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Abstract. Vibrations of a parametrically and self-excited system with two degrees of freedom have
been analysed in this paper. The system is constituted by two parametrically coupled oscillators char-
acterised by self-excitation and nonlinear Duffing’s type nonlinearities. Synchronisation phenomenon
has been determined near the principal resonances in the neighbourhood of the first p1 and the sec-
ond p2 natural frequencies, and near the combination resonance (p1 +p2)/2. Vibrations have been
investigated for parameters which satisfy the internal resonance condition p2/p1 =3. The existence and
break down of the synchronisation phenomenon have been revealed analytically by the multiple time
scale method, whilst transition of the system to chaotic motion has been carried out numerically.

Key words: Self-excitation, Parametric vibrations, Synchronisation, Internal resonance, Chaos.

1. Introduction

Interactions between vibrations originated by different sources can lead to very inter-
esting phenomena [1,2]. Particularly, interactions between self- and parametrically
excited vibrations produce quasi-periodic motion, but near some resonance regions,
the synchronisation of the system frequency is observed, and then the system vibrates
periodically. This phenomenon has been observed for one degree of freedom [3–5]
and for two degrees models [6,7]. If the vibrating oscillator is additionally forced by a
harmonic force, then inside the main parametric resonance, new solutions can appear
[8,9]. The resonance curve possesses an internal loop. In such case, even five coexis-
ting steady states of vibrations are possible. These kinds of phenomenon has been
observed for one and two degrees of freedom systems [6,10]. Moreover, increase of
parametric excitation transits the system from regular motion to chaos [5,7,11] or
hyperchaos [10,12]. If the system is forced by energy source with limited power, then
additional coupling in the system appears and new additional dynamic effects have
been observed [10]. This kind of problem is called nonideal. Influence of nonideal
energy source on the parametric and self-excited system has been presented by War-
minski et al. [13] and Warminski [10,14]. Very often, papers devoted to many degrees
of freedom systems concern the case when their natural frequencies are incommensu-
rable numbers [6,10,12]. Dynamics of the parametrically and self-excited system can
change radically if its natural frequencies ratio is a natural number [15,16]. Then, the
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system vibrates under the internal resonance condition. Due to the strong vibration
modes interaction, the nature of motion can be different. In practical applications,
for instance in manufacture dynamics [17], this kind of resonance is called ’mode
coupling chatter’.

Interactions between parametrically and self-excited vibration under the internal
resonance condition in the neighbourhood of synchronisation areas, is the main pur-
pose of this paper. Besides, transition of the system to chaotic motion is pointed as
well. As an example of practical engineering applications can be mentioned: vibra-
tions of rotating shafts mounted in journal bearings and having different stiffness in
two orthogonal directions [18], chatter vibrations in machining processes [19], gear
boxes vibrations taking into account friction between teeth [20], cars’ wheels vibra-
tions due to radial changing stiffness and shimmy effect, or vibrations of an air-
plane’s wing [4] or cables under flutter conditions [21–23]. The results of the paper
may also be useful for control of nonlinear oscillations [24].

2. Model of the Vibrating System

A vibrating system (Figure 1) is composed of two masses coupled by a spring with
stiffness changing periodically in time (parametric excitation of Mathieu’s type). The
model consists of a nonlinear Duffing’s type spring and a nonlinear damper. The
nonlinear damper described by the van der Pol’s function fd2

(
x2, x

′
2

)=(−c2 − ĉ2x
2
2

)
x ′

2
is the source of the self-excitation of the system. Note that parameters having index 1
correspond to the first oscillator and index 2 to the second one, while mixed indexes
mean coupling terms. Dynamics of the model is governed by the following two differ-
ential equations, expressed in generalised coordinates x1 and x2:

m1x
′′
1 +k1x1 + k̂1x

3
1 +

(
k12 − k̂12 cos 2ωt

)
(x1 −x2)=0, (1)

m2x
′′
2 +fd2(x, x

′)−
(
k12 − k̂12 cos 2ωt

)
(x1 −x2)=0. (2)

Primes denote derivatives with respect to time. We introduce dimensionless time
τ =ω1t , and coordinates X1 =x1/x0, X2 =x2/x0, where ω1 =√

k1/m1 and x0 =m1g/k1

are the natural frequency and the static displacement of the first mass in case of

Figure 1. Physical model of the system.
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absence of the coupling spring. Thus, differential equations of motions (1) and (2)
take dimensionless forms:

Ẍ1 + δ1X1 + δ12(X1 −X2)= ε
[−γ̃1X

3
1 + µ̃ cos 2ϑτ(X1 −X2)

]
, (3)

Ẍ2 −Mδ12(X1 −X2)= εM
[
−F̃d2(X2, Ẋ2)− µ̃ cos 2ϑτ(X1 −X2)

]
. (4)

Dots indicate derivatives with respect to dimensionless time. A formal small parameter
ε is also introduced in (3) and (4). To get the original set of parameters, it is
necessary to multiply dimensionless parameters with ‘tilde’ by the formal small
parameter i.e.

α2 = εα̃2, β2 = εβ̃2, γ1 = εγ̃1,µ= εµ̃,Fd1 = εF̃d1,Fd2 = εF̃d2,

where: ϑ=ω/ω1, δ1 =1, δ12 =k12/k1, µ= k̂12/k1, M=m1/m2, γ1 =x2
0 · k̂1/k1, are dimen-

sionless coefficients. The function Fd2 takes form: Fd2 = (−α2 +β2X
2
2)Ẋ2,

where α2 = c2/(m1ω1), β2 =x2
0 · ĉ2/(m1ω1).

