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Abstract. Frictional oscillations under the action of almost periodic force are studied. The modula-
tion equations are derived by the multiple scales method to study bifurcations behavior. Heteroclinic
Melnikov function is constructed to obtain the region of chaotic solutions of these equations. Bifur-
cations of almost periodic orbits are studied by Van der Pol transformation and averaging procedure.
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1. Introduction

The analysis of friction nonlinear oscillations has great importance in machine tools
manufactures, polished plants, braking systems. Frictional auto-oscillations limit the
operation of gyroscopic systems. Many efforts were made to study these problems.
Den Hartog [1] considered string oscillations taking into account a bow moving on
the string. Andronov et al. [2] considered oscillations with the decreasing part of
the kinetic friction characteristic. Kauderer [3] noted that frictional auto-oscillations
are the simplest model to explain acoustic phenomena. Frictional auto-oscillations
of two moving body are considered by Kononenko [4]. He presented the experimen-
tal kinetic friction characteristics and the functions approximated these characteris-
tics. The auto-oscillations excited by friction of moving belt and oscillating body are
studied by Kononeko [5], Alifov and Frolov [6]. These authors consider the belt driv-
ing by the limited power supply. The autonomous stick-slip system is studied analyti-
cally by Popp and Stelter [7]. They considered chaotic oscillations of the periodically
excited systems. The different forms of kinetic friction characteristics are suggested
by Oestreich et al. [8] Feeny and Moon [9, 10] considered the dry friction oscilla-
tor with the normal force, which is proportional to the mass displacement. Wojewoda
and Kapitaniak [11] Wojewoda et al. [12] obtained one-dimensional map to study
a chaotic dynamics of the dry friction oscillator. Their numerical studies show, that
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the chaotic behavior arises as a result of the sequence of the period-doubling bifur-
cations. The system of two bodies coupled by dry friction under the action of the
almost periodic force is studied experimentally in the papers [11, 12].

The stick-slip chaos has been discovered in one-degree-of-freedom system by Popp
and Stelter [13]. It seems that the first report about the stick-slip chaotic behavior
and a coexistence of various non-smooth regular and irregular attractors in the two
degrees-of-freedom systems are reported by Awrejcewicz and Delfs [14, 15]. Since the
mentioned papers are focused on a qualitative and quantitative analysis with a help
of numerical approaches, an attempt to predict stick-slip chaos analytically is highly
required. It is worth noticing that this problem is solved by Awrejcewicz and Holicke
[16], where the Melnikov function for a stick-slip chaos exhibited in one degree-
of-freedom non-autonomous system is constructed. The predicted analytically stick-
slip chaos is verified through numerical computations showing a good coincidence.
Awrejcewicz and Olejnik [17] studied recently a two degrees-of-freedom autonomous
mechanical system consisted of two masses, where one of them lies on a moving
belt with a constant velocity. Among classical approaches applied to analysis of the
autonomous system (time histories, phase projections, Poincare maps, bifurcation dia-
grams, Lyapunov exponents, etc.), special attention is paid to application of both the
modified Henon’s numerical method (particularly suitable for a study of discontinu-
ous systems) and of the Lagrange interpolation used to obtain the Lyapunov expo-
nents in more efficient way than the standard approaches. In the paper [18], a special
numerical algorithm is proposed to quantify regular and irregular dynamics directly
without an application of the Lyapunov exponents concept. Its suitability to analyze
stick-slip chaos is discussed and illustrated in the next works by Awrejcewicz and
Dzyubak [19]. More complicated models of a real stick-slip behavior occurred in a
frictional pairs accounting of thermal processes and wear are analyzed in the papers
[20, 21]. Both theoretical background and numerous examples of regular and cha-
otic dynamics of discontinous mechanical systems including friction and impacts are
reported in the book [22]. The results of the numerical simulations of the mass-spring
system interacted with the moving belt are presented in the paper [23].

The mass oscillations in the clearance are studied by Balandin [24]. Frictional
auto-oscillations of this system excited by the plate interacted with the mass. Marju-
ta [25] considered the nonlinear dynamic of the Froud pendulum. He showed that
the experimental data disagree with the numerical simulations of the van der Pol
equation. Therefore, Marjuta used another model of frictional interactions. The auto-
oscillations of the Froud pendulum are considered in the book of Landa [26]. Pfeiffer
[27] considers the dynamics of bodies with several frictional contacts with moving
surfaces. This theory is used to analyze the drilling machine. Oscillations of the brak-
ing system, which is modeled by the self-excited nonlinear system, are studied by
Sinou et al. [28, 29]. In this paper the center manifolds method is used to analyze
the Hopf bifurcation. Many engineering applications of frictional auto-oscillations
are presented in the book of Kragelskii [30]. The history of nonlinear systems with
friction is reported by Feeny et al. [31].

