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Abstract. Thermal residual stresses in ceramic composite laminates are analyzed through both a
micromechanical computational model and two macroscopic homogenized models. The microscopic
model is based on a purposely developed hybrid finite element able to account for the shape of the
Alumina and Zirconia grains. Two different macroscopic models have been used as reference solu-
tions for comparison: a standard displacement-based three-dimensional finite element model and an
analytical model. Stress concentration factors, accounting for the microscopic material heterogeneities,
have been estimated by means of the Eshelby tensor and applied to the average stress field obtained
through the homogenized models.
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1. Introduction

The extensive use of advanced ceramics in many industrial fields and the advance-
ments in the manufacturing techniques, through which innovative devices are now
available, require the development of sophisticated analysis methods. These methods
must be able to predict the material behaviour under service loading, that is strongly
affected by the manufacturing process.

This paper deals with computational models for the estimation of the residual
stress field induced by the cooling process of composite ceramic laminates obtained
through sinterization performed at 1600◦C.

A symmetric laminate with alumina/zirconia composites having a different volu-
metric composition in each lamina is considered.

In this kind of structures, the thermal stresses are due to both the mismatch of the
mean coefficient of thermal expansion (CTE) between the laminae, and to the CTE
mismatch between the alumina and the zirconia grains within each lamina [1,2].

An accurate estimation of the thermal stress field is mandatory when designing
any reliable device. Indeed, delaminations or cracking due to the residual stresses can
occur if the thickness of the laminae is larger than a critical value [3] and transverse
cracks (channelling) are also possible [1]. Moreover, the thermal residual stresses can
increase or decrease the material toughness depending on the stacking sequence.
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The numerical estimation of the residual stress field in composite laminates has
been extensively studied at the macroscopic scale. Purposely developed finite element
formulations or analytical models able to capture the stress concentrations at the free
boundary have been discussed, see for example [4–6]. At the microscopic scale, sev-
eral papers can be found, focusing on computational and analytical models for het-
erogeneous materials subjected to a temperature change and aimed at estimating the
stress concentration factors in the phases of the material, e.g. [7–9].

In particular, in [10] thermal residual stresses in functionally graded materials are
computed through the Voronoi Cell Finite Element model solving a coupled heat
conduction-mechanical analysis.

Several works having the purpose of bridging the two length scales – the lami-
nate scale and the microstructure scale – can be found; one example is the one by
Schmauder and Weber [11].

Examples of multiple scales analyses based on the homogenization theory with the
coupling of microstructural and macroscopic models are discussed in [12] with spe-
cific reference to metal matrix composites. Coupling of macroscopic model and Voro-
noi Cell Finite Element microscopic models are presented in [13].

In this paper a comparison between a micromechanical hybrid finite element
model and two different homogenized macroscopic models is discussed. In contrast
to the papers based on homogenization theory [13], no coupling between the two
length scales is here considered.

A hybrid finite element approach, with stress and displacement interpolation on
polygonal domains and based on the formulation proposed by Ghosh and Moorthy
in [14], has been adopted for the microstructural modeling of the composite. This
finite element approach allows considering the specific geometrical features of the
ceramic composite microstructure, which has polygonal shaped alumina and zirconia
grains. The accuracy and the computational cost saving of this approach with respect
to the standard displacement-based finite element microstructural analysis have been
proved Moorthy and Ghosh in [15].

Two different homogenized models have been adopted for the analysis at the mac-
roscopic scale of the laminate: (i) a standard three-dimensional displacement-based
finite element formulation and (ii) an analytical model based on an assumed stress
distribution and on the minimum complementary energy theorem [16,17]. Provided
that the laminate under consideration is symmetric and that each lamina is made of
isotropic material, the latter approach turns out to be rather convenient and therefore
worth to be used for comparison purposes.

The macroscopic analyses are carried out by considering homogenized material
properties of the composites, for the various material compositions, which have been
obtained by the Author in a previous research through an homogenization technique
[18].