For ε=0, the system is linear and its natural frequencies are:

p2
1,2 = 1

2

[
(δ1 + δ12)+Mδ12∓

√
(δ1 + δ12 +Mδ12)

2 −4Mδ1δ12

]
. (5)

To solve the system analytically, the generalised coordinates X1, X2 have been trans-
formed into quasi-normal co-ordinates Y1 and Y2:

Y1 =λ11X1 +λ21X2, Y2 =λ12X1 +λ22X2, (6)

where

λ11 =1, λ21 = δ1 + δ12 −p2
1

δ12M
, λ12 =1, λ22 = δ1 + δ12 −p2

2

δ12M

are the corresponding vibrations modes. Substituting the quasi-normal co-ordinates
into equations (3) and (4) we get

Ÿ1 +p2
1Y1 = ε

{
F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ21F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
, (7)

Ÿ2 +p2
2Y2 = ε

{
F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ22F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
, (8)

where

F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )=−γ̃1(Y2ψ1 −Y1ψ2)
3 + µ̃ cos 2ϑτ (Y2η1 −Y1η2) ,

F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )=−F̃d2 − µ̃ cos 2ϑτ (Y2η1 −Y1η2)

and

F̃d2 =
[
−α̃2 + β̃2χ

2 (Y1 −Y2)
2
]
χ

(
Ẏ1 − Ẏ2

)

is the nonlinear damping of the second oscillator. The parameters introduced in the
coordinates transformation are defined as

χ = 1
λ21 −λ22

, ψ1 = λ21

λ21 −λ22
, ψ2 = λ22

λ21 −λ22
, η1 =ψ1 +χ, η2 =ψ2 +χ.
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For ε=0, equations (7) and (8) are uncoupled. However, in the considered case ε is
assumed to be small and positive. It means that the system is weakly coupled. More-
over, we assume that internal resonance condition p2 = 3p1 is also satisfied. Due to
cubic nonlinearity, we can expect that this kind of the internal resonance can play
important role.

3. Analytical Solutions

3.1. Principal Parametric Resonance

Analytical solutions of the coupled nonlinear equations (7) and (8) can be deter-
mined by applying approximate methods. For weakly nonlinear system (small and
positive value of ε) the multiple time scale method has been used [25]. Near the prin-
cipal (the main) parametric resonances we can write:

• around the first natural frequency p1

ϑ2 =p2
1 + εσ1, (9)

• around the second natural frequency p2

ϑ2 =p2
2 + εσ2, (10)

where σ1 and σ2 are detuning parameters.
Around the first natural frequency we assume that the free frequencies relationship

satisfies the internal resonance condition p2
2

/
p2

1 =ν2
21, where ν21 is a natural number.

The last condition and equation (9) gives

Ÿ1 +ϑ2Y1 = ε
{
σ1Y1 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ21F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
, (11)

Ÿ2 +ν2
21ϑ

2Y2 = ε
{
σ1ν

2
21Y2 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ22F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
. (12)

We assume ν21 =3 considering a model characterised by the internal resonance con-
dition p2

/
p1 =3.

The approximate solution at the first-order of approximation is expressed in a
power series of the small parameter ε:

Y1 (T0, T1, ε)=Y10 (T0, T1)+ εY11 (T0, T1)+· · · (13)

Y2 (T0, T1, ε)=Y20 (T0, T1)+ εY21 (T0, T1)+· · · (14)

and

Tn= εnτ, (15)

where T0 = τ , T1 = ετ are, respectively, the fast and slow time scales. According to
Nayfeh [25], Dm

n means m order derivative with respect to n scale of time. After
substituting the expansions (13) and (14) into (11), (12) we obtain equations at differ-
ent perturbation orders
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ε0

D2
0Y10 +ϑ2Y10 =0, (16)

D2
0Y20 +9ϑ2Y20 =0, (17)

ε1

D2
0Y11 +ϑ2Y11 =σ1Y10 −2D0D1Y10 + F̃10 +Mλ21F̃20, (18)

D2
0Y21 +9ϑ2Y21 =9σ1Y20 −2D0D1Y20 + F̃10 +Mλ22F̃20, (19)

where

F̃10 =−γ̃1 (ψ1Y20 −ψ2Y10)
3 + µ̃ cos 2ϑτ(η1Y20 −η2Y10), (20)

F̃20 =−F̃d20 − µ̃ cos 2ϑτ (η1Y20 −η2Y10) (21)

and

F̃d20 =
[
−α̃2 + β̃2χ

2 (Y20 −Y10)
2
]
χ (D0Y20 −D0Y10)

describes van der Pol’s damping at the first-order.
Under internal resonance condition, around the first natural frequency p1 both,

the first and the second natural modes can occur, therefore solutions of (16) and (17)
are assumed as

Y10 (T0, T1, T2)=A11 (T1, T2) exp (iϑT0)+ Ā11 (T1, T2) exp (−iϑT0) , (22)

Y20 (T0, T1, T2)=A21 (T1, T2) exp (3iϑT0)+ Ā21 (T1, T2) exp (−3iϑT0) , (23)

where i=√−1 is the imaginary unit. The complex amplitudes A11(T1, T2), A21(T1, T2)

are expressed in polar form:

A11(T1, T2)= 1
2
a1 exp(iφ1), A21(T1, T2)= 1

2
a2 exp(iφ2), (24)

where a1, a2 and φ1, φ2 are, respectively, vibrations amplitudes and phases. After
introducing the solutions (22), and (23) into (18), (19) the secular producing terms
must be eliminated. Next separating real and imaginary parts we get the amplitudes
and phases modulation equations (APMEs)

2ϑȧ1 = 3
4
γ̃1a

2
1a2ψ1ψ

2
2 sin(3φ1 −φ2)

+1
2
µ̃ [η2a1 sin 2φ1 −η1a2 sin(φ1 −φ2)] (1−Mλ21)

+
[
−F̃d21 + F̃d22 cos(3φ1 −φ2)

]
Mλ21, (25)

2εϑa1φ̇1 =a1
(
p2

1 −ϑ2)− 3
4
εγ̃1a1ψ2

(
2a2

2ψ
2
1 +a2

1ψ
2
2

)
(26)

+1
2
εµ̃ [η2a1 cos 2φ1 −η1a2 cos (φ1 −φ2)] (1−Mλ21)

+3
4
εγ̃1a

2
1a2ψ1ψ

2
2 cos (3φ1 −φ2)− εF̃d22Mλ21 sin (3φ1 −φ2) ,
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2ϑȧ2 = 1
12
γ̃1a