Almost periodic forces are frequently encountered in engineering sciences. Non-
linear systems under the action of almost periodic forces are considered by Malkin
[32]. Nayfeh and Mook [33] used the multiple scales method to analyze such systems.
The quasilinear oscillator under the action of the almost periodic force is considered
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by Vavriv et al. [34]. They derive the modulation equations of the main resonance,
which contain the saddle point with two homoclinic orbits. The Duffing oscillator
with two small parameters under the action of the almost periodic force is stud-
ied by Wiggins [35], Ide and Wiggins [36]. The unperturbed modulation equations
of the Duffing oscillator contain the homoclinic orbits. Wiggins use the Melnikov
method to analyze the homoclinic torus. Yagasaki [37] studies the Duffing oscillator
under the action of the almost periodic excitation by the perturbation methods. He
applies the Melnikov method to analyze the chaotic states of the modulation equa-
tions. The bifurcations of almost periodic motions are investigated by Yagasaki [38]
too. The Duffing-van-der-Pol oscillator excited by the almost periodic force is consid-
ered by Yagasaki [39]. Nonlinear systems under the action of almost periodic forces
are generalized by Wiggins [40].

The mass-spring nonlinear system interacting with a moving belt is considered in
this paper. The oscillations excited by the almost periodic force are studied by the
multiple scales method. The periodic motions and their bifurcations are investigated
in the system of modulation equations. These equations are obtained by the multiple
scales method. The heteroclinic Melnikov function is constructed to analyze the cha-
otic states of the modulation equations. The analytical results are compared with the
data of the numerical simulations.

The novelty of the paper is application of the multiple scales method, Van-der-Pol
transformation and Melnikov function to study the frictional oscillator under the
action of the almost periodic force.

This paper is organized in the next form. The equations of mechanical system are
presented in Section 2. The derivation of the modulation equations in the case of the
resonance �1 ≈ 1; �2 ≈�1 is reported in Section 3. The unperturbed system of the
modulation equations (µ=0) is treated in Section 4. The Section 5 contains the anal-
ysis of almost periodic oscillations, which is reduced to the modulation equations.
The analytical analysis of the heteroclinic Melnikov function of the modulation equa-
tions is presented in Section 6. Section 7 contains the results of the numerical simu-
lations.

2. Equations of Motions

Figure 1 shows the considered system. The oscillations are described by the gen-
eralized coordinate x. The belt moving with constant velocity v∗ interacts with
the oscillator due to the friction force f (vR) (Figure 1b), where vR is a relative
velocity of the rubbing surfaces. The system excited by the almost periodic force
p(t)=�1 cosω1t+�2 cosω2t . The spring is considered as nonlinear: R= cx+ c3x

3.
The differential equation of oscillations is the following:

mẍ+ cx+ c3x
3 =�1 cosω1t+�2 cosω2t−f (ẋ−v0),

(1)
f (ẋ−v0)= θ0 sign(ẋ−v0)−A(ẋ−v0)+B(ẋ−v0)

3.

The following two small parameters are considered:

0<ε�µ�1. (2)
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Figure 1. The mechanical system and a kinetic friction characteristics.

The dimensionless variables and parameters have the following form:

x=x0ξ(t), ω0 =
√
c

m
, τ =ω0t, �1 = ω1

ω0
, �2 = ω2

ω0
,

ελ= c3x
2
0

c
, εµθ̃ = θ0

cx0
, εγ1 = �1

cx0
, (3)

vB = v0

x0ω0
, εµγ2 = �2

cx0
, α= Aω0x0

θ0
, β= Bω3

0x
3
0

θ0
.

Equation (1) is written as

ξ ′′ + ξ = ε
{
−λξ 3 +γ1 cos�1τ +µ

[
γ2 cos�2τ − θ̃P (ξ ′ −vB)

]}
,

P (ξ ′ −vB)= sign(ξ ′ −vB)−α(ξ ′ −vB)+β(ξ ′ −vB)3.
(4)

Note, that if the external excitation is absent in the system (4), the slipping mode pre-
dominates significantly over the sticking one and the motion is close to harmonic. It
is well known that if the periodic force acts on the system (4), the rich bifurcations
behavior takes place [8]. The analysis presented here is based on the assumption, that
the friction force is small. Therefore, this force determines the modulations of oscilla-
tions and this force affects a little on the sine form of oscillations and the frequency.