Stress concentrations in the material components within each lamina, owing to the
CTE mismatch between alumina and zirconia grains, have been estimated through
the Eshelby tensor by assuming as a simplified geometry for the composite represen-
tative volume element a spherical inclusion embedded in a spherical matrix.

The outline of the paper is as follows: after a brief description of the mechan-
ical properties of the alumina/zirconia composites reported in Section (2), the
computational micromechanical finite element model is expounded in Section (3).
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Figure 1. Sketch of one eighth of the laminate and layer numbering; the symmetry transversal planes
are shaded.

The macroscopic homogenized models are discussed in the Section (4): the 3D
displacement-based finite element model and an analytical model are described in
subsections (4.1) and (4.2), respectively.

Section (4.3) reports the Eshelby approximation of the stress concentration factors
in the Alumina and Zirconia phases. The results and a critical discussion follow in
the last section.

2. The alumina/zirconia Graded Composite

A ten layers symmetric laminate of alumina/zirconia composite has been considered
in this paper. Each layer has a uniform thickness of 20µm. Different alumina/zirco-
nia volume fractions are assumed in each layer. A sketch of the laminate is reported
in Figure 1; due to symmetry, only one eighth of the laminate is reported.

The manufacturing process involves a sinterization of the ceramic powders, per-
formed at 1600◦C [19]. The high temperature promotes the powder growth and
the process yields a composite material exhibiting a microstructure characterized by
polygonal grains of alumina and zirconia, both having an average size of 1µm.

A uniform temperature field is assumed throughout the laminate. The tempera-
ture drop of �θ =−1600◦C is applied to all the points of the model. The transient
phase during which the heat flaw causes a temperature gradient within the material
has been neglected due to the values of the thermal conductivity of the material and
due to the small thickness of the laminate.

Both the alumina and zirconia phases are assumed to be isotropic linear elas-
tic materials. Isotropy of the Coefficient of Thermal Expansion, CTE (α) is also
assumed. However, anisotropic CTE often exists in the alumina and zirconia grains
depending to the mean orientation of the crystal lattices. The constitutive parame-
ters used in the microscopic model, which accounts separately for the zirconia and
alumina phases, are reported in Table 1. The material compositions of the five layers
above the symmetry plane of the laminate is reported in Table 2 (layer numbering
starts from the outer-most layer).

The macroscopic material properties of the composites in each lamina have been
obtained by means of finite element homogenization analyses. The results of the
homogenization method are reported by Vena et al. [18] and summarized in Figure 2.
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Table 1. Parameters of the isotropic linear elastic constitutive
model for the alumina and zirconia

E[GPa] ν α[◦C−1 ×10−5]

Alumina 415 0.23 0.775
Zirconia 210 0.29 1.06

Table 2. Stacking sequence of the five laminae above the sym-
metry plane

Layer N %ZrO2 %Al2O3

1 100 0
2 80 20
3 60 40
4 40 60
5 20 80

Upper and lower Hashin and Shtrikman bounds are also reported [20]. The homog-
enization analyses provided the Poisson’s ratio and the Young modulus of an equiv-
alent isotropic continuum νH ,EH ; as well as the coefficient of thermal expansion
αH , for a given zirconia volume content in an alumina matrix. Comparisons with
experimental data have been used in order to validate the homogenization numerical
results. The constitutive parameters that have been used in the macroscopic models,
resulting from the homogenization analyses are reported in Table 3.

3. The Voronoi Cell Finite Element Method (VCFEM): the Basic Formulation

The formulation for the polygonal Voronoi Cell Finite Element is based on the exten-
sion of the hybrid finite element formulation, originally introduced by Tong and Pian
[21], presented by Ghosh and Mukhopadhyay [22].

