layer

equations (3) and (4) admit of a similarity solution

u(x, y) = cxf ′(η), v(x, y) = −(cν)
1
2 f (η), (8)

where

η = (c/ν)
1
2 y. (9)

With u and v given by (8), we find that (3) is iden-
tically satisfied and (4) leads to

f ′2 − ff ′′ = a2/c2 + f ′′′

− k
(

2f ′f ′′′ − f ′′2 − ff iv
)

− M2
(

f ′ − a
c

)
, (10)

where

k = k0c
ρν

and M =
(

σB2
0

ρc

)1/2

. (11)

Here M is Hartmann number which is a measure
of the strength of the magnetic field. The boundary
conditions (6) and (7) become

f (0) = 0, f ′(0) = 1, f ′(∞) = a/c. (12)

For a viscous fluid (k = 0), (10) is of third order
and the boundary conditions (12) suffice to deter-
mine the solution of (10). But for a viscoelastic
fluid (k �= 0), these boundary conditions are not
enough to obtain the solution of (10) which is of
fourth order. However implicit in the derivation
of the constitutive equation (2) is the neglect of
terms of order k2

0. Thus k as defined in (11), which
is a measure (dimensionless) of relaxation time, is
very small for a viscoelastic fluid with small mem-
ory. This, of course, means that the characteristic
time scale of the fluid flow is large compared with
the relaxation time of the fluid.

Since k � 1, we seek a solution in the form as

f (η) = f0(η) + kf1(η) + O(k2). (13)

Substituting (13) in (10) and equating the coeffi-
cients of k0 and k, we get

f ′2
0 − f0f ′′

0 = a2/c2 + f ′′′
0 − M2

(
f ′
0 − a

c

)
, (14)

f ′′′
1 + f0f ′′

1 − 2f ′
0f ′

1 + f ′′
0 f1 = 2f ′

0f ′′′
0 − f ′′2

0

−f0f iv
0 + M2f ′

1. (15)

Using (12), the boundary conditions for f0 and f1
are

f0(0) = 0, f ′
0(0) = 1, f ′

0(∞) = a/c, (16)

f1(0) = 0, f ′
1(0) = 0, f ′

1(∞) = 0. (17)
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It is interesting to note that when a = c, (10)
subject to the boundary conditions (12) admits of
an exact analytical solution given by

f (η) = η. (18)

This leads to from (8), u = ax, v = −ay. From this
we can infer that when a = c, the velocity distri-
bution near the stretching surface is the same as
that of a frictionless flow away from the surface so
that no boundary layer is formed near the surface.
Equations (14) and (15) along with the boundary
conditions (16) and (17) are solved numerically
by finite-difference method using Thomas algo-
rithm [14].

Figure 2 shows the variation of the horizontal
velocity component with distance from the surface
for several values of the Hartmann number M with
a/c = 3.0 and k = 0.001. It can be seen that for
a fixed value of a/c (with a/c > 1), the veloc-
ity increases with increase in Hartmann number.
It can also be seen that when a/c > 1, the flow
has a boundary layer structure and the thickness
of this boundary layer decreases with increase in
M. It is interesting to note from Fig. 3 that when
a/c < 1, the flow has an inverted boundary layer
structure. This is due to the fact that when a < c,
the stretching velocity cx of the surface exceeds
the velocity ax of the external stream. Further it
is observed from this figure that for a fixed value
of a/c (with a/c < 1), the horizontal velocity at a
point decreases with increase in M in contrast with
the corresponding velocity distribution for a/c > 1
shown in Fig. 2.

Fig. 2 Variation of f ′(η) with η for several values of M with
k = 0.001 and a/c = 3.0

Fig. 3 Variation of f ′(η) with η for several values of M with
k = 0.001 and a/c = 0.1

Fig. 4 Variation of f (η) with η for several values of M with
k = 0.001 and a/c = 3.0

Fig. 5 Variation of f (η) with η for several values of M with
k = 0.001 and a/c = 0.1

Figure 4 shows the variation of f (η), the vertical
component of velocity, with η for several values of
M with a/c = 3.0 and k = 0.001. It can be seen
that the vertical velocity at a point increases with
increase in M for a/c > 1. But the vertical velocity
at a point decreases with increase in M for a/c < 1
as can be seen in Fig. 5.