3
1ψ

3
2 sin(3φ1 −φ2)− 1

6
µ̃η2a1 sin(φ1 −φ2)(1−Mλ22)

+
[
F̃d23 − F̃d24 cos(3φ1 −φ2)

]
Mλ22, (27)

2εϑa2φ̇2 =3a2
(
p2

1 −ϑ2)+ 1
4
εγ̃1a2ψ1

(
2a2

1ψ
2
2 +a2

2ψ
2
1

)

+1
6
εµ̃η2a1 (1−Mλ22) cos(φ1 −φ2)

−εF̃d24 sin (3φ1 −φ2)Mλ22 − 1
12
εγ̃1a

3
1ψ

3
2 cos (3φ1 −φ2) . (28)

Damping functions are defined as

F̃d21 =a1

(
−α̃2 + 1

4
a2

1 β̃2χ
2 + 1

2
a2

2 β̃2χ
2
)
ϑχ, F̃d22 = 1

4
a2

1a2β̃2ϑχ
3, (29)

F̃d23 =a2

(
−α̃2 + 1

4
a2

2 β̃2χ
2 + 1

2
a2

1 β̃2χ
2
)
ϑχ, F̃d24 = 1

12
a3

1 β̃2ϑχ
3. (30)

Providing ȧ1 =0, φ̇1 =0, ȧ2 =0, φ̇2 =0, equations (25)–(28) allow us to find the ampli-
tude and the phase of the steady–state vibrations. Particular solutions of (18) and
(19) in connection with (22)–(24) give approximate solutions for the first and the
second quasi-normal coordinate around natural frequency p1

Y1 =a1 cos (ϑτ +φ1)+ ε (. . .) , (31)

Y2 =a2 cos (3ϑτ +φ2)+ ε (. . .) . (32)

Complete expressions for the approximate solutions are included in equations (A1)
and (A2).

Around the second natural frequency the free frequencies relationship is expressed
as p2

1

/
p2

2 =ν2
12 and then equations (7) and (8) get the form:

Ÿ1 +ν2
12ϑ

2Y1 = ε
{
σ2ν

2
12Y1 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ21F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
, (33)

Ÿ2 +ϑ2Y2 = ε
{
σ2Y2 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ22F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
. (34)

Now, (34) is a leading equation and ν12 = 1/3 . Substitution of the expansions (13),
(14) in (33), (34) gives

ε0

D2
0Y10 + 1

9
ϑ2Y10 =0, (35)

D2
0Y20 +ϑ2Y20 =0, (36)

ε1

D2
0Y11 + 1

9
ϑ2Y11 = 1

9
σ2Y10 −2D0D1Y10 + F̃10 +Mλ21F̃20, (37)

D2
0Y21 +ϑ2Y21 =σ2Y20 −2D0D1Y20 + F̃10 +Mλ22F̃20, (38)

where F̃10 and F̃20 are defined by (20) and (21). Solutions for the first and the second
natural modes get forms:
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Y10 (T0, T1, T2)=A11 (T1, T2) exp
(

1
3
iϑT0

)
+ Ā11 (T1, T2) exp

(
−1

3
iϑT0

)
, (39)

Y20 (T0, T1, T2)=A21 (T1, T2) exp (iϑT0)+ Ā21 (T1, T2) exp (−iϑT0) . (40)

Substituting equations (39) and (40) into (37), (38) and eliminating the secular pro-
ducing terms we get modulation equations:

2ϑȧ1 = 9
4
γ̃1a

2
1a2ψ1ψ

2
2 sin(3φ1 −φ2)+

[
−F̃d21 + F̃d22 cos(3φ1 −φ2)

]
Mλ21, (41)

2εϑa1φ̇1 = 1
3
a1

(
p2

2 −ϑ2)− 9
4
εγ̃1a1ψ2

(
2a2

2ψ
2
1 +a2

1ψ
2
2

)
(42)

+9
4
εγ̃1a

2
1a2ψ1ψ

2
2 cos (3φ1 −φ2)− F̃d22Mλ21 sin (3φ1 −φ2) ,

2ϑȧ2 = 1
4
γ̃1a

3
1ψ

3
2 sin(3φ1 −φ2)− 1

2
µ̃η1a2(1−Mλ22) sin 2φ2

+
[
F̃d23 − F̃d24 cos(3φ1 −φ2)

]
Mλ22, (43)

2ϑa2εφ̇2 =a2
(
p2

2 −ϑ2)+ 3
4
εγ̃1ψ1a2

(
2a2

1ψ
2
2 +a2

2ψ
2
1

)

−1
4
εγ̃1a

3
1ψ

3
2 cos (3φ1 −φ2)− 1

2
εµ̃η1a2 (1−Mλ22) cos 2φ2

−F̃d24Mλ22 sin (3φ1 −φ2) . (44)

Around the second natural frequency p2 the steady-state approximate solutions are:

Y1 =a1 cos
(

1
3
ϑτ +φ1

)
+ ε (. . .) , (45)

Y2 =a2 cos (ϑτ +φ2)+ ε (. . .) . (46)

Full expressions for the approximate solutions are included in equations (A3) and
(A4). Analysis of (41)–(44) show that in a steady state ȧ1 =0, φ̇1 =0, ȧ2 =0 , φ̇2 =0,
around the second natural frequency p2, two types of solutions are possible

• nontrivial solution: if a1 �=0, φ1 �=0, a2 �=0, φ2 �=0,
• or semi-trivial solution: if a1 =0, φ1 =0, a2 �=0, φ2 �=0.