Figure 2. Results of the homogenization analyses of the macroscopic mechanical properties as func-
tion of the Zirconia volume content: Elastic tangential modulus (left), coefficient of thermal expansion
(right).
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Table 3. Parameters of the homogenized linear elastic isotropic
constitutive models for the five layers above the symmetry plane

Layer N EH [GPa] νH αH [◦C−1]×10−6

1 210 0.29 10.57
2 248.561 0.28 9.99
3 280.024 0.269 9.39
4 319.465 0.257 8.79
5 362.608 0.244 8.26

A brief description of the finite element formulation in the plane strain setting is
here summarized using the matrix notation.

In plane problems, the stress and strain components, in the plane of the model,
are collected in vectors σ and ε according to the following notation:

σ =



σ1

σ2

τ12


 ; ε =




ε1

ε2

γ12


 . (1)

The inverse isotropic linear elastic constitutive relation is therefore written as:

ε =Sσ + θ (2)

in which S is the elastic compliance matrix of the material. The vector θ collects the
thermal strains that in a plane strain state are:

θ = (1+ν)�θαT




1
1
0


 . (3)

The out of plane stress component can be calculated by enforcing the plane strain
condition.

The spatial discretization is performed by resorting to the Voronoi tessellation
algorithm, able to subdivide a two-dimensional domain into convex polygonal cells
starting from a set of nucleation points suitably identified on the domain. First, a
regular grid of nucleation points is defined and second, a small random perturba-
tion of point coordinates is applied. The distance between adjacent points is directly
related to the mean size of the Voronoi cell. Each Voronoi cell is identified as one
element of the finite element discretization.

The hybrid formulation has been implemented by interpolating the stress compo-
nents over the element domain, through polynomial functions. The stress interpolat-
ing functions fulfill a priori the indefinite equilibrium equations in absence of body
forces.

The solving equations of the finite element model are based on the principle of
minimum of the total complementary energy (	c). For linear elastic materials the 	e

c

of the eth element is written as follows:

	e
c =

∫
V e

[
1
2
σ T Sσ +σ T θ

]
dV −

∫
∂V e

i

TT u ds −
∫

∂V e
e

TT ū ds. (4)
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In this definition, V e is the element domain, ∂V e
i is its boundary shared with other

adjacent finite elements and ∂V e
e is the external boundary on which displacements ū

are prescribed, u is the vector of unknown displacements.
The vector T, in the integrals over the boundary, collects the surface load compo-

nents; these are obtained from the equilibrium equation on the boundary : Ti =σijnj

in which nj is the component in the direction j of the outward normal defined on
the domain boundary.

The polynomial stress interpolation can be written in the following form:

σ =Pβ (5)

in which P is matrix of the polynomial terms. The vector β, defined on the current
element, is a vector of constants associated to each relevant term of the polynomial
function. In this research, polynomials up to the degree three have been considered.

A discretized form of the total complementary energy for the eth element can be
obtained by substituting the stress interpolation (5) into the expression (4):

	e
c = 1

2
βT Heβ +βT θ e

T −βT Ge
i di −βT Ge

ede. (6)

In (6) the following matrices have been defined:

He =
∫

V e

PT SP dV ; Ge
i =

∫
∂V e

i

PT nL dS (7)

Ge
e =

∫
∂V e

e

PT nL dS; θ e
T =

∫
V e

PT θ dV (8)

The displacements vectors di and de collect the displacement unknowns of the prob-
lem and the displacement boundary data, respectively. The displacement components
along the boundary are linearly interpolated through the interpolation matrix L.

The stationary condition of 	e
c with respect to the stress parameters β yields:

β =He−1 (
Ge

i di +Ge
ede − θ e

T

)
. (9)

Substituting (9) into (6), summing up all the contributions over all the elements
(	c = ∑

	e
c) and eventually imposing the stationary condition with respect to the

unknown displacements di , one gets

Kdi =F (10)

in which the stiffness matrix K and the right hand side vector F are:

K=
∑

e

Ge
i
T He−1Ge

i , F=−
∑

e

Ge
i
T He−1Ge

ede +
∑

e

Ge
i
T He−1

θ e
T . (11)

The stiffness matrix and the nodal forces vector are computed in the finite element
sense, i.e. the summation over all the elements of the model is carried out through
the use of the connectivity relationships between the local degrees of freedom and
the model degrees of freedom. This is carried out in the finite element routine that
assembles the stiffness matrix K and the load vector F.

