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Abstract. This paper deals with vibrations of an infinite plate in contact with an acoustic medium
where the plate is subjected to a point excitation by an electric motor of limited power-supply. The
whole system is divided into two: “exciter - foundation” and “foundation-plate-medium”. In the sys-
tem “motor-foundation” three classes of steady state regimes are determined: stationary, periodic and
chaotic. The vibrations of the plate and the pressure in the acoustic fluid are described for each of
these regimes of excitation. For the first class they are periodic functions of time, for the second
they are modulated periodic functions, in general with an infinite number of carrying frequencies,
the difference between which is constant. For the last class they correspond to chaotic functions. In
another mathematical model where the exciter stands directly on an infinite plate (without founda-
tion) it was shown that chaos might occur in the system due to the feedback influence of waves in
the infinite hydro-elastic subsystem in the regime of motor shaft rotation. In this case the process
of rotation can be approximately described as a solution of the fourth order nonlinear differential
equation and may have the same three classes of steady state regimes as the first model. That is
the electric motor may generate periodic acoustic waves, modulated waves with an infinite number of
frequencies or chaotic acoustic waves in a fluid.
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1. Introduction

The coupling effect between an excitation machine and vibrational loads, found by
Sommerfeld [14, 15], is a universal phenomenon and a manifestation of the law of
conservation of energy. It always exists to a certain degree. The effect of the load is
especially significant when the output power of the machine is comparable with the
power consumed by load. This is the case of the so-called “limited power-supply”
machine, where the load is under “limited” (nonideal) excitation. At first equations
of motion with explanation the phenomena observed in Sommerfeld’s experiments
were obtained by Blekhman [2]. However, a rather complete study of the Sommerfeld
effect has been given in the works of Kononenko [5], so that we call these phenom-
ena as Sommerfeld–Kononenko effect [11].

In the stationary case the various interaction effects are caused by the consump-
tion of energy in the internal damping of the vibrational system. For the particular
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case where chaos occurs in the interaction between the exciting machine and the
vibrating systems this effect was further considered in papers [7–9].

A different principle of interaction between the loads and the machine also applies.
All machines are sources of noise, and the radiation of acoustic energy is an undesirable
factor which should be controlled. Energy dissipation by radiation of sound and elastic
waves into surrounding objects is significant in the dynamics of machines. The char-
acteristic features of the limited excitation of hydro-elastic systems, where a significant
fraction of the consumed energy is transported by waves, were studied in the works [4,
6, 10, 11]. In these studies the vibrations of an infinite plate in contact with an acoustic
medium (a fluid) were considered where the plate was subjected to a point excitation,
and one along a line using an electric motor of limited power. With the condition of a
limited power-supply the dynamics of the machine will be described by an incomplete
system of equations, which can be completed only after adding equations representing
the behaviour of the load. In accordance with the language of modern science (which
the discovery of chaos in regular dynamic systems has undoubtedly enriched), in this
case parameters of machine functioning not only quantatively feel the effect of load-
ing, but will be modified according to completely different laws. Before the existence
of determinated chaos was discovered the reduction principle had been used in the
analysis of complicated system by dividing it into parts and analysing each subsys-
tem separately. The existence of chaotic regimes led to the conclusion that a complete,
complex system may have a complicated behaviour pattern only because of the interac-
tion between several components. For example, there is chaos in two-degree-of-freedom
system describing a fluid-elastic vibrations of a constrained pipe conveying fluid [12].

In the present study the appearance of chaos in the process of interaction between
an electric motor of limited power-supply and vibrations of an elastic infinite plate in
contact with an acoustic medium is considered. Two different mathematical models of
the considered physical system will be used. In the first the plate is subjected to a point
excitation by a motor through an elastic foundation, in the second model the plate is
excited directly without the motor foundation.