Meccanica (2007) 42:263–272 267

Table 1 Values of (1 − 3k)f ′′(0)

M a/c → 0.1 0.2 0.5 1.0 1.1 1.2 1.5

0.0 −0.9414 −0.8919 −0.6492 0 0.1604 0.3300 0.8907
1.0 −1.2802 −1.1786 −0.8081 0 0.1872 0.3823 1.0132
2.0 −1.9711 −1.7789 −1.1608 0 0.2508 0.5077 1.3138
3.0 −2.7539 −2.4676 −1.5790 0 0.3302 0.6651 1.6980

Table 2 Values of −f ′′(0)

k −f ′′(0)

Bhattacharyya et al.[7] Present results

0.001 1.0005 0.9964
0.005 1.0025 0.9984
0.01 1.0050 1.0009
0.03 1.0153 1.0108
0.05 1.0260 1.0208
0.07 1.0370 1.0307
0.09 1.0483 1.0406
0.17 1.0976 1.0803
0.25 1.1547 1.1200
0.33 1.2217 1.1598

The shear stress at the stretching surface y = 0
is given by (2) and (8) as(
τxy

)
y=0 = ρc(cν)

1
2 x

[
1 − 3k

]
f ′′(0). (19)

The dimensionless form of the wall shear stress, i.e.,
skin-friction coefficient Cf

(
= (

τxy
)

y=0 /ρc(cν)
1
2 x

)
is then obtained from (19) as

Cf = (1 − 3k)f ′′(0). (20)

Table 1 gives the values of the dimensionless
wall shear stress (1 − 3k)f ′′(0) for k = 0.01 and
several values of a/c and M.

It can be seen that for a fixed value of the elas-
tic parameter k and a/c, the magnitude of the wall
shear stress increases with increase in M. In fact
it can be seen from Figs. 2 and 3 that increase in
M results in increase in the magnitude of velocity
gradient at the surface in both the cases a/c > 1
and a/c < 1 .

In order to have numerical checks with previ-
ous results from the literature, we compare the
results of the present study with the corresponding
results of Bhattacharyya et al. [7] and Andersson
[11]. Note that although the constitutive equation
in Walters’ B′ model for fluid of small memory
in our investigation is slightly different from the

constitutive equation for second-order fluid also
based on small memory fluid, the boundary layer
equations for both the fluids are identical. This can
be seen from (5) in Bhattacharyya et al. and (4) in
the present study in the case M = 0. Similarly when
M �= 0, we get the same boundary layer equations
in both the cases.

Table 2 gives the values of −f ′′(0) for several
values of the elastic parameter k when a/c = 0.0
and M = 0.0.

Table 3 shows the comparision in the values of
−f ′′(0) for different values of k and M in the pres-
ent study with the corresponding values obtained
by Andersson [11].

The small discrepancy in the values of −f ′′(0)

for different values of k and M as shown in Tables
2 and 3 is explained as follows. While the values of
−f ′′(0) as computed by Bhattacharyya et al. [7] in
the case a/c = 0 and M = 0 and Andersson [11]
in the case a/c = 0 and M �= 0 are based on the
exact analytical solution for f (η) found by them,
the corresponding values of −f ′′(0) in the present
study are based on the approximate solution for
f (η) as given by (13), which is correct to O(k).
This explains why the discrepancy increases with
increase in k.
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Table 3 Values of −f ′′(0)

k M −f ′′(0)

Andersson [11] Present results

0.001 0.0 1.0005 0.9964
1.0 1.4149 1.4058
2.0 2.2372 2.2132
3.0 3.1639 3.1151

0.01 0.0 1.0050 1.0009
1.0 1.4213 1.4121
2.0 2.2473 2.2231
3.0 3.1782 3.1289

0.05 0.0 1.0260 1.0208
1.0 1.4509 1.4401
2.0 2.2942 2.2670
3.0 3.2444 3.1905

0.07 0.0 1.0369 1.0307
1.0 1.4665 1.4541
2.0 2.3187 2.2889
3.0 3.2791 3.2214

0.09 0.0 1.0483 1.0406
1.0 1.4825 1.4681
2.0 2.3440 2.3109
3.0 3.3150 3.2522

0.17 0.0 1.0976 1.0803
1.0 1.5523 1.5240
2.0 2.4544 2.3987
3.0 3.4710 3.3754

0.25 0.0 1.1547 1.1200
1.0 1.6330 1.5800
2.0 2.5820 2.4866
3.0 3.6515 3.4987

0.33 0.0 1.2217 1.1598
1.0 1.7277 1.6359
2.0 2.7318 2.5744
3.0 3.8633 3.6219

3 Heat transfer

Let us now consider the heat transfer equation in
the flow of a viscoelastic electrically conducting
fluid. To this end it is necessary to establish the
energy balance for a fluid element in motion and
to consider it in conjunction with the equation of
motion. It is to be noted that during the motion
of a viscoelastic fluid, a certain amount of energy
is stored up in the fluid as strain energy and some
energy is lost due to viscous and Ohmic dissipa-
tion. Thus for such a fluid, the energy balance is
determined by the internal energy, the conduction
of heat, the convection of heat with the flow, the
generation of heat through viscous and Ohmic dis-