The equilibrium equation (10) has the standard form as that resulting from the
solving system of equations in the finite element displacement formulation. This
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Figure 3. Finite element mesh for the VCFEM model. Details of the polygonal elements are shown
in the enlargement, dark and white elements are alumina are zirconia, respectively.

allows for a simple implementation into a commercial finite element code; here the
code ABAQUS (Hibbit, Karlsson & Sorensen, Inc.) has been used.

Spatial integration of the matrix H has been carried out numerically by subdivid-
ing each Voronoi cell in quadrilaterals for identifying the Gauss quadrature points.
Spatial integration of the matrix G has been carried out analytically by using the
symbolic mathematical package MAPLE.

A discussion on the use of the VCFEM formulation and in particular on the
stress accuracy for materials exhibiting a microstructure with grains like ceramics and
ceramic composites can be found in [23]. Grujcic et al. adopt the Voronoi polygonal
elements with the purpose to represent the grains of a two phases composite; that is
the same approach adopted in this paper.

The finite element mesh of the VCFEM for the plane strain analysis of the lam-
inate under consideration consists of 11 1000 nodes, 52 368 polygonal elements and
20 2807 degrees of freedom; it is shown in Figure 3. A detail of the polygonal finite
elements is shown in the enlargement. Dark elements and white elements represent
alumina and zirconia, respectively. The left vertical boundary and the top horizontal
boundary are stress-free boundaries; the bottom boundary is the symmetry line in the
thickness direction, whereas the right vertical boundary is a symmetry boundary in
the longitudinal direction.

4. Macroscopic Homogenized Models

4.1. 3D Displacement Based Finite Element Approach

A stress analysis of the laminate, modeled assuming equivalent continuum homoge-
neous materials, has been carried out with the purpose to compare and validate the
results obtained through the microstructural approach.

A three-dimensional standard displacement-based finite element model has been
set up. Three planes of symmetry have been identified, and only one eighth of
the laminate has been modeled. Therefore the model includes five layers, above the
symmetry plane.

The size of the model was chosen such that all free edge effects are negligible
far from the free boundary of the model. The size of the model is reported in the
Figure 1. The displacement based finite element model consists of 12 3968 nodes and
28 830 quadratic brick elements with twenty nodes. Each lamina is discretized with
six layers of elements. In the neighborhood of the free corner, the average element
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Figure 4. Three-dimensional Finite element mesh of the laminate, only one eighth of the structure is
modeled.

size is 1.6µm. Displacement boundary conditions are applied along the symmetry
planes by constraining the displacement components perpendicular to the plane itself.
A uniform temperature change reproducing the cooling process from the sintering
temperature to the room temperature is applied (�θ =−1600◦C). The adopted finite
element mesh is reported in Figure 4. To this purpose the commercial finite element
code ABAQUS has been used.

4.2. Analytical Approximation of the Residual Stress Field

The residual stress field resulting from the uniform temperature change of a composite
laminate can also be estimated through analytical approaches, see for example [16,17].

The one adopted in this paper is based on the assumption of an equilibrium stress
distribution with some free parameters. These parameters are obtained through the
principle of minimum complementary energy. In particular, the approach presented
by Becker et al. [16,17] is briefly summarized in the following.