2. Mathematical Models of the “Exciter-Foundation-Infinite Hydro-elastic
Subsystem”

The practical conditions in which a machine functions are usually such that it is mounted
on a foundation and generates noise to the surroundings, so that it interacts with several
different subsystems. These one modelled in the following way. As an exciter an electric
motor (electromotor) with limited power-supply is [5, 14] chosen, which stands on a foun-
dation. The foundation is modelled by a one-degree-of-freedom elastic system, for exam-
ple, by a nonlinear spring (see Figure 1). It stands on a hydro-elastic infinite system, which
includes an infinite elastic plate and an acoustic half-space. We can consider an elastic plate
of thickness h, density ρ0, and a mean surface coinciding with the plane x =0. We assume
that the half-space x <0 is occupied by a fluid of density ρ where the velocity of sound is c

(Figure 1). We further assume that the foundation, the spring with rigidity c0 −γ u2 (where
u is the deformation of the spring), is placed at the origin O of a cylindrical coordinate
system r, ϕ, x. The motor (static mass M) with an unbalanced mass m at a distance a from
the shaft axis stands on the foundation. When the shaft rotates, the vertical component of
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Figure 1. Scheme of the system.

the inertial force of the mass m is mad2
/dt2(1−cos�), where � is the rotational displace-

ment angle of the shaft, measured with respect to upward vertical. The angular velocity
of the shaft �̇ is not a fixed value but an additional unknown in the considered problem
where the excitation is by an electromotor with limited power-supply. The shaft rotation is
affected by the feedback influence of the foundation vibrations and the waves in the hydro-
elastic system. Therefore it is necessary to include an additional equation for the process
of shaft rotation in the mathematical model of the foundation and the plate vibrations
with “limited” excitation (or under the influence of the Sommerfeld–Kononenko effect).

We further consider the elastic vibration u(t) of the foundation and bending vibra-
tion w(r, t) of the plate. The equations describing the behaviour of the whole system
can be written as

M

(
ü+ ∂2w(0, t)

∂t2

)
+κ0u̇+ c0u−γ u3 =ma

d2

dt2
(1− cos�);

I�̈=L(�̇)−H(�̇)+ma sin �

[
g + ü+ ∂2w(0, t)

∂t2

]
; (1)

D�2w(r, t)+ρ0h
∂2w(r, t)

∂t2
= (c0u−γ u3)

δ(r)

2πr
+p(r,0, t);

where κ0 is the damping coefficient; I is the moment of inertia of the rotor shaft;
L(�̇) is the driving torque; H(�̇) is the moment of resistive forces of electromotor
[5, 14]; g is the acceleration due to gravity; D is the bending rigidity of the plate;
�=∂2/∂r2 +1/r ∂/∂r; δ(r) is the Dirac function; p(r, x, t) is the acoustic pressure of
the fluid, which satisfies a wave equation of the form

�p(r, x, t)+ ∂2p

∂x2
= ∂2p

c2∂t2
. (2)

To simplify, we can consider the case of resonant vibrations of the foundation and
assume that u(t)>w(r, t). So the system described in (1) can be divided into two. The
first is given by

Mü+κ0u̇+ c0u−γ u3 =ma
d2

dt2
(1− cos�),

I�̈=L(�̇)−H(�̇)+ma sin �[g + ü];
(3)
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and the second, linked to the first, by

D�2w +ρ0h
∂2w

∂t2
= (c0u−γ u3)

δ(r)

2πr
+p(r,0, t); �p + ∂2p

∂x2
= ∂2p

c2∂t2
. (4)

We can consider the steady state regimes of the systems given in (3) and (4).
System (3) is nonlinear and describes a complicated process of energy redistribution
from the electromotor into the vibrating foundation. It is necessary to point out that
the interaction between the vibration u(t) and the shaft rotation with respect to the
angle �(t) is itself nonlinear since a connection with the periodic influence of the
electromotor is always a nonlinear function of the the rotational angle �.