sipation and the strain (or deformation) energy
stored in the fluid due to its elastic properties.
Using boundary layer approximations, the trans-
fer of heat in the steady two-dimensional flow of
a viscoelastic fluid can be expressed in the form of
the energy equation given by

u
∂T
∂x

+ v
∂T
∂y

= λ
∂2T
∂y2 + µ

ρcp

(
∂u
∂y

)2

− k0

ρcp

∂u
∂y

∂

∂y
(

u
∂u
∂x

+ v
∂u
∂y

)
+ σB2

0

ρcp
(u − ax)2, (21)

where T, λ and cp denote the temperature, the ther-
mal diffusivity and the specific heat of the fluid,
respectively. Note that the second and the third
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terms on the right hand side of (20) represent the
terms due to viscous dissipation and strain energy,
respectively, while the last term represents Ohmic
dissipation. The boundary conditions are

T = Tw at y = 0, T → T∞ as y → ∞,

(22)

where Tw and T∞ are constants with Tw > T∞.
Introducing the dimensionless temperature θ as

θ = T − T∞
Tw − T∞

(23)

and using (8), we get from (21)

xf ′ ∂θ

∂x
− f

∂θ

∂η
= λ

ν

∂2θ

∂η2 + c2x2

cp(Tw − T∞)
f ′′2

− k0c3x2

µcp(Tw − T∞)
(f ′f ′′2 − ff ′′f ′′′)

+ σB2
0cx2

ρcp(Tw − T∞)

(
f ′ − a

c

)2
. (24)

Setting

θ(x, η) = θ0(η) + cx2

ν
θ1(η) (25)

in (24) and equating the coefficients of x0 and x2,
we obtain the following equations for θ0(η) and
θ1(η)

θ ′′
0 + Prfθ ′

0 = 0, (26)

θ ′′
1 + Prfθ ′

1 − 2Prf ′θ1 = PrEk(f ′f ′′2 − ff ′′f ′′′)

−PrEf ′′2 − M2PrE
(

f ′ − a
c

)2
, (27)

where Pr and E are the Prandtl number and Eckert
number defined by

Pr = ν

λ
, E = νc

cp(Tw − T∞)
. (28)

The boundary conditions for θ0(η) and θ1(η) are
derived from (22), (23), and (25) as

θ0(0) = 1, θ0(∞) = 0, (29)

θ1(0) = 0, θ1(∞) = 0. (30)

It is clear from above that the temperature
distribution depends on five dimensionless param-
eters: (a) the viscoelastic parameter k, (b) the Pra-
ndtl number Pr, (c) the Eckert number E, (which

Fig. 6 Variation of θ0(η) with η for several values of M with
k = 0.001, a/c = 3.0, and Pr = 5.0

characterizes viscous dissipation in the flow) , (d)
the parameter a/c and (e) Hartmann number M.
Equations (26) and (27) subject to the boundary
conditions (29) and (30) have been solved numer-
ically by finite difference method using Thomas
algorithm [14].

In the absence of any viscous and Ohmic dissi-
pation and stored deformation energy in the flow
(E = 0), the temperature distribution is given by
θ0(η) whose variation with η is shown in Fig. 6 for
several values of M with Pr = 5.0 , a/c = 3.0, and
k = 0.001. It can be seen that for given values of
Pr, a/c, and k, temperature at a point decreases with
increase in the Hartmann number when a/c > 1.0.
But when a/c < 1.0 it is evident from Fig. 7 that
θ0(η) increases with increase in Hartmann number
for fixed values of k, Pr, and a/c.