3. Modulation Equations of Resonance �1 ≈1, �2 ≈�1

The following resonance conditions are considered:

�1 =1+ εσ, �2 =�1 + ε. (5)

where σ, are the two independent detuning parameters. Following the multiple
scales method [32], equation (4) solutions are presented as

ξ = ξ0(T0, T1, . . . )+ εξ1(T0, T1, · · · )+ . . . , (6)

where T0 = t , T1 = εt . Then two equations are derived:

∂2ξ0

∂T 2
0

+ ξ0 =0, (7)
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∂2ξ1

∂T 2
0

+ ξ1 =−2
∂2ξ0

∂T0∂T1
−λξ 3

0 +γ1 cos�1T0 +µ
[
γ2 cos�2T0 − θ̃ sign

(
∂ξ0

∂T0
−vB

)

+θ̃α
(
∂ξ0

∂T0
−vB

)
−θ̃β

(
∂ξ0

∂T0
−vB

)3
]
. (8)

The solution of equation (4) is

ξ0 =
√

2ρ cos (�1T0 − θ) . (9)

The following Fourier series is used:

sign
[√

2ρ sin (�1t− θ)+vB
]
=−

∞∑
−∞

cn exp [in (�1t− θ)] , (10)

where

c1 = iα1, α1 =
{

0, vB >
√

2ρ,
2
π

√
1− v2

B

2ρ , vB <
√

2ρ

Neglecting the secular terms from (8), the following system of modulation equations
is derived:

ρ ′ =√
ρ
γ1√

2
sin θ +µ

{
−θ̃α1

√
2ρ +ρθ̃(α−3βv2

B)−
3
2
θ̃βρ2 +√

ρ
γ2√

2
sin θ cosT1

+√
ρ
γ2√

2
cos θ sinT1

}
(11)

θ ′ =σ − 3λ
4
ρ+ γ1

2
√

2ρ
cos θ +µ γ2

2
√

2ρ
(cos θ cosT1 − sin θ sinT1). (12)

The modulation equations (11 and 12) have both periodic and chaotic motions. As
follows from (11) and (12) if γ2 =0 and the resonance conditions (5) are satisfied,
there are not chaotic states in the system (4). If two harmonics of almost periodic
excitation are interacted, chaotic motions take place. Note that ε is only a part of
modulation equations time scale. Therefore, bifurcations of the system (4) do not
depend on ε.

4. Unperturbed Modulation System Analysis

In this section it is considered the unperturbed system (11) and (12) with Hamilto-
nian:

H =−
√

2ρ
γ1

2
cos θ + 3λ

8
ρ2 −σρ. (13)

The Hamiltonian has two groups of fixed points (θ1, ρ1) and (θ2, ρ2). which satisfy
the equations:

σ − 3λ
4
ρ1,2 ± γ1

2
√

2ρ1,2
=0, θ1 =0, θ2 =±π. (14)
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Figure 2. The phase planes of the unperturbed modulation equations. These figures correspond to the

following parameters: (a) −γ1 � 8
√

2σ 3

9
√
λ
, (b) −0≺γ1 ≺ 8

9

√
σ 3

λ
, (c) − 8

9

√
σ 3

λ
≺γ1 ≺ 8

9

√
σ 32
λ

.

Note that the values ρ1 (ρ2) correspond to plus (minus) sign of equation (14). If the
system parameters satisfy the inequality:

γ1>
8
√

2σ 3

9
√
λ
, (15)

then the following fixed point appears:

√
ρ1 = 3

√
γ1

3
√

2λ

⎛
⎜⎝ 3

√√√√1−
√

1− 128σ 3

81λγ 2
1

+ 3

√√√√1+
√

1− 128σ 3

81λγ 2
1

⎞
⎟⎠ . (16)

The eigenvalues of the linearized flow close to this fixed point are

λ̃=±i

√
γ1

4
√

2

(
3λ

√
ρ+ γ1√

2ρ

)
. (17)

Therefore, the fixed point ρ1 is orbitally stable. The phase trajectories of this case are
shown in Figure 2a.
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Now the behavior of the unperturbated system (11) and (12) is considered, when
the system parameters satisfy the inequality:

γ1<
8
√

2σ 3

9
√
λ
. (18)

Then three fixed points ρ1, ρ
(1)
2 and ρ

(2)
2 in the unperturbated system (11) and (12)

exist:
√
ρ1 = c̃ cos

[
1
3

arccos b̃
]

;
√
ρ
(1)
2 = c̃ cos

[
π

3
− 1

3
arccosb̃

]
;

√
ρ
(2)
2 = c̃ cos

[
π

3
+ 1

3
arccos b̃

]
, (19)

where c̃= 4
3

√
σ
λ

, b̃= 9
√
λγ1

8
√

2σ 3/2 . Now equation (17) is used to study stability of the fixed

point ρ1. The eigenvalues λ̃ of the linearized flow are determined to study stability
of fixed points ρ(1,2)2 :