The hypotheses of symmetry of the laminate and of isotropic linear elasticity of
each lamina make the analytical approximation rather simple. It is expected that the
in-plane shear stress is negligible, therefore it can be assumed that σxz =0; moreover,
the stress components σxx and σxy are assumed constant with respect to the spatial
variable z and the stress components σzz and σzy are assumed constant with respect
to the spatial variable x. In order to fulfill a priori the indefinite equilibrium equa-
tions, the stress components are assumed in the following form:

σxx(x, y)= [1− (1+φx)]e−φxgxx(y), (12)

σzz(y, z)= [1− (1+φz)]e−φzgzz(y), (13)

σyy(x, y, z)=φ2[1−φx]e−φxgx
yy(y)+φ2[1−φz]e−φzgz

yy(y), (14)

σxy(x, y)=−φ2xe−φxgxy(y), (15)

σzy(y, z)=−φ2ze−φzgzy(y) (16)

with
gxx(y)= [En

2 ], (17)

gzz(y)= [En
6 ], (18)

gx
yy(y)= [En

2
y2

2
+En

3y +En
4 ], (19)
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gz
yy(y)= [En

6
y2

2
+En

7y +En
8 ], (20)

gxy = [En
2y +En

3 ], (21)

gzy = [En
6y +En

7 ]. (22)

The coefficients En
i , related to the nth lamina, are constants that are determined

through the equilibrium conditions at the interfaces between adjacent laminae and on
the external boundary [16].

The assumed stress field (12–16) is dependent on the free parameter φ, which
accounts for the local stress values close to the free edge, where the solution strongly
deviates from the stresses occurring in the inner region (far from the free edge), which
can be calculated through the Classical Laminate Theory (CLT).

The parameter φ has to be determined through the stationarity condition of the
complementary potential energy 	(φ):

	(φ)=
∫

V

[
1
2
σ T Sσ +σ T �θ

]
dV (23)

with:

�θ =αH




�θ

�θ

�θ

0
0
0




, σ =




σxx

σyy

σzz

σxy

σxz

σyz




(24)

The mathematical package MAPLE has been used to obtain the analytical expression
(23) and to solve the stationarity condition d	(φ)

dφ
=0.

4.3. Enhancement of the Macroscopic Models

The macroscopic models expounded in the previous two subsections provide an aver-
age value of the stresses which are due to the mismatch of the average CTE between
laminae. In fact, these models assume a homogeneous isotropic linear elastic material
within each lamina. However, the microscopic heterogeneity of the composite induces
a deviation of the local stress within the grains of alumina and zirconia, from the
average stress predicted by the macroscopic models.

A simple approach, able to estimate the stress within each material component, is
discussed in this section. The method is based on the Eshelby tensor approach which
defines a composite made of inclusions, having an idealized geometry, embedded in
a matrix.

Linear isotropic elasticity with isotropic CTE is assumed for both the alumina and
zirconia phases. Since the material grains do not exhibit preferred geometric direc-
tions, the ideal case of spherical inclusion is here assumed.

The state of stress within the matrix and the inclusions is given by two distinct
contributions: (i) the macroscopic stress owing to the macroscopic spatial mismatch
of CTE in the whole laminate (σH ); and (ii) the stress concentration, arising within
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each phase, owing to the microscopic CTE heterogeneities (σµ). The stresses within
the alumina and zirconia phases can be expressed respectively as

Al2O3σ =σH + Al2O3σµ, ZrO2σ =σH + ZrO2σµ. (25)

Provided the simple geometry of the matrix and of the inclusion in the representative
volume element, the stress state due to the temperature change of the composite and
to the CTE mismatch between the inclusion and the matrix is hydrostatic, i.e.:

ZrO2σ
µ

ij = ZrO2σµδij ,
Al2O3σ

µ

ij = Al2O3σµδij , (26)

being δij the Kronecker delta.
Let one introduce two strain fields respectively denoted as transformation strain εt∗

ij

and constrained strain εc
ij . The former accounts for the strain mismatch due to the

temperature change of the two materials and has the following form:

εt∗
ij = εt∗δij = (αi −αm)�θδij , (27)

while the latter is introduced to recover the kinematic compatibility at the interface
of the two phases.