Figure 8 shows the variation of θ1(η) with η for
several values of M with k = 0.001, Pr = 5.0,
E = 2.0, and a/c = 3.0. It is seen that in the vicinity

Fig. 7 Variation of θ0(η) with η for several values of M with
k = 0.001, a/c = 0.1, and Pr = 5.0
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Fig. 8 Variation of θ1(η) with η for several values of M with
k = 0.001, a/c = 3.0, E = 2.0, and Pr = 5.0

Fig. 9 Variation of θ1(η) with η for several values of M with
k = 0.001, a/c = 0.1, E = 2.0, and Pr = 5.0

of the stretching surface θ1(η) increases with the
increase in M but after a certain distance from
the stretching sheet the opposite trend is observed
in the variation. The corresponding variation of
θ1(η) with η for the same values of M, Pr, E, and
k is displayed in Fig. 9 when a/c = 0.1. It can be
clearly seen that at a given point, θ1(η) increases
with increase in M.

From (25), the dimensionless rate of heat trans-
fer at the surface η = 0 given by −θ ′(X, 0) is eval-
uated as

− θ ′(X, 0) = −θ ′
0(0) − X2θ ′

1(0), (31)

where

X = (c/ν)
1
2 x. (32)

Table 4 gives the values of θ ′
0(0) for several val-

ues of M and a/c with Pr = 5.0 and k = 0.01.
It can be seen that −θ ′

0(0) is positive and this is
consistent with the fact that in the absence of vis-
cous and Ohmic dissipation as well as strain energy
in the flow (E = 0), heat flows from the surface to
the fluid as long as Tw > T∞. It is also seen that
for a fixed value of a/c(< 1), the surface heat flux
−θ ′

0(0) decreases with increase in M. On the other
hand, when a/c > 1, the surface heat flux −θ ′

0(0)

increases with increase in M. Interestingly enough,
there is no variation of the surface heat flux −θ ′

0(0)

with change in M for a/c = 1. This stems from the
fact that when a/c = 1, the flow near the stretching
surface is an inviscid flow (see (18)) unaffected by
the Hartmann number of the fluid. It can further
be observed from Table 4 that for a fixed value
of M, the surface heat flux −θ ′

0(0) increases with
increase in a/c.

Table 6 shows the comparision in the values of
the variation θ1(η) with η for different values of k
when Pr = 10.0, E = 4.0, a/c = 0.0, and M = 0.0
in the present study with the corresponding values
obtained by Bhattacharyya et al.[7].

Values of θ ′
1(0) are computed from the numeri-

cal solution of (27) for various values of Pr, E, k,
a/c, and M and these values are all found to be
positive. Then the values of the dimensionless heat
flux at the surface −θ ′(X, 0) are computed from
(31) and shown in Tables 7 and 8 corresponding to
two distinct locations (X = 0.1 and X = 2.5) on
the stretching surface.

Table 5 gives the comparision in the values of
−θ ′

0(0) for several values of k with Pr = 10.0 when
a/c = 0.0 and M = 0.0 with the corresponding
values computed by Bhattacharyya et al. [7]. The

Table 4 Values of θ ′
0(0) with Pr = 5.0 and k = 0.01

M a/c → 0.1 0.2 0.5 1.0 1.1 1.2 1.5

0.0 −1.5813 −1.5965 −1.6587 −1.7841 −1.8101 −1.8362 −1.9143
1.0 −1.5124 −1.5431 −1.6353 −1.7841 −1.8129 −1.8413 −1.9248
2.0 −1.3819 −1.4425 −1.5900 −1.7841 −1.8186 −1.8521 −1.9474
3.0 −1.2566 −1.3474 −1.5467 −1.7841 −1.8244 −1.8631 −1.9712
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Table 5 Values of −θ ′
0(0)

k −θ ′
0(0)

Bhattacharyya et al.[7] Present results

0.09 2.2975 2.3043
0.17 2.2867 2.2956
0.25 2.2742 2.2868
0.33 2.2597 2.2779

Table 6 Values of θ1(η)

k η θ1(η)

Bhattacharyya et al.[7] Present results

0.001 0.2 0.7760
0.4 0.8368
1.0 0.3326
1.2 0.2248

0.01 0.2 0.7743
0.4 0.8342
1.0 0.3303
1.2 0.2229

0.05 0.2 0.7657
0.4 0.8218
1.0 0.3198
1.2 0.2142

0.09 0.2 0.7567 0.7557
0.4 0.8090 0.8080
1.0 0.3097 0.3092
1.2 0.2059 0.2055

0.17 0.2 0.7311
0.4 0.7764
1.0 0.2877
1.2 0.1884

0.25 0.2 0.7195 0.7003
0.4 0.7535 0.7392
1.0 0.2641 0.2657
1.2 0.1691 0.1714

0.33 0.2 0.6974 0.6628
0.4 0.7212 0.6961
1.0 0.2397 0.2431
1.2 0.1500 0.1545

argument is found to be fairly close. As explained
earlier, the discrepancy increases with increase in k.