In order to obtain the solution of the system (3), we introduce a small positive
parameter

ε = m

M
. (5)

The rotational velocity of the shaft �̇ is regarded as being close to the natural fre-
quency of the foundation ω0 = ( c0

M
)

1
2 , and we may then write

�̇=ω0 + 1
2
ε

2
3 ω0ν(τ); (6)

where τ = 1
2ε

2
3 �(t)-slow time. We propose a solution for u in the form

u(t)= ε
1
3 a[α(τ) cos�+β(τ) sin �]. (7)

For the new coordinates α(τ) and β(τ) after the procedure of averaging in fast
time �(t) we obtain the equations

dα

dτ
=−ηα −νβ −γ1(α

2β +β3);
dβ

dτ
=−ηβ +να +γ1(α

3 +αβ2)+1;
(8)

where η= κ0

Mε
2
3 ω0

; γ1 = 3γ

4Mω2
0

.

In the following section the steady regimes of interaction will be analysed. For this
reason the static characteristic of an electromotor [5] as the torque L(�̇) will be used,
and accordingly , we assume (L−H)I−1 =2ε

2
3 ω−1

0 M1(�̇). The substitution �̇=�(τ)

is introduced, and then on the basis of (3) and the procedure of averaging in the fast
time � we can write an equation for �

d�

dτ
=M1(�)−µβ; (9)

where µ=m
1
3 M

2
3 a2ω0I

−1. Approximating the static characteristic of the electromotor
by a linear function M1(�)=N0 −N1� (N0,N1-constants) then, the following equa-
tion is valid for the frequency offset ν

dν

dτ
=N2 −N1ν −µ1β. (10)
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Here N2 =2M
2
3 m− 2

3 (N0ω
−1
0 −N1);µ1 =2M

4
3 m− 1

3 a2I−1.
The complex interaction process between the foundation vibrations and the shaft

rotation is thus described by three nonlinear coupled equations (8) and (10). If the
foundation itself is a linear system (γ1 =0) the process of the interaction will also be
a nonlinear one as well as the system of equations (8) and (10).

We should emphasize that with an ideal (unlimited) excitation of the foundation
vibrations, the system of two averaged equations (8) will become a two parameter
one having two constant parameters η and ν, and no chaotic regimes. However, with
the problem considered here, where ν is an additional unknown variable, the system
of equations (8) and (10) may have chaotic regimes due to the nonlinear interaction.

3. Steady State Regimes of the Interaction

Here the steady solutions of system of equations (8) and (10), which may represent
equilibrium states, periodic and also chaotic solutions are analyzed ([7, 8]). In the
three-dimensional phase-space (α,β, ν) these solutions correspond to such asymptotic
trajectories as the point, the limit cycle and chaotic attractor, respectively. Asymptotic
trajectories of the system (8) and (10) may be onstructed using numerical methods. In
this paper the fourth order Runge–Kutta method is used. The system of equations
(8) and (10) contains five parameters (η, γ1,N2,N1,µ1) which, together with the ini-
tial conditions, determine its behaviour in a steady regime. We assume

η=0.1; γ1 =0.125; N2 =0.04; µ1 =0.5; α(0)=β(0)=ν(0)=0. (11)

Parameter N1 was varied with the purpose of determining all the possible classes of
asymptotic trajectories. In Figure 2 the dependence on parameter N1 is shown of the
maximal nonzero Lyapunov exponent λ determined by the algorithm of Benettin [1].
When the largest of the Lyapunov exponent is greater than zero, then chaos is
observed in the system.

Evidently, there are two such regions of chaotic motion at 0.489�N1 �0.506 and
0.631�N1 �0.671.

N1

0.4 0.5 0.6 0.7

-0.02

0

0.02

0.04

0.06

Figure 2. Dependence on N1 of the maximal Lyapunov exponent λ.
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When 0 < N1 < 0.382 the system has a stable equilibrium position, which corre-
sponds to the first type of the steady state regime, namely the stationary regime.