λ̃2 = γ1
√
ρ√

2

(
3λ
4

− γ1

4
√

2ρ3/2

)
. (20)

If it is assumed, that the fixed points ρ(1)2 and ρ
(2)
2 just appear due to the saddle-

node bifurcation, then the following inequality is true ρ(1)2 >ρ
(2)
2 . In this case the fol-

lowing relations are met:

8
√

2σ 3/2

9
√
λ

− ε̃=γ1, 0<ε̃�1. (21)

Then the fixed points are determined as

√
ρ
(1,2)
2 = 2

3

√
σ

λ

⎛
⎝1±

√
ε̃

3
√
λ

4
√

2σ 3

⎞
⎠+O(ε̃), (22)

The eigenvalues of the linearized flow close to ρ(1)2 and ρ(2)2 have the following form:

λ̃(1,2)2 =±
√

3γ 2
1

4
√

2ρ

√
ε̃

9
√
λ

8
√

2σ 3
, (23)

where λ̃(1) corresponds to ρ
(1)
2 . The fixed points ρ(2)2 and ρ

(1)
2 are orbitally stable

(unstable), respectively.
Now the behavior of the unperturbated system (11) and (12) is considered, when

the system parameters satisfy the equations:

γ1 = 8
√

2σ 3

9
√
λ
. (24)

In this case, the saddle-node bifurcation takes place and two fixed points ρ(1)2 and
ρ
(2)
2 are jointed. The fixed points have the form:

√
ρ1 =2 3

√
γ1

3
√

2λ
,

√
ρ
(1)
2 =

√
ρ
(2)
2 =

√
ρ1

2
. (25)
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Hamiltonian (13) of the orbitally stable fixed point (θ1 =0, ρ1) has the value:

H
(1)
C =−2

√
ρ1σ 3

3
√
λ

[
2 cos2

(
1
6

arccos b̃
)

− δ
]
, (26)

where b̃=1− δ. The parameter δ defines the distance of the unperturbated system
from the saddle-node bifurcation. The value of the Hamiltonian in the saddle-point
( θ2 =π,ρ(1)2 ) is

HS =
2
√
ρ
(1)
2 σ 3

3
√
λ

[
2 sin2

(
π

6
− 1

6
arccos b̃

)
− δ
]

(27)

and the value of the Hamiltonian in the orbitally stable fixed point (θ2 =π,ρ(2)2 ) is

H(2)
c =

2
√
ρ
(2)
2 σ 3

3
√
λ

[
2 sin2

(
π

6
+ 1

6
arccos b̃

)
− δ
]
. (28)

Fixed points and separatrixes are a skeleton of phase portraits of the unperturbat-
ed system. To obtain qualitatively the behavior of the separatrixes at different val-
ues of the system parameters the intersections of the separatrixes with the line θ =π
(see Figure 2) is found. These intersections are described by the equation, which
follows from (13). The condition of the existence of the second positive root of

this equation is: γ1<
8
9

√
σ 3

λ
. Thus, the phase portraits of the unperturbated system

at 0<γ1<
8
9

√
σ 3

λ
and 8

9

√
σ 3

λ
<γ1<

8
9

√
σ 32
λ

differ qualitatively and they are shown in
Figure 2b and c, respectively. Note that the separatrixes are denoted by �−(ρ−(t); θ−(t))
and �+(ρ+(t); θ+(t)) (see Figure 2).

Let us determine these separatrixes for the case (Figure 2b). The following formula
is derived from equation (12): θ±(t)=arcsin

( √
2ρ ′

±
γ1

√
ρ±

)
. which is substituted into (13).

After some algebra the following result is derived:

ρ ′2 =
(
γ1

√
ρ√

2
+σρ− 3λ

8
ρ2 +Hs

)(
γ1

√
ρ√

2
−σρ+ 3λ

8
ρ2 −Hs

)
. (29)

The change of the variables: ρ(t)=ρ(1)2 + r(t) and the initial conditions:

θ±(0)=0, ρ±(0)=ρ(1)2 + r̃±. r̃± =2(k±
√

2kρ(1)2 ), k= 4σ
3λ

−ρ(1)2

are used to integrate the equation (11). As a result, the function ρ±(t) is derived as

ρ±(t)=ρ(1)2 ± 2r̃−r̃+
(r̃+ − r̃−) cosh(ãT1)± (r̃+ + r̃−) , ã= 3λ

8

√
−r̃−r̃+. (30)

5. Almost Periodic Motions

Almost periodic motions of the system (4) correspond to the periodic solutions of
the system (11) and (12). These motions close to the fixed points of the unperturbat-
ed system (11) and (12) are investigated in this section.
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The change of the variables is introduced:

