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Abstract The boundary-layer equations for two-
dimensional steady flow of an incompressible,
viscous fluid near a stagnation point at a heated
stretching sheet placed in a porous medium are
considered. We apply Lie-group method for deter-
mining symmetry reductions of partial differential
equations. Lie-group method starts out with a gen-
eral infinitesimal group of transformations under
which the given partial differential equations are
invariant. The determining equations are a set of
linear differential equations, the solution of which
gives the transformation function or the infinitesi-
mals of the dependent and independent variables.
After the group has been determined, a solution
to the given partial differential equations may be
found from the invariant surface condition such that
its solution leads to similarity variables that reduce
the number of independent variables of the sys-
tem. The effect of the velocity parameter λ, which is
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the ratio of the external free stream velocity to the
stretching surface velocity, permeability parameter
of the porous medium k1, and Prandtl number Pr
on the horizontal and transverse velocities, temper-
ature profiles, surface heat flux and the wall shear
stress, has been studied.
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1 Introduction

Flow and heat transfer of an incompressible vis-
cous fluid over a stretching sheet appear in sev-
eral manufacturing processes of industry such as
the extrusion of polymers, the cooling of metallic
plates, the aerodynamic extrusion of plastic sheets,
etc. In the glass industry, blowing, floating or spin-
ning of fibres are processes, which involve the flow
due to a stretching surface [12].

Mahapatra and Gupta [7] studied the steady
two-dimensional stagnation-point flow of an incom-
pressible viscous fluid over a flat deformable sheet
when the sheet is stretched in its own plane with
a velocity proportional to the distance from the
stagnation-point. They concluded that, for a fluid
of small kinematic viscosity, a boundary layer is
formed when the stretching velocity is less than
the free stream velocity and an inverted boundary
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layer is formed when the stretching velocity exceeds
the free stream velocity. Temperature distribution
in the boundary layer is determined when the sur-
face is held at constant temperature giving the
so called surface heat flux. In their analysis, they
used the finite-differences scheme along with the
Thomas algorithm to solve the resulting system of
ordinary differential equations.

Nazar et al. [9] treated the unsteady two-
dimensional boundary layer flow of a viscous and
incompressible fluid in the region of the stagnation
point on a stretching flat sheet, where the unstead-
iness is caused by the impulsive motion of the free
stream velocity and by the suddenly stretched sur-
face. The governing equations are transformed us-
ing semi-similar coordinates originated by Williams
and Rhyne [16], and Seshadri et al. [14]. The bound-
ary layer structure of the problem is found to de-
pend on the parameter λ, which is the ratio of the
velocity of the stretching surface to that of the fric-
tionless potential flow in the neighbourhood of the
stagnation point, as deduced by Mahapatra and
Gupta [7]. From an analytical investigation of the
governing boundary layer equation, they have de-
duced solutions for the non-dimensional velocity
function and the skin fraction coefficient in the ini-
tial unsteady state flow, the final steady state flow,
and at small intervals.

Pop et al. [12] studied the radiation effects on
the steady two-dimensional stagnation-point flow
of an incompressible fluid over a stretching sheet.
They have taken into account radiation effects us-
ing the Rosseland approximation to model the
radiative heat transfer. This approximation leads
to a considerable simplification in the radiation
flux. The resulting system of ordinary differential
equations is solved numerically using the Runge-
Kutta method coupled with a shooting technique.
The results show that, a boundary layer is formed
and its thickness increases with radiation, velocity
and temperature parameters and decreases when
the Prandtl number is increased.

This paper is concerned with the solution of
steady two-dimensional stagnation point flow of an
incompressible viscous fluid over a stretching sheet
which is placed in a fluid saturated porous medium.
Lie-group theory is applied to the equations of mo-
tion for determining symmetry reductions of par-
tial differential equations [1–6, 8, 10, 11, 13, 17].

The resulting system of non-linear differential equa-
tions is then solved numerically using shooting
method coupled with Runge-Kutta scheme. Partic-
ular cases of our results are compared with those
of Mahapatra and Gupta [7], Pop et al. [12], and
Nazar et al. [9].