It can be seen from Table 7 that for a small
value of X(X = 0.1), heat flows from the surface
to the fluid because −θ ′(X, 0) is positive. On the

other hand from Table 8 it is observed that for
X = 2.5, heat flows from the fluid to the stretching
surface because −θ ′(X, 0) is negative for all val-
ues of M and a/c except a/c = 1. This interesting
result admits of a physical interpretation. For small
enough values of X, both viscous and Ohmic dissi-
pation and strain energy in the flow are small (see
(24)) and hence no significant heat is generated
in the flow. Thus for small values of X, heat flows
from the surface to the fluid since Tw > T∞. But for
large values of X, sufficient heat is generated inside
the boundary layer due to the combined influence
of viscous and Ohnic dissipation and stored defor-
mation energy. Under such circumstances temper-
ature very near the surface may exceeds the surface
temperature Tw and heat then flows from the fluid
to the surface even when Tw > T∞. The reason
why in the exceptional case (a = c), −θ ′(X, 0) is
positive (−θ ′(X, 0) = 1.7841) even for a large value
of X is as follows. For a = c, the flow near the
stretching surface is the inviscid stagnation-point
flow which is unaffected by the elasticity of the fluid
and also there is neither any viscous nor Ohmic dis-
sipation of energy in the flow. It is further observed
from Table 7 that when there is heat transfer from
the surface to the fluid, the surface heat flux (for
given values of k, Pr, and E) increases with increase
in a/c. However the variation of surface heat flux
(for given values of a/c, Pr, k and E) with the
Hartmann number M is non-monotonic. It should
be noted, however, that whereas the viscous and
Ohmic dissipation terms in (21) are always positive
leading to dissipation of energy in the form of heat,
the last but one term representing the strain energy
is not everywhere positive in the flow. Since heat
flows away from the surface to the fluid for small
values of X and it flows from the fluid to the surface
for moderate or large values of X, it is conceivable
that at a certain location X = X0 on the stretching
surface, heat flux vanishes. Table 9 gives the val-
ues of X0 for various values of a/c and M when
Pr = 5.0, k = 0.01 and E = 4.0.

The reason why X0 = ∞ for a/c = 1 follows
from the fact that when a = c, the flow near the
surface is the inviscid stagnation point flow so that
heat always flows from the surface to the fluid so
long as Tw > T∞.
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Table 7 Values of θ ′(X, 0) for X = 0.1 with Pr = 5.0, E = 4.0, and k = 0.01

M a/c → 0.1 0.2 0.5 1.0 1.2 1.4 1.5

0.0 −1.5421 −1.5623 −1.6421 −1.7841 −1.8326 −1.8730 −1.8897
1.0 −1.4214 −1.4700 −1.6052 −1.7841 −1.8360 −1.8751 −1.8897
2.0 −1.1762 −1.2820 −1.5285 −1.7841 −1.8423 −1.8774 −1.8864
3.0 −0.9137 −1.0816 −1.4467 −1.7841 −1.8478 −1.8756 −1.8765

Table 8 Values of θ ′(X, 0) for X = 2.5 with Pr = 5.0, E = 4.0, and k = 0.01

M a/c → 0.1 0.2 0.5 1.0 1.2 1.4 1.5

0.0 22.9547 19.7856 8.7109 −1.7841 0.4154 7.6979 13.4983
1.0 55.3574 44.1845 17.1852 −1.7841 1.5208 11.9364 19.9879
2.0 127.1635 98.9095 36.8303 −1.7841 4.2305 22.4456 36.1589
3.0 213.0439 164.7321 60.9626 −1.7841 7.7075 36.0584 57.2038

Table 9 Values of X0 for Pr = 5.0, E = 4.0, and k = 0.01

M a/c → 0.1 0.2 0.5 1.0 1.1 1.2 1.5

0.0 0.6347 0.6831 0.9999 ∞ 4.5604 2.2576 0.8811
1.0 0.4077 0.4593 0.7369 ∞ 3.6986 1.8501 0.7409
2.0 0.2592 0.2997 0.5086 ∞ 2.7342 1.3795 0.5652
3.0 0.1914 0.2252 0.3933 ∞ 2.1783 1.1030 0.4563
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