ρ(t)=ρ(2)2 +µη(t), θ(t)=π +µϕ(t). (31)

As µ�0. the periodic motions close to the saddle fixed point (ρ(1)2 , π) are unsta-
ble. In this section stability and bifurcations of the motions close to the stable fixed
point (ρ(2)2 , π) are studied by the approach suggested by Holmes, and Holmes [42].
The functions η(t) and ϕ(t) (31) satisfy the following differential equations:

η′ =− γ1√
2

√
ρ
(2)
2 ϕ+A(1)−

√
ρ
(2)
2

2
γ2 sin(T1),

ϕ′ =
⎛
⎝ γ1

4ρ(2)2

√
2ρ(2)2

− 3λ
4

⎞
⎠η− γ2

2
√

2ρ(2)2

cos(T1). (32)

The solution of this system is

η= h

λ2
2 −2

cos(T1), ϕ=
√

2

γ1

√
ρ
(2)
2

⎛
⎝ h

λ2
2 −2

−
√
ρ
(2)
2

2
γ2

⎞
⎠ sin(T1)+ Ã(1), (33)

where the parameters λ2,w, Ã
(1) are presented in Appendix A. The following change

of the variables is used:

ρ=ρ(2)2 +√
µh(T1)+µη(T1), θ =π +√

µψ+µϕ. (34)

Then the non-linear differential equations are derived:

ḣ=− γ1√
2

√
ρ
(2)
2 ψ−√

µγ1
hψ

2
√

2ρ(2)2

+µ
⎧⎨
⎩h

⎡
⎣A(2)− γ1ϕ

2
√

2ρ(2)2

− γ2

2
√

2ρ(2 )2

sin(T1)

⎤
⎦

−ψ
⎡
⎣√ρ(2)2

γ2√
2

cos(T1)+ γ1η

2
√

2ρ(2)2

⎤
⎦+

γ1

√
ρ
(2)
2

6
√

2
ψ3 + γ1h

2ψ

8
√

2ρ(2)3/22

⎫⎬
⎭ , (35)

ψ̇=
⎛
⎝ γ1

4ρ(2)2

√
2ρ(2)2

− 3λ
4

⎞
⎠h+√

µ
γ1

2
√

2ρ(2)2

(
ψ2

2
− 3h2

8ρ(2)22

)
+µ

⎧⎨
⎩

γ1

2
√

2ρ(2)2(
ψϕ− hψ2

4ρ(2)2

− 3hη

4ρ(2)2

)
+ γ2

2
√

2ρ(2)2

(
ψ sin(T1)+ h

2ρ(2)2

cos(T1)

)⎫⎬
⎭ , (36)

where the parameter A(2) and the function β1(ρ
(2)
2 ) are presented in Appendix A. The

main parametric resonance in the system (35) and (36) is considered:

µσ2 = 2

4
−λ2

2. (37)
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where σ2 is a detuning parameter. Then the frequencies �1 and �2 satisfy the follow-
ing equation:

�2 =�1 + ε2λ2 + εµσ2

λ2
+O(εµ2).

The change of the variables

h=u cos
(


2
T1

)
−v sin

(


2
T1

)
,

(38)
γ1



√
2ρ(2)2 ψ=u sin

(


2
T1

)
+v cos

(


2
T1

)

is used to study the system (35) and (36). Then the system (35) and (36) is rewritten
with respect to u, v and the average procedure is carried out. As a result the follow-
ing equations are derived:

u̇=µ
{[
f1 cos



2
T1

]
0
+ γ1



√
2ρ(2)2

[
f2 sin



2
T1

]
0
+ σ2


v+ u2v

256ρ(2)22

×
(

62 − 6γ 2
1

ρ
(2)
2

+ 15γ 4
1

22ρ
(2)2
2

)
+ 3v3

256ρ(2)22

(
22 + 5γ 4

1

22ρ
(2)2
2

− 2γ 2
1

ρ
(2)
2

)}
, (39)

v̇=µ
{
γ1



√
2ρ(2)2

[
f2 cos



2
T1

]
0
−
[
f1 sin



2
T1

]
−σ2

u


− uv2

256ρ(2)22 

×
(

62 + 15γ 4
1

22ρ
(2)2
2

− 6γ 2
1

ρ
(2)
2

)
− 3u3

256ρ(2)22 

(
22 + 5γ 4

1

22ρ
(2)2
2

− 2γ 2
1

ρ
(2)
2

)}
, (40)

where [ ]0 is the average operator. The system (39) and (40) has the following form:

u̇=µ
{
D1u+

(
D2 + σ2



)
v+D(u2v+v3)

}
,

v̇=µ
{
u
(
−σ2


+D2

)
+D1v−D(u3 +v2u)