2 Mathematical formulation of the problem

Consider the steady, two-dimensional flow of a vis-
cous and incompressible fluid near the stagnation
point on a stretching sheet placed in the plane ȳ = 0
of a Cartesian system of coordinates O x̄ ȳ(ȳ = 0)

with the x̄-axis along the sheet, Fig. 1. The fluid
occupies the upper half plane (ȳ > 0).The stretch-
ing surface has a uniform temperature T̄w and the
free stream temperature is T̄∞ with T̄w > T̄∞.
The wall is stretched by applying two equal and
opposite forces along the x̄-axis, to keep the origin
fixed.

The boundary layer equations for the steady
flow of the incompressible fluid with no radiation
effects, are given by

∂ū
∂ x̄

+ ∂ v̄
∂ ȳ

= 0, (2.1)

ū
∂ū
∂ x̄

+ v̄
∂ū
∂ ȳ

= Ū(x̄)
∂Ū
∂ x̄

+ ν
∂2ū
∂ ȳ2

+ν

k
(Ū − ū), (2.2)

ū
∂T̄
∂ x̄

+ v̄
∂T̄
∂ ȳ

= α
∂2T̄
∂ ȳ2 , (2.3)

together with the boundary conditions

(i) ū = C x̄, v̄ = 0, T̄ = T̄w at ȳ = 0,

(ii) ū→Ū(x̄)=a x̄, T̄ → T̄∞ as ȳ→∞, (2.4)

where, ū is the velocity component along x̄-axis, v̄
is the velocity component along ȳ-axis, Ū(x̄) is the
stagnation point velocity, ν is the kinematic viscos-
ity, k is the permeability of the porous medium,
T̄ is the fluid temperature, α is the coefficient of
thermal diffusivity, C and a are positive constants.

Since the surrounding medium is a fluid satu-
rated porous medium, Eq. (2.2) is the Darcy-Forch-
heimer equation in which the term including the
square of the velocity is neglected [15].
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The variables in Eqs. (2.1)–(2.3) are dimension-
less according to

x = C x̄
U1

, y =
√

C
ν

ȳ, u = ū
U1

, v = v̄√
C ν

,

U = Ū
U1

, T = T̄ − T̄∞
T̄w − T̄∞

, (2.5)

where U1 is the characteristic velocity.
Substitution from (2.5) into (2.1)–(2.3), gives

∂u
∂x

+ ∂v
∂y

= 0, (2.6)

u
∂u
∂x

+ v
∂u
∂y

= U(x)
∂U
∂x

+ ∂2u
∂y2 + k1(U − u), (2.7)

u
∂T
∂x

+ v
∂T
∂y

= 1
Pr

∂2T
∂y2 , (2.8)

where, k1 = ν/k C is the permeability parameter
of the porous medium and Pr = ν/α is the Prandtl
number.
The boundary conditions (2.4) will be

(i) u = x, v = 0, T = 1 at y = 0,

(ii) u → U(x) = a
C

x, T → 0 as y → ∞.

(2.9)

From the continuity Eq. (2.6), there exists a stream
function �(x, y) such that

u = ∂�

∂y
, v = − ∂�

∂x
, (2.10)

which satisfies Eq. (2.6) identically.
Substituting from (2.10) into (2.7) and (2.8), gives

�y�x y − �x�y y − UUx − �y y y

−k1(U − �y) = 0, (2.11)

and

�yTx − �xTy − 1
Pr

Ty y = 0, (2.12)

where subscripts denote partial derivatives.
The boundary conditions (2.9) will be

(i) �y = x, �x = 0, T = 1 at y = 0,

(ii) �y → U(x) = a
C

x, T → 0 as y → ∞.

(2.13)

3 Solution of the problem

At first, we derive the similarity solutions using the
Lie-group method under which (2.11) and (2.12)
are invariant.

y
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Fig. 1 Physical model and coordinate system
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3.1 Lie point symmetries

Consider the one-parameter (ε) Lie group of infin-
itesimal transformations in (x, y, �, U, T) given by

x∗ = x + ε φ (x, y, �, U, T) + O(ε2),

y∗ = y + ε ζ (x, y, �, U, T) + O(ε2),

�∗ = � + ε η (x, y, �, U, T) + O(ε2) (3.1)