The matrix is therefore subjected to εc
ij and the inclusion is subjected to εc

ij − εt∗
ij .

The concept of the equivalent inclusion is now introduced. It defines a fictitious
strain field εt such that

Ki(ε
c − εt∗)=Km(εc − εt ), (28)

in which Ki and Km are the bulk moduli of the inclusions and the matrix, respec-
tively.

According to the Eshelby theory one can write a relationship between εc and εt

as follows:

εc = (1−f )Svε
t +f εt (29)

where f is the volume fraction of the inclusions and Sv is the bulk coefficient of the
Eshelby tensor defined as:

Sv = 1+νm

3(1−νm)
. (30)

Substituting (29) into (28) one gets

εt = Ki

(Ki −Km)(Sv +f −f Sv)+Km

εt∗. (31)

The microscopic stress in the inclusion can be obtained, account taken of (28), as

iσ µ =Km(εc − εt )= KmKi(1−f )(Sv −1)

(Ki −Km)(1−f )(Sv −1)+Ki

εt∗. (32)

The average stress in the matrix can be obtained from the equilibrium condition such
that

mσµ = iσ µ −f

(1−f )
. (33)
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Figure 5. Contour of the longitudinal stress on the symmetry plane (z = 300µm) calculated through
the VCFEM.

5. Results

In this section the results of the VCFEM model and of the macroscopic homoge-
neous models are presented. The results from the macroscopic models have been
enhanced through the estimation of the microscopic stress (σµ) as shown in Sec-
tion (4.3).

The material composition in the five layers was such that a tensile stress develops
at the outer layer. The inner layers are characterized by a stress distribution that is
strongly affected by the microscopic arrangements of the two phases. Figure 5 shows
a gray-scale contour plot of the longitudinal stress component (σxx) within the lam-
inate. A maximum tensile stress of about 650 MPa is reached in the zirconia layer
close to the symmetry plane (x = 300µm). The contour plot shows the free edge
effect induced by the stress free boundary condition applied at the free boundary
(x =0). The stress values calculated into the inner layers are characterized by fluctuat-
ing values due to the presence of zirconia and alumina grains, each exhibiting differ-
ent elastic properties. In particular, the alumina grains are subjected to a compressive
stress while the zirconia grains are subjected to a tensile stress. In the innermost layer
(layer 5), a peak compressive stress in the alumina phase of about 2000 MPa has been
calculated close to the symmetry plane. In order to have a quantitative comparison
between the stress evaluated through the homogenized macroscopic models and that
obtained through the VCFEM model, a third order polynomial interpolation of the
stress in each material phase of the VCFEM results has been carried out. As a rep-
resentative example, the Figure 6 shows the interpolation of the longitudinal stress
computed in the zirconia grains, in the second layer (y =70µm).

First, a comparison between the results from the computational microscopic
model and those from the homogenized macroscopic models is carried out in the
first layer (the outer layer). Since the material in the layer is homogeneous, one has
σµ = 0. Figure 7 shows the value of the longitudinal stress (σxx) along the path
y = 90µm,0 � x � 300µm, which is located half layer thickness away from the outer
surface (y = 100µm). In the figure, the stresses calculated through the analytical
solution from equations (12–16), the 3D displacement based FEM solution and the
VCFEM results are reported. The solution far from the free edge, estimated through
the VCFEM approach, was about 700 MPa; while the homogenized models yielded a
value of about 650 MPa. This mismatch is due to the plane strain assumption in the
computational microscopic model.
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Figure 6. Example of a third order polynomial interpolation of the longitudinal stress in the zirconia
phase in the second layer.

Figure 7. Longitudinal stress in the first layer (pure zirconia).

Figure 8 (right) shows the shear stress component (τxy) along the same path. The
Solid line and the symbols are the 3D-FEM and the VCFEM solutions, respectively;
the bullets represents the analytical solution. This component of stress is well esti-
mated by the two finite element approaches, whereas the negative peak value at the
free edge (about −15 MPa) has been missed by the analytical approach. The VCFEM
results show some fluctuations with respect to the homogenized solution, this was
due to the heterogeneities in the lower layers.