Periodic solutions are realized in the intervals 0.382 � N1 < 0.489,0.506 < N1 <

0.631 and 0.671<N1 <3.0.
When N1 =0.70 the coordinates of the equations system (8) and (10) are periodic

functions that correspond to a two-turn cycle in phase-space (Figure 3(a)). Results
for the dimensionless power of the motor P1 =N2 −N1ν, the power consumed by the
foundation damping force P2 =ηµ1(α

2 +β2), the total power P =P1 +P2 are shown
in Figure 3(b). For the case considered the powers show typical periodic behaviour.

The chaotic trajectory for N1 =0.64 is shown in Figure 4(a). Power curves for this
case are shown in Figure 4(b). The total power also oscillates around zero (as in the
periodic regimes), but no constant period exists in slow time, for which the average
power will be zero.

Summarizing, in the system “electromotor-foundation” three classes of steady state
regimes are determined. The first class (I) consists of the stationary regimes, when
vibrations of the foundation occur with constant amplitude and frequency and the
electromotor shaft rotates with a constant speed. The second class (II) contains
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Figure 3. Graphs of (a) the trajectory and (b) the powers P1, P2 and the total power P at N1 =0.70
for the periodic regime.
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Figure 4. Phase portrait of (a) the chaotic attractor and (b) graphs of the powers P1, P2 and the total
rower P for N1 =0.64.
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regimes with periodically changing amplitude and frequency of foundation vibra-
tions and the shaft speed periodically changes with time. Finally, the third class
(III) corresponds to chaotic regimes when amplitude and frequency of vibrations and
the electromotor speed change in time chaotically. The last regime is asymptotically
established in the system. The system cannot leave this regime without assistance or
be approximated by regimes of the first two classes.

4. Regular and Chaotic Waves in the Infinite Hydro-Elastic System

Now we can consider all possible types of the solution to the system (4). The bound-
ary condition is that the normal component of the velocity must be continuous in
passing from the plate (where it is ∂w(r, t)/∂t) to the fluid (where it is vx). Therefore
we have ∂w/∂t =vx (when x =0). Using the relation ∂p(r, x, t)/∂x =−ρ∂vx/∂t , which
is satisfied in the acoustic field, the boundary condition becomes

−ρ
∂2w(r, t)

∂t2
= ∂p(r, x, t)

∂x
; x =0. (12)

Using the Laplace transform with respect to time and the Hankel transform with
respect to the radial coordinate, general expressions for the bending deflection and
pressure can be represented in the form [3, 4]:

w(r, t)= 1
2π i

∫ σ+i∞

σ−i∞

∫ ∞

0
ζ1(λ, s)J0(λr)λestdλds;

p(r, x, t)= 1
2π i

∫ σ+i∞

σ−i∞

∫ ∞

0
ζ2(λ, s)J0(λr)ex

√
λ2+s2c−2

λestdλds

(13)

Substituting these expressions into the boundary condition (12) and into (4) leads
to the relation ζ1(λ, s)=�(s)/ξ(λ, s) where ξ(λ, s)=Dλ4 +ρ0hs2 +ρs2/

√
λ2 + s2c−2;

�(s) is the Laplace transform of the function (c0u−γ u3) and hence

�(s)=
∫ ∞

0
[c0u(t)−γ u3(t)]e−stdt

=
∫ ∞

0
[ε1/3ac0(α cos�+β sin �)− εa3γ (α cos�+β sin �)

3]e−stdt (14)

The relationships (13) can then be written as

w(r, t)= 1
2π i

∫ σ+i∞

σ−i∞

∫ ∞

0

�(s)

ξ(λ, s)
J0(λr)λest dλds;

p(r, x, t)=− 1
2π i

∫ σ+i∞

σ−i∞

∫ ∞

0

�(s)

ξ(λ, s)
J0(λr)λest ex

√
λ2+s2c−2

√
λ2 + s2c−2

dλds. (15)

For the first class (I) of the steady state regimes, where u(t) is the periodic func-
tion with constant amplitude (α0, β0) and frequency �0, the vibrations of w(r, t) have
the form
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w(r, t)= c1α0 − 3
4γ2α

3
0

2π
�

[
e−i�0t

∫ ∞

0

J0(λr)λ

ξ(λ, i�0)
dλ

]