U∗ = U + ε F (x, y, �, U, T) + O(ε2),

T∗ = T + ε g (x, y, �, U, T) + O(ε2),

where “ε” is a small parameter.
A system of partial differential Eqs. (2.11) and

(2.12) is said to admit a symmetry generated by the
vector field

X ≡ φ
∂

∂x
+ ζ

∂

∂y
+ η

∂

∂�
+ F

∂

∂U
+ g

∂

∂T
, (3.2)

if it is left invariant by the transformation (x, y, �,
U, T) → (x∗, y∗, �∗, U∗, T∗).
The solutions � = � (x, y), U = U(x) and T =
T (x, y), are invariant under the symmetry (3.2) if


� = X (� − �(x, y)) = 0 when

� = � (x, y), (3.3)


U = X (U − U(x)) = 0 when U = U(x), (3.4)

and


T = X (T − T (x, y)) = 0 when T = T (x, y).

(3.5)

Assume,

�1 = �y�x y − �x�y y − UUx − �y y y

−k1(U − �y), (3.6)

�2 = �yTx − �xTy − 1
Pr

Ty y.

A vector X given by (3.2), is said to be a Lie point
symmetry vector field for (2.11) and (2.12) if

X[3] (
�j

) ∣∣
�j=0 = 0, j = 1, 2, (3.7)

where,

X[ 3] ≡ φ
∂

∂x
+ ζ

∂

∂y
+ η

∂

∂�
+ F

∂

∂U
+ g

∂

∂T

+ηx ∂

∂�x
+ ηy ∂

∂�y
+ gx ∂

∂Tx
+ gy ∂

∂Ty

+Fx ∂

∂Ux
+ ηx y ∂

∂�x y
+ ηy y ∂

∂�y y

+gy y ∂

∂Ty y
+ ηy y y ∂

∂�y y y
, (3.8)

is the third prolongation of X.

To calculate the prolongation of a given trans-
formation, we need to differentiate (3.1) with re-
spect to each of the variables, x and y. To do this,
we introduce the following total derivatives:

Dx ≡ ∂x + �x ∂� + Ux∂U + Tx∂T + �x x∂�x

+Ux x∂Ux + Tx x∂Tx + �x y∂�y + · · · ,

Dy ≡ ∂y + �y ∂� + Ty∂T + �yy∂�y + Tyy∂Ty

+�xy∂�x + · · · , (3.9)

Equation (3.7) gives the following system of linear
partial differential equations

−(Ux + k1) F − �yy ηx + (�xy + k1) ηy + �yη
x y

−�xη
y y − U Fx − ηy y y = 0,

−Ty ηx + Tx ηy + �ygx − �x g y − 1
Pr

gy y = 0.

(3.10)

The components ηx, ηy, gx, gy, Fx, ηxy, ηyy, gyy, ηyyy

can be determined from the following expressions

ηS = DSη − �x DSφ − �yDSζ ,

gN = DNg − Tx DNφ − TyDNζ ,

Fx = DxF − UxDxφ (3.11)

ηJ S = DSηJ − �J x DSφ − �J yDSζ ,

gJN = DNgJ − TJ x DNφ − TJ yDNζ ,

where S, J and N stand for x, y.
Substitution from (3.11) into (3.10) and solving

the resulting equations in view of the invariance of
the boundary conditions (2.13), yields

φ = C1 x, ζ = 0, η = C1� + C3, F = C1U,

g = 0. (3.12)

The system of non-linear Eqs. (2.11) and (2.12) has
the two-parameter Lie group of point symmetries
generated by

X1 ≡ x
∂

∂x
+ �

∂

∂�
+ U

∂

∂U
and

X2 ≡ ∂

∂�
. (3.13)

The one-parameter group generated by X1 con-
sists of scaling, whereas X2 consists of translation.
The commutator table of the symmetries is given
in Table 1, where the entry in the ith row and jth
column is defined as [ Xi, Xj] = XiXj − XjXi.
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Table 1 Table of commutators of the basis operators

X1 X2

X1 0 −X2
X2 X2 0

The finite transformations corresponding to the
symmetries X1 and X2 are respectively

X1 : x∗ = eε1 x, y∗ = y, �∗ = eε1�,

U∗ = eε1 U, T∗ = T,

X2 : x∗ = x, y∗ = y, �∗ = � + ε2,

U∗ = U, T∗ = T, (3.14)

where ε1 and ε2 are group parameters.
For X2, the characteristic


 = (
� , 
U , 
T) , (3.15)

has the components


� = 1, 
U = 0, 
T = 0, (3.16)

which means that no solutions are invariant under
the group generated by X2.
On the other hand for X1, the characteristic (3.15)
has the components