}
, (41)

where the parameters D1,D2, χ.D are presented in Appendix A. The system (41) is
rewritten with respect to the variables (R2.γ )= (u2 +v2,arctg

(
v
u

))
:

Ṙ=µ(D1R+D2R sin 2γ ), γ̇ =µ
(
D2 cos 2γ −DR2 − σ2



)
. (42)

This dynamical system has three groups of the fixed points R1, R2, R3:

R2
1,2′ =− σ2

D
± 1
D

√
γ 2

2 χ
2 −D2

1, R3 =0. (43)

Note, that the following inequalities are true:

D<0, D1<0. (44)

These fixed points are presented qualitatively on the bifurcation diagram (Figure 3),
where R versus σ2 are shown. The eigenvalues (π1.π2) of the linearized flow are
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Figure 3. Qualitatively bifurcation diagram of the fixed points, where R versus σ2 are shown.

derived to study stability of these points. The eigenvalues (π(3)1 , π(3)2 ) of the vector
field close to the fixed point R3 are

π
(3)
1 =D1 +

√
D2

2 − σ 2
2

2
, π

(3)
2 =−2

√
D2

2 − σ 2
2

2
. (45)

As follows from (45), the boundary of stability/ instability is

σ •
2 =2λ2

√
γ 2

2 χ
2 −D2

1, σ̃ •
2 =−σ •

2 . (46)

These values are shown in Figure 3, where the stable (unstable) motions are pre-
sented by solid (dotted) line, respectively. The stability of the fixed points R1 is
described by the eigenvalues:

π
(1)
1,2 =D1 ±

√
D2

1 −4DR2
1

√
γ 2

2 χ
2 −D2

1 <0. (47)

Thus, the fixed points R1 are stable. The eigenvalues (π(2)1 .π
(2)
2 ) of the fixed points R2

are

π
(2)
1,2 =D1 ±

√
D2

1 +4DR2
2

√
γ 2

2 χ
2 −D2

1 . (48)

The values π(2)1,2 meet the inequalities: π(2)1 >0, π
(2)
2 <0 and the fixed points R2 are

unstable.
Now the bifurcation behavior of the fixed points is considered. The pitchfork

bifurcations (Figure 3) occur at σ2 =σ •
2 and σ2 = σ̃ •

2 . The location of these bifurca-
tions satisfies the equation:

γ 2
2 χ

2 − σ 2
2

4λ2
2

=D2
1 . (49)

Equation (49) describes a hyperbola, which is denoted by (AC1B) (see Figure 4).
The codimension two bifurcation point C1 joints two pitchfork bifurcations and has
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Figure 4. The bifurcation curves on the plane (σ2, γ2). The pitchfork bifurcation curve and saddle-
node bifurcation curve are denoted by (AC1B) and (C1D). respectively.

Figure 5. The bifurcation diagram R−σ2 containing the point C1.

the following coordinates on plane (σ2, γ2) : C1(0; γ̄2), γ̄2 =D1/χ . At γ̄ = γ̄2 two
branches of bifurcation diagram R1 −σ2 and R2 −σ2 merge and the saddle-node
bifurcation line is formed. The saddle-node bifurcation curve meets the equation:

R2
1,2 =− σ2

D
. (50)

The bifurcation diagram R−σ2 with the point C1 is shown in Figure 5. The saddle-
node bifurcation set is a straight line on the plane (σ2, γ2) (see Figure 4).

The variables (R, γ ) and the variables of the system (4) are connected as:

ξ =−
√

2ρ(2)2 cos�1t−√
µR

[


γ1
sin�1t sin

(


2
εt+γ

)

+ 1√
2ρ(2)2

cos�1t cos
(


2
εt+γ

)⎤
⎦+O(µ)+O(ε). (51)

Now the system (4) oscillations are considered. The fixed points R3 =0 correspond
to the stable oscillations of the system (4) with period T1 =2π/�1. The fixed points
R1 and R2 correspond to the almost periodic oscillations (51).