+ c1β0 − 3
4γ2β

3
0

2π
�

[
e−i�0t

∫ ∞

0

J0(λr)λ

ξ(λ, i�0)
dλ

]

− γ2α
3
0

8π
�

[
e−3i�0t

∫ ∞

0

J0(λr)λ

ξ(λ,3i�0)
dλ

]

+ γ2β
3
0

8π
�

[
e−3i�0t

∫ ∞

0

J0(λr)λ

ξ(λ,3i�0)
dλ

]
; (16)

where c1 =ε1/3ac0;γ2 =εa3γ ; and � is the real part and � is the imaginary part of a
function.

For the second class (II) of the steady state regimes u(t) appears to be a modu-
lated periodic function whose amplitude and frequency are also periodic functions.
Vibrations of plate and pressure in an acoustic fluid will be described by regular but
complicated functions of time, having infinite number of Fourier harmonics. We con-
sider the following. Let a solution of the system of equations (8) and (10) have the
most simple periodic form

α =α1 cosωτ =α1 cos(ε2/3ω0ωt/2);
β =β1 sin ωτ =β1 sin(ε2/3ω0ωt/2);
ν =ν1 cosωτ =ν1 cos(ε2/3ω0ωt/2),

(17)

where α1, β1, ν1 are constants. Then

u(t)

a
= ε1/3α1 cos(ε2/3ω0ωt/2) cos [ω0t + ν1

ω
sin(ε2/3ω0ωt/2)− ν1

ω
]

+ ε1/3β1 sin(ε2/3ω0ωt/2) sin [ω0t + ν1

ω
sin(ε2/3ω0ωt/2)− ν1

ω
]

=F1(t) cos
(ν1

ω
sin(ε2/3ω0ωt/2)

)
+F2(t) sin

(ν1

ω
sin(ε2/3ω0ωt/2)

)

=F1(t)

[
J0

(ν1

ω

)
+2

∞∑
k=1

J2k

(ν1

ω

)
cos(kε2/3ω0ωt)

]

+2F2(t)

∞∑
k=1

J2k−1

(ν1

ω

)
sin

(
k − 1

2

)
ε2/3ω0ωt,

where F1,F2 are periodic functions with frequency �1; and

�k =ω0 ± k

2
ε2/3ω0ω; k =1,2,3, . . . ,∞.

The power spectrum and the time dependent function u(t)/a for ε = 0.1,

f0 = ω0/(2π) = 9.05/(2π) Hz and N1 = 0.70 (the modulated periodic regime) are
shown in Figure 5. The maximal peak of the power spectrum corresponds to f0.
Peaks are situated equidistantly with a frequency difference fd = ε2/3ωf0/2. In this
case, the solution (15) for w and p will represent an infinite sum of items
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Figure 5. (a) Power spectrum and (b) the temporal realizations u/a for N1 =0.70 and ε =0.1.

p � ei�kt

∫ ∞

0
− J0(λr)λρ�2

k

ξ(λ, i�k)

√
λ2 − �2

k

c2

e
x

√
λ2− �2

k

c2 dλ; (18)

w � ei�kt

∫ ∞

0

J0(λr)λ

ξ(λ, i�k)
dλ; k =1,2,3, . . . ,∞ (19)

For every wave frequency �k it is necessary to solve the problem of the wave for-
mation that this frequency had excited in space. In order to achieve this the inverse
transformations (19) and (18) must be made, taking into account the theory of sin-
gularities [4, 6]. In Figure 5 nine peaks are shown at the levels greater than −20 dB
comparatively to the maximum. So for w and p in this interval we will have the sum
of aproximately nine solutions of the stationary type.