� = � − x �x, 
U = U − x Ux,


T = 0. (3.17)

Hence, the general solutions of the invariant sur-
face conditions (3.3)–(3.5) are

� = x G(y), U(x) = a
C

x, T = h(y). (3.18)

Substitution from (3.18) into (2.11) and (2.12) yields

d3G
d y3 + G

d2G
d y2 −

(
d G
d y

)2

+ λ2

+ k1

[
λ − d G

d y

]
= 0, (3.19)

and

d2h
d y2 + Pr G

d h
d y

= 0, (3.20)

where, λ = a/C is the velocity parameter.

The boundary conditions (2.13) will be

(i)
d G
d y

= 1, G = 0, h = 1 at y = 0,

(ii)
d G
d y

→ λ, h → 0 as y → ∞. (3.21)

3.2 Numerical solution

The system of nonlinear differential Eqs. (3.19) and
(3.20) with the boundary conditions (3.21) is solved
numerically using a shooting method, coupled with
Runge-Kutta scheme.
From (2.10) and (3.18), we get

u
x

= d G
d y

, v = − G and T = h(y). (3.22)

4 Results and discussion

4.1 Horizontal velocity

4.1.1 The effect of velocity parameter λ

Figure 2 illustrates the behaviour of the horizon-
tal velocity u/x for k1 = 0.0 and k1 = 0.1, with
Prandtl number Pr = 0.05, over a range of veloc-
ity parameter λ. As seen, the horizontal velocity
increases with the increase of λ.

A boundary layer is formed when the stretch-
ing velocity is less than the free stream velocity i.e.
λ > 1. That is because, for λ > 1, the straining
motion near the stagnation region increases. So,
the acceleration of the external stream increases
which leads to a decrease in the thickness of the
boundary layer with increasing λ and as a result
increasing the horizontal velocity.

Also, an inverted boundary layer is formed when
the stretching velocity exceeds the free stream
velocity i.e. λ < 1, in both cases when the medium is
not porous, (k1 = 0.0) (Fig. 2a) or when it is porous,
(k1 = 0.1) (Fig. 2b). For k1 = 0.0, these results
are in complete agreement with that reported by
Mahapatra and Gupta [7] and Nazar et al. [9]. For
λ < 1, the structure of the thickness boundary layer
is formed bigger at k1 = 0.0 than at k1 = 0.1. On
the other hand, forλ > 1, the structure of the thick-
ness boundary layer is formed smaller at k1 = 0.0
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Fig. 2 Horizontal velocity profiles over a range of λ with Pr = 0.05 at: (a) k1 = 0.0 (b) k1 = 0.1
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Fig. 3 Horizontal velocity profiles over a range of k1 with Pr = 0.1 at: (a) λ = 0.1 (b) λ = 2.0

than at k1 = 0.1 (Fig. 2). No boundary layer struc-
ture is formed when λ = 1.

4.1.2 The effect of the permeability parameter k1

Figure 3 illustrates the behaviour of the horizontal
velocity u/x for λ = 0.1 and λ = 2.0 with Prandtl
number Pr = 0.1, over a range of the permeabil-
ity parameter k1. When λ = 0.1, the horizontal
velocity decreases as k1 increases. That is because,
for λ < 1, an increase in k1 causes an increase
in boundary layer thickness and as a result a de-
crease in the horizontal velocity (Fig. 3a). On the
other hand, when λ = 2.0, the horizontal velocity
increases as k1 increases. That is because, for λ > 1,
an increase in k1 causes a decrease in the bound-

ary layer thickness and as a result an increase in
the horizontal velocity (Fig. 3b).

4.2 Transverse velocity

4.2.1 The effect of velocity parameter λ

Figure 4 illustrates the behaviour of the transverse
velocity G(y) = −v for k1 = 0.0 and k1 = 0.1,
with Prandtl number Pr = 0.05, over a range of the
velocity parameter λ. It is clear that, the transverse
velocity increases as λ increases.