Figure 8 (left) shows the transverse stress component (σyy), computed along the
same path. Also in this case the VCFEM model yielded a stress distribution similar
to the 3D-FEM, and the fluctuations due to the heterogeneities in the lower layers
were also present. The analytical approach missed the negative stress peak (−60 MPa)
close to the free edge, similarly to what already observed for the longitudinal stress
component.

The comparison between the results of the VCFEM and the homogenized mod-
els was also carried out in the layer 2 (80% ZrO2/20% Al2O3) along the path
y = 70µm,0 � x � 300µm and in the layer 4 (40% ZrO2/60% Al2O3) along the
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Figure 8. Transverse (left) and shear (right) stress components in the first layer.

Figure 9. Longitudinal stress in the second layer, comparison between the VCFEM (line with symbols)
and the analytical model (solid line) is shown on the left, comparison between the VCFEM (line with
symbols) and the 3D-FEM (solid line) is shown on the right. Dashed lines show the average result
of the macroscopic model σH

xx .

path y =30µm,0�x �300µm. In these two layers the microscopic stress σµ was
calculated according to the equations (32 and 33), in which f = 0.2 is the volume
fraction of the alumina inclusions for layer 2 and f = 0.4 is the volume fraction of
the zirconia inclusions for layer 4.

The zirconia matrix in the second layer was subjected to a microscopic hydrostatic
tensile stress ZrO2σµ = 200 MPa whereas the alumina inclusions were subjected to a
microscopic hydrostatic compressive stress Al2O3σµ = −800 MPa. In Figure 9 (right)
the longitudinal stress component calculated by means of the analytical homogenized
model is reported with a dashed line. The solid lines represent the stresses in the alu-
mina and zirconia phases as obtained from the enhanced macroscopic model. The
line with symbols represents the longitudinal stress component, as obtained from the
polynomial interpolation of the VCFEM results.

In Figure 9 (left) reports the results in the case of the 3D-FEM homogeneous
macroscopic model. The analytical and 3D-FEM approximations provided, in this
case, the same response.
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Figure 10. Transverse stress in the second layer, comparison between the VCFEM (line with symbols)
and the analytical model (solid line) is shown on the left, comparison between the VCFEM (line with
symbols) and the 3D-FEM (solid line) is shown on the right. Dashed lines show the average result
of the macroscopic model σH

yy .

Figure 11. Longitudinal stress in the fourth layer, comparison between the VCFEM (line with sym-
bols) and the analytical model (solid line) is shown on the left, comparison between the VCFEM
(line with symbols) and the 3D-FEM (solid line) is shown on the right. Dashed lines show the aver-
age result of the macroscopic model σH

xx .

In Figure 10 the transverse stress components (σyy) are compared. In this case an
appreciable overestimation of the stress in the zirconia phase (in tension) calculated
through the enhanced macroscopic models, with respect to that obtained through the
VCFEM, can be observed.

The zirconia inclusions in the fourth layer were subjected to a microscopic hydro-
static tensile stress ZrO2σµ = 850 MPa, whereas the alumina matrix was subjected to
a microscopic hydrostatic compressive stress Al2O3σµ = −550 MPa. Figure 11 (right)
shows the comparison between the VCFEM and the analytical model for the longitu-
dinal stress component. Comparison with the 3D-FEM model is shown in Figure 11
(left). Non appreciable difference was observed between the two macroscopic mod-
els, whereas the tensile stress in the zirconia phase obtained through the enhanced
macroscopic models is overestimated with respect to the VCFEM. A mismatch is also
observed in the longitudinal stress of the alumina phase.
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Figure 12. Transverse stress in the fourth layer, comparison between the VCFEM (line with symbols)
and the analytical model (solid line) is shown on the left, comparison between the VCFEM (line with
symbols) and the 3D-FEM (solid line) is shown on the right. Dashed lines show the average result
of the macroscopic model σH

yy .