6. Chaotic Solutions of the Modulation Equations

An appearance of the heteroclinic tangency is chosen as the criterion of chaotic oscil-
lations. The Melnikov function M̃ is calculated to analyze a heteroclinic tangency
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[41] and the applications of this functions to discontinuous systems are considered
in the papers [43, 44]. Taking into account the equations (11) and (12), the Melnikov
heteroclinic function is derived as

M̃=
∫ ∞

−∞

{
−γ1γ2

4
sin θ cos(t−t0 + θ)+ γ2√

2

√
ρ sin(t−t0 + θ)

×
(
σ − 3

4
λρ+ γ1

2
√

2ρ
cos θ

)}
dt+

∫ ∞

−∞
P(ρ)

(
σ − 3

4
λρ+ γ1

2
√

2ρ
cos θ

)
dt, (52)

where P(ρ)=−θ̃α1
√

2ρ+ρθ̃(α−3βv2
B)− 3

2 θ̃βρ
2. The integration (52) is carried out

along the trajectories of the unperturbed system taking into account the relations:
ρ(t)=ρ(−t), θ(t)=−θ(−t). After some algebra the heteroclinic Melnikov function
is obtained as

M̃= γ2

2
sin(t0)

{∫ ∞

−∞

(
−σ
√

2ρ cos θ + 3λ
4
ρ
√

2ρ cos θ − γ1

2

)
cos(t)dt

+σ
∫ ∞

−∞

√
2ρ sin θ sin(t)dt− 3λ

4

∫ ∞

−∞
ρ
√

2ρ sin θ sin(t)dt
}

+
∫ ∞

−∞
P(ρ)

(
σ − 3

4
λρ+ γ1

2
√

2ρ
cos θ

)
dt. (53)

The equation: cos θ =
√

2
ργ 2

1

( 3λ
8 ρ

2 −σρ−HS
)

is used to calculate the Melnikov func-

tion. As a result it is derived

M̃±(t0)= γ2

2
A± sin(t0)+D±. (54)

The derivation of D± and the value A± are given in Appendix B. The parameter A±
contains the following integrals:

K±
n =

∫ ∞

−∞
rn±(t) cos(t)dt, L±

n =
∫ ∞

−∞
rn±(t)ṙ±(t) sin(t)dt, n=1,2,3. (55)

The integrals (55) satisfy the following equations:

L0 =−K1, K2 =− 2

L1. (56)

The following values of the integrals (55) are derived by the residues method:

K±
1 =∓16π sinh(̃θ±

0 )

3λ sinh(̃π)
,K±

2 = 16πρ̃
3λ

[
̃

cosh(̃θ±
0 )

sinh(̃π)
∓ ctgθ0

sinh(̃θ±
0 )

sinh(̃π)

]
,

K±
3 =∓ 8πρ̃2

3λ sinh(̃π)

{
sinh(̃θ±

0 )(1+3ctg2θ0 + ̃2)∓3̃ctgθ0 cosh(̃θ±
0 )
}
,

L±
0 =±16π sinh(̃θ±

0 )

3λ sinh(̃π)
,L±

1 =−8πρ̃
3λ

[
′ cosh(̃θ±

0 )

sinh(̃π)
∓ ctgθ0

sinh(̃θ±
0 )

sinh(̃π)

]
,
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where ̃ = 8/3ρ̃λ. The formulae for θ±
0 , ρ̃ and A±(,λ, γ1, σ ) are presented in

Appendix B.
If the equation M̃± =0 has the simple roots, the upper and lower invariant man-

ifolds �+ and �− (Figure 2b) are intersected transversally and the Smale horseshoes
take place [41]. If the inequality

∣∣∣∣D±
A±

∣∣∣∣< γ
(±)
2

2
(57)

satisfies, the transversal intersections of the invariant manifolds occur in the system
(4). The boundary of the region (57) satisfies the equation:

γ
(±)
2 =2

∣∣∣∣∣
D±(β, vB,α, θ̃ , λ, σ, γ1)

A±(,λ, γ1, σ )

∣∣∣∣∣ . (58)

The boundary (58) is considered on the parameter plane (, γ2). The right part of
equation (58) does not depend on γ2. Moreover, the numerator of the right part does
not depend on . For future analysis the value A± is rewritten in the form, which
contains explicit dependence on  (see Appendix B). Using these relations, the fol-
lowing limits are derived:

lim
→∞

γ
(±)
2 =∞, lim

→−∞
γ
(±)
2 =∞, lim

→0
γ
(±)
2 =

∣∣∣∣ 16πD±
9ρ̃λ const1 ∓8θ±

0 const2

∣∣∣∣ , (59)

where const1 and const2 are presented in Appendix 2. The numerical calculations
are performed to analyze the boundary (58). The numerical values of the system (1)
parameters are taken from the book [5]:

m=0.981kg, c=9.81×103 N
m , c3 =1.67×103 N

m3 , �1 =100 N, θ0 =4.9N,
A=0.2 kg

sec , B=3×10−6 kg×sec
m2 .

Then the dimensionless parameters of the system (4) are the following:

ε=0.01, µ=0.1, λ=17, θ̃ =0.5, γ1 =1.02, α=4.08, β=0.61,

σ =10, νB =4.

The boundaries of the heteroclinic orbits intersections γ
(+)
2 () and γ

(−)
2 () are

shown in Figure 6a and b, respectively.