4.2.2 The effect of the permeability parameter k1

Figure 5 illustrates the behaviour of the transverse
velocity G(y) = −v for λ = 0.1 and λ = 2.0,
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Fig. 4 Transverse velocity profiles over a range of λ with Pr = 0.05 at: (a) k1 = 0.0 (b) k1 = 0.1
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Fig. 5 Transverse velocity profiles over a range of k1 with Pr = 0.1 at: (a) λ = 0.1 (b) λ = 2.0

with Prandtl number Pr = 0.1, over a range of
the permeability parameter k1. We note that, the
transverse velocity decreases as k1 increases when
λ < 1 (Fig. 5a), while a slight variation in the rate
of increase of the transverse velocity appears with
increasing k1 when λ > 1 (Fig. 5b).

4.3 The temperature profiles

4.3.1 The effect of velocity parameter λ

Figure 6 illustrates the variation of the tempera-
ture profiles T for k1 = 0.0 and k1 = 0.1, with
Prandtl number Pr = 0.05, over a range of the
velocity parameter λ. We notice that, the temper-
ature profiles decrease as λ increases and there-
fore the thinning of the thermal boundary layer. In
case of k1 = 0.0, our result is in complete agree-

ment with that reported by Mahapatra and Gupta
[7] and Pop et al. [12]. A small variation in the
rate of decrease of T appears when λ > 1 and
this variation becomes more evident when λ < 1
(Fig. 6).

4.3.2 The effect of the permeability parameter k1

Figure 7 illustrates the variation of the temperature
profiles T for λ = 0.1(< 1.0) with Prandtl number
Pr = 0.05 and Pr = 0.1, over a range of the perme-
ability parameter k1. The temperature increases
as k1 increases. A small variation in the rate of
increase of T appears when Pr = 0.1 (Fig. 7b),
and this variation becomes slightly evident when
Pr = 0.05 (Fig. 7a).

Figure 8 illustrates the variation of the temper-
ature profiles T for λ = 2.0(> 1.0) with Prandtl
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Fig. 6 Temperature profiles over a range of λ with Pr = 0.05 at: (a) k1 = 0.0 (b) k1 = 0.1
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Fig. 8 Temperature profiles over a range of k1 with λ = 2.0 at: (a) Pr = 0.05 (b) Pr = 0.1

number Pr = 0.05 and Pr = 0.1, over a range of
the permeability parameter k1. Here, a slight vari-
ation in the rate of decrease of the temperature T
appears in both cases, as k1 increases.

4.3.3 The effect of the Prandtl number Pr

Figure 9 illustrates the variation of the tempera-
ture profiles T for λ = 0.1 and k1 = 0.1, over a
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Fig. 9 Temperature profiles over a range of Pr at λ = 0.1
and k1 = 0.1

range of Prandtl number Pr. It is noticed that, as
Pr decreases, the thickness of the thermal bound-
ary layer becomes greater than the thickness of
the velocity boundary layer according to the well-

known relation
δT

δ
≈ (Pr)−1/2, where δT is the

thickness of the thermal boundary layer and δ is
the thickness of the velocity boundary layer. So,
the thickness of the thermal boundary layer in-
creases as Pr decreases and hence, the temperature
T decreases with the increase of Pr (Fig. 9)

4.4 Surface heat flux

As mentioned before, when the Prandtl number
increases, the thickness of thermal boundary layer
becomes thinner and this causes an increase in the

gradient of the temperature. Therefore, the surface
heat flux (−h′(0)) increases as Pr increases. For
different values of the velocity parameter λ and
Prandtl number Pr at k1 = 0.0, computed values
of the surface heat flux are compared with those
obtained by Mahapatra and Gupta [7] and Pop et al.
[12]. The results are in very good agreement,
Table 2.

From Table 2, it is noticed that, for fixed value
of Pr, the surface heat flux (−h′(0)) increases as
the velocity parameter λ increases. Also, the value
of (−h′(0)) is positive which is consistent with the
fact that the heat flows from the surface to the
fluid as long as T̄w > T̄∞ in the absence of viscous
dissipation.