Similar comparisons for the transverse stress component are reported in the
Figure 12. An appreciable mismatch is found between the analytical macroscopic
model (Figure 12 – left) and the 3D-FEM macroscopic model (Figure 12 – right) in
the evaluation of the tensile stress at the free edge.

6. Discussions and Conclusions

The residual stress field in an alumina/zirconia composite subjected to cooling has
been computationally estimated. To this purpose, a micromechanical computational
model based on the Voronoi Cell Finite Element Method has been used. Fur-
thermore, a comparison of these results with those obtained through two differ-
ent homogenized macroscopic models has been provided. The stress concentration
induced by the heterogeneities of the ceramic composite has been accounted for, in
the macroscopic models, by means of the Eshelby tensor, thus providing an estimate
of the residual stress in the zirconia and the alumina phases. The paper focuses on
the comparison between the models and does not put emphasis on new phenomena
occurring in the ceramic laminate.

The substantial agreement between the two approaches – the VCFEM and the
homogenized macroscopic models – has shown that both methods are able to provide
a reliable residual stress estimation. In particular, the agreement between the VCFEM
and the 3D standard displacement finite element model validates the micromechani-
cal approach.

Advantages and drawbacks of the VCFEM and of the homogenized models can
be now delineated.

The microscopic computational model presented in this paper is able to provide
the stress state in the alumina and zirconia phases accounting for the geometrical
features of the grains and their mutual interactions. As such it is more convenient
than the standard displacement-based finite element micromechanical analyses of
composites (even if this has not been explicitly proved in this paper). The drawback
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of the VCFEM model is the one typical of any micromechanical model, i.e. computa-
tional costs actually limit the size of the material domain: only a small size laminate
has been considered in this paper; furthermore, reliability of the stress computed at
singular points, like grain corners, needs to be enhanced. To this purpose, polynomial
interpolation of degree higher than three would be required.

Advantages of the homogenized models are obvious: they are computationally
cheaper than any micromechanical analysis and therefore much larger structures may
be considered.

The macroscopic models presented in this paper are not able to account for the inter-
action between the microstructural features (the grains) of the composite, and a simpli-
fying assumption on the shape of the heterogeneities has been used. This assumption
might strongly affect the stress concentration factors and justify the mismatch between
the stresses in the single phases of the material (Figures 10, 11 and 12).

The major limitations of the microscopic model of the ceramic laminate presented
in this paper are: (i) the plane stress assumption and (ii) isotropy of the physical and
mechanical properties of the alumina and zirconia grains.

With regards to the first limitation, a quantitative assessment of the error on the
longitudinal stress can be estimated on the basis of the theoretical model; whereas
the other stress components are not affected by the plane strain assumption.

With regards to the second limitation, anisotropy of the coefficient of thermal
expansion may play a role in the estimation of the residual stress at the microscopic
level. In [24], Krell et al. present an estimation of the residual stresses in single-phase
polycrystals. They have found that in homogeneous alumina, anisotropy of the coeffi-
cient of thermal expansion causes a residual stress of 148 MPa in the principal crys-
tal direction and −74 MPa in the transversal directions. Lower stresses have been
estimated in homogeneous zirconia. These results indicate that in a alumina/zirco-
nia composite, the effect of CTE anisotropy may play a role in the evaluation of the
stress in the grains. This residual stress field becomes less important when a compos-
ite is considered, indeed higher stresses develop due to the CTE mismatch between
alumina and zirconia grains. Moreover, since the principal crystal directions are ran-
domly distributed in the composite, the overall effect of the CTE anisotropy on the
macroscopic level vanishes and therefore does not affect substantially the conclusions
drawn in this paper. However, further investigations should be addressed in order to
study the effect of the CTE anisotropy on local microscopic stress.
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