Nontrivial amplitudes and phases have been found numerically by applying Newton–
Raphson algorithm to the nonlinear algebraic equations (41)–(44) (putting ȧ1 = 0,
φ̇1 = 0, ȧ2 = 0, φ̇2 = 0). Semi-trivial solutions have been found putting the first quasi-
normal co-ordinate equal to zero a1 =0, φ1 =0. Then, the semi-trivial solution for the
amplitude of second quasi-normal coordinate and phase takes forms:

2ϑȧ2 =−1
2
µ̃η1a2(1−Mλ22) sin 2φ2 +a2ϑχ

(
−α̃2 + 1

4
a2

2 β̃2χ
2
)
Mλ22, (47)

2ϑa2εφ̇2 =a2
(
p2

2 −ϑ2)+ 3
4
εγ̃1a

3
2ψ

3
1 − 1

2
εµ̃η1a2 (1−Mλ22) cos 2φ2. (48)
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In this case, in a steady state (ȧ2 =0 , φ̇2 =0), after rearranging (47), (48) we get the
characteristic equation

ε2a4
2

(
9γ̃ 2

1ψ
6
1 +β2

2ϑ
2χ6M2λ2

22

)

+8εa2
2

(
−3γ̃1(p

2
2 −ϑ2)ψ3

1 + εα̃2β̃2ϑ
2χ4M2λ2

22

)

−4ε2µ̃2η2
1 (1−Mλ22)

2 +16ε2α̃2
2ϑ

2χ2M2λ2
22 + (

p2
2 −ϑ2)2 =0, (49)

which let us determine semi-trivial amplitudes. To find bifurcation points, trivial
(a2 = 0) into semi-trivial (a2 �= 0) solutions, we substitute a2 = 0 in (49) and then we
get

ϑ∗
1,2 =

√
p2

2 − α̃2
2χ

2M2λ2
22 ∓

√
�, (50)

where

�= α̃2
2χ

2M2λ2
22

(
α̃2

2χ
2M2λ2

22 −4p2
2

)+ µ̃2η2
1 (1−Mλ22)

2 . (51)

Two bifurcation points can appear if �>0 and

µ>
α2χMλ2

√
4p2

2 −α2
2χ

2M2λ2
2

η1 (1−Mλ2)
. (52)

For the weakly nonlinear system the parameter α2 is small and then the bifurcation
points appear if

µ

α2
>∼2

p2χMλ2

η1 (1−Mλ2)
. (53)

This inequality is in accordance with results obtained for one degree of freedom
system [8,9].

3.2. Combination Resonance

Besides the principal parametric resonances, the combination resonance near ϑ ≈
(p1 +p2)/2 is also interesting for the considered model. Taking into account the
internal resonance condition p2 = 3p1, in the neighbourhood of combination reso-
nance we can write ϑ2 = ((p1 +p2)/2)

2 + εσ3, and then we get

ϑ2 =4p2
1 + εσ3, (54)

where σ3 is detuning parameter near the combination resonance. In this case equa-
tions (7) and (8) take the form:

Ÿ1 + 1
4
ϑ2Y1 = ε

{
1
4
σ3Y1 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ21F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
, (55)

Ÿ2 + 9
4
ϑ2Y2 = ε

{
9
4
σ3Y2 + F̃1(Y1, Y2, Ẏ1, Ẏ2, τ )+Mλ22F̃2(Y1, Y2, Ẏ1, Ẏ2, τ )

}
. (56)
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Functions F̃1(Y1, Y2, Ẏ1, Ẏ2, τ ) and F̃2(Y1, Y2, Ẏ1, Ẏ2, τ ) are defined in Section 2. Substi-
tuting (13) and (14) in (55) and (56) we obtain at the different perturbation orders:

ε0

D2
0Y10 + 1

4
ϑ2Y10 =0, (57)

D2
0Y20 + 9

4
ϑ2Y20 =0, (58)

ε1

D2
0Y11 + 1

4
ϑ2Y11 = 1

4
σ3Y10 −2D0D1Y10 + F̃10 +Mλ21F̃20, (59)

D2
0Y21 + 9

4
ϑ2Y21 = 9

4
σ3Y20 −2D0D1Y20 + F̃10 +Mλ22F̃20, (60)

Around the combination resonance the solutions at the zero order read

Y10 (T0, T1, T2)=A11 (T1, T2) exp
(

1
2
iϑT0

)
+ Ā11 (T1, T2) exp

(
−1

2
iϑT0

)
, (61)

Y20 (T0, T1, T2)=A21 (T1, T2) exp
(

3
2
iϑT0

)
+ Ā21 (T1, T2) exp

(
−3

2
iϑT0

)
, (62)

After substituting equations (61) and (62) into (59), (60) and eliminating the secular
producing terms we get the modulation equations:

2ϑȧ1 = 3
2
γ̃1a

2
1a2ψ1ψ

2
2 sin(3φ1 −φ2)−µη1a2 (1−Mλ21) sin(φ1 +φ2)

+
[
−F̃d21 + F̃d22 cos(3φ1 −φ2)

]
Mλ21, (63)

2εϑa1φ̇1 = 1
2
a1

(
4p2

1 −ϑ2)− 3
2
εγ̃1ψ2a1

(
2a2

2ψ
2
1 +a2

1ψ
2
2

)

−εµ̃η1a2 (1−Mλ21) cos(φ1 +φ2) (64)

+3
2
εγ̃1a

2
1a2ψ1ψ

2
2 cos (3φ1 −φ2)− εF̃d22Mλ21 sin (3φ1 −φ2) ,

2ϑȧ2 = 1
6
γ̃1a

3
1ψ

3
2 sin(3φ1 −φ2)+ 1

3
µ̃η2a1(1−Mλ22) sin(φ1 +φ2)

+
[
F̃d23 − F̃d24 cos(3φ1 −φ2)

]
Mλ22, (65)

2ϑa2εφ̇2 = 3
2
a2

(
4p2

1 −ϑ2)+ 1
2
εγ̃1ψ1a2

(
2a2

1ψ
2
2 +a2

2ψ
2
1

)

+1
3
εµ̃η2a1 (1−Mλ22) cos(φ1 +φ2) (66)

−1
6
εγ̃1a

3
1ψ

3
2 cos (3φ1 −φ2)− F̃d24 sin (3φ1 −φ2)Mλ22.
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Approximate solutions under the combination resonance condition are determined as

Y1 =a1 cos
(

1
2
ϑτ +φ1

)
+ ε (. . .) , (67)

Y2 =a2 cos
(

3
2
ϑτ +φ2

)
+ ε (. . .) , (68)

Complete forms of the above solutions are included in equations (A5) and (A6).