4.5 Wall shear stress

The dimensionless wall shear stress G′′(0) (skin
friction) is computed for different values of the
velocity parameter λ and permeability parameter
k1 at Pr = 0.05. As seen from Table 3, the absolute
value of the dimensionless wall shear stress

∣∣ G′′(0)
∣∣

decreases as λ increases when λ < 1 and it
increases with increasing λ when λ > 1which is
consistent with the fact that, there is progressive
thinning of the boundary layer with increasing λ.
Also, the absolute value of the dimensionless wall
shear stress

∣∣ G′′(0)
∣∣ increases as k1increases for

fixed value of velocity parameter λ (Table 3).
The computed values of G′′(0) are compared

with those obtained by Mahapatra and Gupta [7],
Pop et al. [12], and Nazer et al. [9], for different
values of the velocity parameter λand with Prandtl
number Pr = 0.05 at k1 = 0.0. The results are in
complete agreement (Table 4).

Table 2 Comparison between the values of h′(0) at k1 = 0.0 for different values of λ and Pr

λ Mahapatra and Gupta (2002) Pop et al. (2004) Present work
Pr Pr Pr

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0.1 −0.383 −0.603 −0.777 −0.381 −0.600 −0.773 −0.3827 −0.6048 −0.7770
0.2 −0.408 −0.625 −0.797 −0.406 −0.621 −0.793 −0.4073 −0.6256 −0.7972
0.5 −0.473 −0.692 −0.863 −0.471 −0.689 −0.859 −0.4728 −0.6925 −0.8648
1.0 −0.563 −0.796 −0.974 −0.562 −0.793 −0.970 −0.5641 −0.7979 −0.9772
2.0 −0.709 −0.974 −1.171 −0.708 −0.971 −1.168 −0.7118 −0.9787 −1.1781
3.0 −0.829 −1.124 −1.341 −0.828 −1.122 −1.339 −0.8335 −1.1321 −1.1352
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Table 3 Values of dimensionless wall shear stress G′′(0) for different λ and k1

λ

G′′(0)

k1

0.0 0.1 0.5 1.0 1.5 2.0

0.1 − 0.969643 − 1.010073 − 1.158373 − 1.321118 − 1.466126 − 1.598121
0.2 − 0.918164 − 0.951899 − 1.076833 − 1.215624 − 1.340381 − 1.454602
0.5 − 0.667259 − 0.685439 − 0.754013 − 0.832126 − 0.903694 − 0.970102
2.0 2.017506 2.041796 2.136322 2.249105 2.356671 2.459670
3.0 4.729285 4.770855 4.933765 5.130383 5.319968 5.503211

Table 4 Comparison between the values of G′′(0) at k1 = 0.0 and Pr = 0.05 for different values of λ

λ
G′′(0)

Mahapatra and Gupta (2002) Pop et al. (2004) Nazar et al.(2004) Present work

0.1 − 0.9694 − 0.9694 − 0.9694 − 0.969643
0.2 − 0.9181 − 0.9181 − 0.9181 − 0.918164
0.5 − 0.6673 − 0.6673 − 0.6673 − 0.667259
2.0 2.0175 2.0174 2.0176 2.017506
3.0 4.7293 4.7290 4.7296 4.729285

5 Conclusion

Lie-group method is applicable to both linear and
non-linear partial differential equations, which
leads to similarity variables that may be used to
reduce the number of independent variables in
partial differential equations. By determining the
transformation group under which a given partial
differential equation is invariant, we can obtain
information about the invariants and symmetries
of that equation. This information can be used
to determine the similarity variables that will re-
duce the number of independent variables in the
system. In this work, we have used Lie symme-
try techniques to obtain similarity reductions of
nonlinear boundary layer Eqs. (2.1)–(2.3), for the
two-dimensional steady flow of an incompressible,
viscous fluid near a stagnation point at a heated
stretching sheet placed in a porous medium. By
determining the transformation group under which
a given partial differential equation is invariant,
we obtained information about the invariants and
symmetries of that equation. This information, in
turn, was used to determine the similarity variables
that reduced the number of independent variables.

The resulting system of non-linear ordinary
differential Eqs. (3.19)–(3.20) is solved numerically
with the boundary conditions (3.21) using shooting

method, coupled with Runge-Kutta scheme. We
have studied the effects of the velocity parameter
λ, the permeability parameter k1 and the Prandtl
number Pr on the horizontal velocity u/x, trans-
verse velocity G(y) = −v, temperature profiles T,
surface heat flux (−h′(0)) and the wall shear stress.
Particular cases of our results are compared with
those of Mahapatra and Gupta [7], Pop et al. [12],
and Nazar et al. [9] and were found to agree very
well with their results.
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