Finally, for the last class (III) of steady state regimes, when chaotic vibrations of
the foundation with the chaotic changing frequency are realized, the function u(t)/a

(7) has a continuous spectrum. The power spectrum and the temporal realization of
u(t)/a for the chaotic regime at ε = 0.1, f0 = 9.05/2πHz and N1 = 0.64 are shown
in Figure 6 (for initial conditions (11)) and in Figure 7 (for α(0) = 0.01 and other
parameters as in (11)). All the temporal realizations were analysed after a prolonged
time interval in order for the transitional regimes to be complete. The differences in
power spectrums (clearly seen if compare Figure 6(a) to Figure 7(a)) and temporal
realizations prove that small changes (about ε2) in the initial conditions can signifi-
cantly change the trajectories and the power spectrum because of the change to the
chaotic value of ν. The power spectrums of the functions of w and pressure p(r, x, t)

in the fluid during the chaotic regimes of exciter will also be continuous and more
complicated.

5. Chaos in the System “Exciter-Infinite Hydro-elastic Subsystem”

Let us consider the possibility of chaotic waves in the system “exciter-infinite hydro-
elastic subsystem”. In this case we assume that the electromotor stands directly on
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Figure 6. (a) Power spectrum and (b) the temporal realizations u(t)/a for N1 = 0.64, ε = 0.1 and the
initial conditions (11).
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Figure 7. (a) Power spectrum and (b) the temporal realizations u(t)/a for N1 =0.64, ε =0.1 and α(0)=
0.01, β(0)=0 and ν(0)=0.

the elastic infinite plate without a foundation. The equations describing the process
of interaction have the form

I�̈=L(�̇)−H(�̇)+ma sin �

[
g + ∂2w(0, t)

∂t2

]
; (20)

D�2w(r, t)+ρ0h
∂2w(r, t)

∂t2
= (�̇2 cos�+ �̈ sin �)

δ(r)

2πr
+p(r,0, t). (21)

General expressions for the bending deflection and pressure variation can be
written as (15), where the function �(s) is now

�(s)= ma

2π

∫ ∞

0
[�̇2 cos�+ �̈ sin �]e−stdt (22)
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The electromotor shaft rotation can be described by the equation

I�̈=L(�̇)−H(�̇)+ma sin �

[
g + ma

(2π)2i
∂2

∂t2

∫ σ+i∞

σ−i∞∫ ∞

0

λest

ξ (λ, s)

(∫ ∞

0
(�̇2 cos�+ �̈ sin �)e−stdt

)
dλds

]
; (23)

This is a nonlinear integro-differential equation in the variable �. If the approxima-
tion of the Hankel transformation at the point r =0 is used, this equation becomes a
nonlinear fourth order equation with respect to time. This means that it may have its
own chaotic regimes because, in general, chaos can appear in solutions to nonlinear
equations of the third or higher orders [13]. It will also have two classes of regular
solutions: stationary and periodic (or quasi-periodic). As in the first model consid-
ered here, these three classes of steady state regimes, in the process of the electromo-
tor shaft rotation, generate a periodic force, a modulated periodic force with infinite
number of carrying frequencies and a chaotic one. Each of these forces can generate
a different class of waves in the infinite hydro-elastic system.

6. Conclusion

The interaction between an infinite hydro-elastic system and an exciter in a model
where the exciter stands on a foundation and in a model where the exciter stands
directly on the hydro-elastic system have been analysed.

The possibility of acoustic chaos in a regular system has been demonstrated. This
chaos can arise from the “exciter-foundation” subsystem and then appear in the
acoustic medium. The model “exciter-foundation” itself can be applied to describe
some resonant vibrations of the finite plate ( when using a low-dimensional model
of the plate vibration) in an acoustic medium.

In the case where the exciter stands directly on the infinite plate, chaos might
appear in the area of electromotor shaft rotation due to the feedback influence of
the infinite hydro-elastic subsystem, leading to chaotic waves being generated in the
hydro-elastic subsystem.

The results discussed in this paper should be applicable in a wide variety of situ-
ations. For example, they can be used to investigate the various types of energy radi-
ation by an electromotor of limited power-supply as it interacts with finite elastic
plates and constuctions in contact with an acoustic medium. Further development
could include an extention of these results to fluid loading with mean flow.
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