3.3. Stability Analysis

The stability of the approximate solution has been determined by analysing the mod-
ulation equations around the first principal (equations (25)–(28)), the second principal
(equations (41)–(44)) and the combination resonance (equations (63)–(66)) conditions.
All the modulation equations can be expressed in compact form as a set of the first
ODE’s

ȧ1 =f1 (a1, φ1, a2, φ2) ,

φ̇1 =f2 (a1, φ1, a2, φ2) , (69)

ȧ2 =f3 (a1, φ1, a2, φ2) ,

φ̇2 =f4 (a1, φ1, a2, φ2) ,

In a steady state

f1 (a1, φ1, a2, φ2)=0, f2 (a1, φ1, a2, φ2)=0,

f3 (a1, φ1, a2, φ2)=0, f4 (a1, φ1, a2, φ2)=0.

Perturbing (69) by substituting

ã1 =a1 + δ1, φ̃1 =φ1 + δ2, ã2 =a2 + δ3, φ̃2 =φ2 + δ4

and considering the steady-state solutions, we get a set of linear equations in varia-
tions

dδ1

dτ
=

(
∂f1

∂a1

)

0
δ1 +

(
∂f1

∂φ1

)

0
δ2 +

(
∂f1

∂a2

)

0
δ3 +

(
∂f1

∂φ2

)

0
δ4,

dδ2

dτ
=

(
∂f2

∂a1

)

0
δ1 +

(
∂f2

∂φ1

)

0
δ2 +

(
∂f2

∂a2

)

0
δ3 +

(
∂f2

∂φ2

)

0
δ4, (70)

dδ3

dτ
=

(
∂f3

∂a1

)

0
δ1 +

(
∂f3

∂φ1

)

0
δ2 +

(
∂f3

∂a2

)

0
δ3 +

(
∂f3

∂φ2

)

0
δ4,

dδ4

dτ
=

(
∂f4

∂a1

)

0
δ1 +

(
∂f4

∂φ1

)

0
δ2 +

(
∂f4

∂a2

)

0
δ3 +

(
∂f4

∂φ2

)

0
δ4.

Index ‘0’ means a derivative at the steady state. Considering the solutions of equa-
tions (70) in the form:

δ1 =C1eρτ , δ2 =C2eρτ , δ3 =C3eρτ , δ4 =C4eρτ (71)
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we get the characteristic equation

Det








(
∂f1
∂a1

)

0
−ρ

(
∂f1
∂φ1

)

0

(
∂f1
∂a2

)

0

(
∂f1
∂φ1

)

0(
∂f2
∂a1

)

0

(
∂f2
∂φ1

)

0
−ρ

(
∂f2
∂a2

)

0

(
∂f2
∂φ1

)

0(
∂f3
∂a1

)

0

(
∂f3
∂φ1

)

0

(
∂f3
∂a2

)

0
−ρ

(
∂f3
∂φ1

)

0(
∂f4
∂a1

)

0

(
∂f4
∂φ1

)

0

(
∂f4
∂a2

)

0

(
∂f4
∂φ1

)

0
−ρ








=0. (72)

Stability of the approximate solutions depends on the value of the roots of the charac-
teristic equation. The solutions are stable if the real part of the eigenvalue ρ is negative.

4. Numerical Example

Parameters of the considered coupled oscillators has to satisfy the internal reso-
nance condition p2/p1 = 3. The relationship between the parameters M and δ12

which satisfy this condition is found from equation (5):

M= (41−9δ12)±10
√

16−9δ12

9δ12
. (73)

Note that parameter δ1 =1. Function M=f (δ12) is plotted in Figure 2.
Exemplary calculations have been done for the following system parameters values:

α2 =0.01, β2 =0.05, γ1 =0.1, M=0.615832, δ1,=1, δ12 =1. (74)

Parameters M and δ12 correspond to point A located in Figure 2. Natural frequencies
and parameters used for the system coordinates transformation take the values:

p1 =0.511, p2 =1.534, λ21 =2.823, λ22 =−0.575, χ =0.294,

ψ1 =0.831, ψ2 =−0.169, η1 =1.125, η2 =0.125.

Nontrivial solutions of equations (25)–(28) which describe the resonance curve
around the first natural frequency are presented in Figure 3.

Figure 2. Condition of the internal resonance.
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Figure 3. Resonance curves around the first natural frequency p1.

Around the first natural frequency, nontrivial solutions for both amplitudes a1 and
a2 are possible in the interval ϑ ∈ (0.493, 0.5485). However, stability analysis of solu-
tions (25)–(28), presented in Section 3.2, proves that this region is divided in two
stable parts. In the first region (ϑ ∈ (0.501, 0.513)) the amplitude a1 is much higher
than amplitude a2. It means that in the region I, of Figure 3, first vibration modes
dominates while the second one is smaller but not negligible.

In the second part, region II in Figure 3, ϑ ∈ (0.539, 0.5485), the amplitudes of
both modes are comparable. These two stable nontrivial intervals correspond to the
synchronisation phenomenon. In both the stable regions I and II, the parametric
excitation involves self-sustained oscillations. The response of the system is periodic
and in the relevant Poincaré section two points are observed. But the synchronisation
effect is broken down in the middle of the resonance area divided in two sepa-
rate parts. This phenomenon does not take place for systems without internal reso-
nance condition (e.g. Refs. [4,5]). Dark regions on bifurcation diagrams in Figure 4
represent quasi-periodic motions, in which strong influence of self-excitation takes
place. Solid line in these diagrams denotes synchronisation phenomenon. Theoretical
results are in good agreement with bifurcation diagrams obtained numerically. How-
ever, numerical simulation gives a little wider areas.

Figure 4. Bifurcation diagrams, generalised coordinates X1 (a) and X2 (b) versus ϑ parameter around
the first natural frequency p1.
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The synchronisation effect is clearly visible for exemplary time histories obtained
from direct numerical simulation of the original equations (3) and (4) and plotted
in Figure 5. The motion in generalised coordinates X1 and X2 after transformation
to quasi-normal coordinates Y1, Y2 is decoupled in two modes having frequency ϑ

(Figure 5c) and frequency 3ϑ (Figure 5d). Outside the resonance the motion tran-
sits from periodic to quasi-periodic with modulated amplitude. Quasi-periodic motion
is presented in Figure 6, where influence of self-excitation is clearly visible for both
quasi-normal coordinates (Figure 6 c,d).

Around the second natural frequency p2, apart from trivial (equal to zero) solu-
tion, two types of coexisting solutions are possible: semi-trivial solution if: a1 =
0, φ1 = 0, a2 �= 0, φ2 �= 0, or nontrivial solution if: a1 �= 0, φ1 �= 0 , a2 �= 0, φ2 �= 0. The

(a) (b)

(c) (d)

Figure 5. Time histories in generalised X1 (a), X2 (b) and quasi-normal coordinates Y1 (c), Y2 (d);
ϑ=0.534.

(a) (b)

(c) (d)

Figure 6. Time histories in generalised X1 (a), X2 (b) and quasi-normal coordinates Y1 (c), Y2 (d);
ϑ=0.52.
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perturbational frequency-amplitude response curves relevant to the semi-trivial and
non-trivial solutions are presented in Figure 7.

Semi-trivial solutions attaining large amplitudes are theoretically possible in a wide
area (ϑ ∈ (1.5, 4.1)). Nontrivial solutions occur in the area marked by a rectangle.
The zoom of this area is presented in Figure 8. The behaviour of the system in
this resonance condition is qualitatively different respect on what seen around the
first natural frequency. Around frequency p2, the break of the synchronisation phe-
nomenon does not take place. Nontrivial solutions, which represent the synchron-
ised vibrations are confirmed by numerical simulation on bifurcation diagrams in
Figure 9. The numerical simulations shows that the frequency interval in which the
synchronisation phenomenon arises is wider then the corresponding analytical one.
Semi-trivial solutions could have been confirmed numerically by analysis in details of
their basins of attractions. The system tends to this kind of solution in a very long
time, and only for chosen initial conditions. It has not been got by using classical
bifurcation diagrams. Moreover, the pure periodic motion corresponding to the sec-
ond mode has not been confirmed by numerical simulations. An exemplary periodic
motion, corresponding to the semi-trivial solution is marked as ST on Poincaré sec-
tion in Figure 10 while the quasi-periodic motion is represented by the closed loop

Figure 7. Amplitudes of semi-trivial and nontrivial solutions around the second natural frequency p2.

Figure 8. Amplitudes of nontrivial solutions around the second natural frequency, zoom of the area
marked in Figure 7.
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Figure 9. Bifurcation diagrams of generalised coordinates X1 (a) and X2 (b) versus ϑ parameter
around the second natural frequency p2.

Figure 10. Poincaré section for ϑ=3.6.

LC. However, this motion is not represented only by one quasi-normal coordinate Y2,
what is clearly visible in time histories in Figure 11 a,b.

Combination resonance presented in Figure 12 consists of two separate pairs of curves.
The synchronisation area is divided on two parts (I and II), similar to resonance around
the frequency p1. The synchronisation phenomenon, (solid line in Figure 13 is destroyed
and quasi-periodic motion, inside the resonance, occurs (dark area in Figure 13). Outside
this resonance, the system vibrates quasi-periodically (dark areas out of synchronisation
in Figure 13). Apart from determined solutions, an additional quasi-periodic motion can
appear in the system depending on initial conditions. Nevertheless, they are not found ana-
lytically by the proposed approach. Obtained analytically periodic motions in Figure 12
are in good agreement with the numerical simulation in Figure 13.

5. Transition to Chaotic Motion

Analysis of the parametric and self-excited systems published in former papers
(e.g. Refs. [10,12]), reveals that increase of parametric excitation causes important quan-
titative changes in the system dynamics. Exemplary bifurcation diagram versus paramet-
ric excitation amplitude µ is presented in Figure 14a. Numerical simulations have been
done for the case defined by equation (74) and assuming the excitation frequency constant
(ϑ=1.0). Bifurcation diagrams have been plotted for several initial conditions. Solid line in
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(a) (b)

(c) (d)

Figure 11. Time histories in quasi-normal coordinates Y1 (a), Y2 (b) and generalised X1 (c), X2 (d);
ϑ=3.6.

Figure 12. Vibration amplitudes around the combination resonance (p1 +p2)/2.

Figure 13. Bifurcation diagrams of generalised coordinates X1 (a) and X2 (b) versus ϑ parameter
around the combination resonance.
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Figure 14. Bifurcation diagram (a) and Lyapunov’s exponents (b) versus parametric excitation µ under
internal resonance condition, M=0.615832.

the Figure 14 a, corresponds to synchronised periodic vibrations while dark area to quasi-
periodic or chaotic motion. The Lyapunov’s exponent diagram in Figure 14b, reveals
a chaotic response. The first chaotic motion (No.1) appears after a cascade of period
doubling bifurcations near the parametric excitation ϑ≈1.0. Then, after a boundary cri-
sis the system transits to periodic motion. Different chaotic motion occur in areas No.2
ϑ ∈ (3.05; 3.15) , No.3 ϑ ∈ (3.50; 3.53) and No. 4 ϑ ∈ (3.56; 4). In all the pointed regions
the maximal Lyapunov’s exponent is positive confirming the chaoticity of the motion.

Similar simulation has been done providing the system does not satisfy the inter-
nal resonance condition, parameter M = 0.5. This assumption means that point
A on the curve in Figure 2 is a little shifted down from its original position
M=0.615832. The bifurcation diagram without internal resonance condition is pre-
sented in Figure 15. A smaller tendency in transition to chaos is observed in this
case. Chaotic region No.1 is almost invisible in this case and regions No. 2, 3 have

Figure 15. Bifurcation diagram versus parametric excitation µ without internal resonance condition,
M=0.5.
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subintervals with periodic windows. Comparing Figures 14 and 15 we can conclude
that internal resonance makes easier the transition of the system to chaos.

6. Conclusions

The analysis carried out in this paper, shows that under the internal resonance con-
dition p2/p1 =3, and around of the combination resonance (p1 +p2)/2 the synchro-
nisation phenomenon in the neighbourhood of the principal parametric resonances’
is possible. However, near the subharmonic and the combination resonance differ-
ent behaviours are found in the case of presence or absence of the internal reso-
nance condition. The synchronisation phenomenon appears in two separate intervals
and the synchronised vibrations includes ϑ and 3ϑ components in both quasi-nor-
mal modes. Outside the resonance region, the motion besides ϑ and 3ϑ components,
includes an additional incommensurable self-excited frequency and becomes quasi-
periodic. Analytical results are in agreement with numerical simulations nevertheless
showing synchronisation regions of wider area and shifted towards higher frequen-
cies. Around the second natural frequency the synchronisation effect is observed only
for nontrivial solutions and the relevant zone is not divided into sub-intervals. Near
the second principal resonance, the semi-trivial solution is possible as well but the
numerical simulation does not confirm existence of pure periodic semi-trivial motion.

The chaotic motion is possible under internal resonance condition for large val-
ues of the parametric excitation amplitude µ. The system under internal resonance
condition has higher tendency in transition to chaotic motions compared to the
case corresponding to the absence of such internal resonance condition. The results
presented in this paper reveal only some possible motion of the model, mainly near
the synchronisation phenomenon. The numerical simulation shows additional possi-
ble quasi-periodic solutions, which are not found analytically in this paper.

Appendix A

Approximate solutions around the first principal parametric resonance.

Y1 =a1 cos (ϑτ +φ1)+ 1
16ϑ2

εµ̃ (1−Mλ21) [a1η2 cos (3ϑτ +φ1)

− 1
3
a2η1 cos (5ϑτ +φ2)

]
+ 1

32ϑ2
εγ̃1

[−a3
1ψ

3
2 cos (3ϑτ +3φ1)

+3a2ψ1
(
a2

2ψ
2
1 +2a2

1ψ
2
2

)
cos (3ϑτ +φ2)+a2

1a2ψ1ψ
2
2 cos (5ϑτ +2φ1 +φ2)

−a1a
2
2ψ

2
1ψ2 cos (5ϑτ −φ1 +2φ2)− 1

2
a1a

2
2ψ

2
1ψ2 cos (7ϑτ +φ1 +2φ2)

+ 1
10
a3

2ψ
3
1 cos (9ϑτ +3φ2)

]
− 3

8ϑ
Mλ21εα̃2a2χ sin (3ϑτ +φ2)

+ 1
32ϑ

Mλ21εβ̃2χ
3 [−a3

1 sin (3ϑτ +3φ1) +3a2
(
2a2

1 +a2
2

)
sin (3ϑτ +φ2)

+5
3
a2

1a2 sin (5ϑτ +2φ1 +φ2)− 5
3
a1a

2
2 sin (5ϑτ −φ1 +2φ2)

−7
6
a1a

2
2 sin (7ϑτ +φ1 +2φ2)+ 3

10
a3

2 sin (9ϑτ +3φ2)

]
, (A1)
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Y2 =a2 cos (3ϑτ +φ2)+ 1
16ϑ2

εµ̃ (1−Mλ22) [−a1η2 cos (ϑτ −φ1)

+a2η1 cos (ϑτ +φ2)− 1
2
a2η1 cos (5ϑτ +φ2)

]

+ 3
32ϑ2

εγ̃1
[
a1ψ2

(
a2

1ψ
2
2 +2a2

2ψ
2
1

)
cos (ϑτ+φ1)−a2

1a2ψ1ψ
2
2 cos (ϑτ−2φ1+φ2)

+1
2
a2

1a2ψ1ψ
2
2 cos (5ϑτ +2φ1 +φ2)− 1

2
a1a

2
2ψ

2
1ψ2 cos (5ϑτ −φ1 +2φ2)

−1
5
a1a

2
2ψ

2
1ψ2 cos (7ϑτ +φ1 +2φ2)+ 1

27
a3

2ψ
3
1 cos (9ϑτ +3φ2)

]

− 3
8ϑ
Mλ22εα̃2a1χ sin (ϑτ +φ1)+ 1

32ϑ
Mλ22εβ̃2χ

3 [
a1

(
a2

1 +2a2
2

)
sin (ϑτ +φ1)

−a2
1a2 sin (ϑτ −2φ1 +φ2)+ 5

2
a2

1a2 sin (5ϑτ +2φ1 +φ2)

−5
2
a1a

2
2 sin (5ϑτ −φ1 +2φ2)− 7

5
a1a

2
2 sin (7ϑτ +φ1 +2φ2)

+ 1
3
a3

2 sin (9ϑτ+3φ2)

]
, (A2)

Approximate solutions around the second principal parametric resonance.

Y1 =a1 cos
(

1
3
ϑτ +φ1

)
+ 3

16ϑ2
εµ̃ (1−Mλ21) [−3a2η1 cos (ϑτ −φ2)

+a1η2 cos
(

5
3
ϑτ −φ1

)
− 1

2
a1η2 cos

(
7
3
ϑτ +φ1

)
− 3

10
a2η1 cos (3ϑτ +φ2)

]

+ 9
32ϑ2

εγ̃1
[−a3

1ψ
3
2 cos (ϑτ +3φ1) +3a2ψ1

(
a2

2ψ
2
1 +2a2

1ψ
2
2

)
cos (ϑτ +φ2)

+a2
1a2ψ1ψ

2
2 cos

(
5
3
ϑτ +2φ1 +φ2

)
−a1a

2
2ψ

2
1ψ2 cos

(
5
3
ϑτ −φ1 +2φ2

)

−1
2
a1a

2
2ψ

2
1ψ2 cos

(
7
3
ϑτ +φ1 +2φ2

)
+ 1

10
a3

2ψ
3
1 cos (3ϑτ +3φ2)

]

− 9
8ϑ
Mλ21εα̃2a2χ sin (ϑτ +φ2)+ 3

32ϑ
Mλ21εβ̃2χ

3 [−a3
1 sin (ϑτ +3φ1)

+3a2
(
2a2

1 +a2
2

)
sin (3ϑτ +φ2)+ 5

3
a2

1a2 sin
(

5
3
ϑτ +2φ1 +φ2

)

−5
3
a1a

2
2 sin

(
5
3
ϑτ −φ1 +2φ2

)
− 7

6
a1a

2
2 sin

(
7
3
ϑτ +φ1 +2φ2

)

+ 3
10
a3

2 sin (3ϑτ +3φ2)

]
, (A3)
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Y2 =a2 cos (ϑτ +φ2)+ 9
16ϑ2

εµ̃ (1−Mλ22)

[
1
2
a1η2 cos

(
5
3
ϑτ −φ1

)

+1
5
a1η2 cos

(
7
3
ϑτ +φ1

)
− 1

9
a2η1 cos (3ϑτ +φ2)

]

+ 27
32ϑ2

εγ̃1

[
a1ψ2

(
a2

1ψ
2
2 +2a2

2ψ
2
1

)
cos

(
1
3
ϑτ+φ1

)
−a2

1a2ψ1ψ
2
2 cos

(
1
3
ϑτ −2φ1+φ2

)

+1
2
a2

1a2ψ1ψ
2
2 cos

(
5
3
ϑτ +2φ1 +φ2

)
− 1

2
a1a

2
2ψ

2
1ψ2 cos

(
5
3
ϑτ −φ1 +2φ2

)

−1
5
a1a

2
2ψ

2
1ψ2 cos

(
7
3
ϑτ +φ1 +2φ2

)
+ 1

27
a3

2ψ
3
1 cos (3ϑτ +3φ2)

]

− 3
8ϑ
Mλ22εα̃2a2χ sin

(
1
3
ϑτ+φ1

)
+ 3

32ϑ
Mλ22εβ̃2χ

3
[
a1

(
a2

1 +2a2
2

)
sin

(
1
3
ϑτ +φ1

)

−a2
1a2 sin

(
1
3
ϑτ −2φ1 +φ2

)
+ 5

2
a2

1a2 sin
(

5
3
ϑτ +2φ1 +φ2

)

−5
2
a1a

2
2 sin

(
5
3
ϑτ −φ1 +2φ2

)
− 7

5
a1a

2
2 sin

(
7
3
ϑτ +φ1 +2φ2

)

+ 1
3
a3

2 sin (3ϑτ+3φ2)

]
. (A4)

Approximate solutions around the combination resonance.

Y1 =a1 cos
(

1
2
ϑτ +φ1

)
+ 1

4ϑ2
εµ̃ (1−Mλ21)

[
a1η2 cos

(
3
2
ϑτ −φ1

)

+1
3
a1η2 cos

(
5
2
ϑτ +φ1

)
− 1

6
a2η1 cos

(
7
2
ϑτ +φ2

)]

+ 1
8ϑ2

εγ̃1

[
−a3

1ψ
3
2 cos

(
3
2
ϑτ +3φ1

)
+3a2ψ1

(
a2

2ψ
2
1 +2a2

1ψ
2
2

)
cos

(
3
2
ϑτ +φ2

)

+a2
1a2ψ1ψ

2
2 cos

(
5
2
ϑτ +2φ1 +φ2

)
−a1a

2
2ψ

2
1ψ2 cos (5ϑτ −φ1 +2φ2)

−1
2
a1a

2
2ψ

2
1ψ2 cos

(
7
2
ϑτ +φ1 +2φ2

)
+ 1

10
a3

2ψ
3
1 cos

(
9
2
ϑτ +3φ2

)]

− 3
4ϑ
Mλ21εα̃2a2χ sin

(
3
2
ϑτ +φ2

)
+ 1

16ϑ
Mλ21εβ̃2χ

3
[
−a3

1 sin
(

3
2
ϑτ +3φ1

)

+3a2
(
2a2

1 +a2
2

)
sin

(
3
2
ϑτ +φ2

)
+ 5

3
a2

1a2 sin
(

5
2
ϑτ +2φ1 +φ2

)

−5
3
a1a

2
2 sin

(
5
2
ϑτ −φ1 +2φ2

)
− 7

6
a1a

2
2 sin

(
7
2
ϑτ +φ1 +2φ2

)

+ 3
10
a3

2 sin
(

9
2
ϑτ +3φ2

)]
, (A5)
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Y2 =a2 cos
(

3
2
ϑτ +φ2

)

+ 1
4ϑ2

εµ̃ (1−Mλ22)

[
a2η1 cos

(
1
2
ϑτ −φ2

)
− 1

2
a1η2 cos

(
5
2
ϑτ +φ1

)

−1
5
a2η1 cos

(
7
2
ϑτ +φ2

)]
+ 3

8ϑ2
εγ̃1

[
a1ψ2

(
a2

1ψ
2
2 +2a2

2ψ
2
1

)
cos

(
1
2
ϑτ +φ1

)

−a2
1a2ψ1ψ

2
2 cos

(
1
2
ϑτ −2φ1 +φ2

)
+ 1

2
a2

1a2ψ1ψ
2
2 cos

(
5
2
ϑτ +2φ1 +φ2

)

−1
2
a1a

2
2ψ

2
1ψ2 cos

(
5
2
ϑτ −φ1 +2φ2

)
− 1

5
a1a

2
2ψ

2
1ψ2 cos

(
7
2
ϑτ +φ1 +2φ2

)

+ 1
27
a3

2ψ
3
1 cos

(
9
2
ϑτ +3φ2

)]
− 1

4ϑ
Mλ22εα̃2a1χ sin

(
1
2
ϑτ +φ1

)

+ 1
16ϑ

Mλ22εβ̃2χ
3
[
a1

(
a2

1+2a2
2

)
sin

(
1
2
ϑτ+φ1

)
−a2

1a2 sin
(

1
2
ϑτ−2φ1 +φ2

)

+5
2
a2

1a2 sin
(

5
2
ϑτ +2φ1 +φ2

)
− 5

2
a1a

2
2 sin

(
5
2
ϑτ −φ1 +2φ2

)

−7
5
a1a

2
2 sin

(
7
2
ϑτ +φ1 +2φ2

)
+ 1

3
a3

2 sin
(

9
2
ϑτ +3φ2

)]
. (A6)
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