7. Numerical Analysis of Modulation Equations

In this section it is reported the numerical results of the steady states bifurcations
in the modulation equations (11) and (12), when γ2 is changed and =1.944. The
values of γ2 are taken with some steps and the system (11) and (12) is solved by
the Runge–Kutta method. The numerical integration is carried out with different
initial values to determine the main steady states of the system. The integration is
performed until the dynamical system reaches a steady state. Afterwards, the initial
conditions are changed and the integration is repeated.



Frictional Oscillations 133

-10 -8 -6 -4 -2 0
10

20

30

40

50

60

70

γ 2
γ 2

0 2 4 6 8 10

20

30

40

50

60

70

∆

∆

(a)

(b)

Figure 6. The boundaries of the heteroclinic orbits intersections. (a) γ (+)2 (). (b) γ (−)2 ().

The following dynamical behavior of the system (11) and (12) is discovered. The
limit cycles of the period T1 =2π −1 are observed in γ2 ∈ [10; 43]. These limit cycles
take place close to the fixed point ρ1 of the unperturbated system (11) and (12). For
example, the limit cycle at γ2 =43 is shown in Figure 7a. The period-doubling bifur-
cation occurs at the interval γ2 ∈ [43; 44] and the limit cycle period is doubled. Such
limit cycle at γ2 =46 is shown in Figure 7b. These motions exist in the wide range
γ2 ∈ [46;74]. In this interval the additional limit cycles exist at some parameters. The
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Figure 7. The limit cycles obtained by the numerical calculations.
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Figure 8. Chaotic attractor and its Poincare map at γ2 =77.3.

third order limit cycle is observed at γ2 =55 (Figure 7c). This motion is discovered
close to the heteroclinic trajectories of the unperturbated modulation equations. The
theory of these motions is based on the subharmonic Melnikov functions [41, 45].
According to this theory the limit cycle is arisen due to the saddle-node bifurcation.
The complex periodic motion (Figure 7d) was observed besides the second order limit
cycle at γ2 =59.
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The period- doubling bifurcation takes place in the interval γ2 ∈ [74;75.5] and the
fourth order limit cycle is arisen (Figure 7e). This motion undergoes the period- dou-
bling bifurcation and the 8th order limit cycle appear. This cycle is shown in Figure 8f
at γ2 =77. The chaotic attractors take place if γ2 is increased slightly. For example,
such attractor is shown in Figure 8a at γ2 =77.3. The Poincare sections of this attrac-
tor are shown in Figure 8b.

Thus, the system behavior predicted by means of the heteroclinic Melnikov func-
tion is verified by the numerical integration. All limit cycles considered here corre-
spond to the almost periodic oscillations of the system (4).

8. Conclusions

The frictional oscillations have been considered in this paper. As the oscillator is
disposed on the moving belt, the energy of this belt is pumped over to the oscil-
lator. The actions of almost periodic excitations on the system have been consid-
ered. The heteroclinic Melnikov function has been obtained to study the region of
the chaotic oscillations in the periodically excited system. The system of the modula-
tion equations has been derived by the multiple scales method for the almost periodi-
cally excited system. The bifurcations behavior is studied analytically in the system of
the modulation equations. The heteroclinic Melnikov function has been used to ana-
lyze the region of the chaotic solutions existence of the modulation equations. The
numerical analysis of the modulation equations, which confirms the chaotic dynam-
ics, has been presented. It has been shown, that the chaotic motions are arisen due
to the sequence of the periodic-doubling bifurcations.
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Appendix A

λ2
2 = γ 2

1

8ρ(2)2

− 3λγ1

4
√

2

√
ρ
(2)
2 , w= γ1γ2

4
−
√
ρ
(2)
2

2
γ2, Ã(1)=A(1)

√
2

γ1

√
ρ
(2)
2

,

A(2)= θ̃
⎡
⎣−α1(ρ

(2)
2 )√

2ρ(2)2

−
√

2ρ(2)2 β1(ρ
(2)
2 )+α−3βν2

B −3βρ(2)2

⎤
⎦ ,
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β1(ρ
(2)
2 )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, vB >

√
2ρ(2)2 ,

2v2
B(

2ρ(2)2

)3/2
π

√
2ρ(2)2 −v2

B

, vB <

√
2ρ(2)2 .

D1 = B1

2
+ γ1Ã

(1)

4
√

2ρ(2)2

= A(2)

2
, D2 = B2

2
− B3

4γ1

√
2ρ(2)2

+
γ1

√
2ρ(2)2 B4

4
=γ2χ,

χ = 1

4
√

2ρ(2)2

− λ2

4γ1
+ γ 3

1

256ρ(2)2 λ3
2

−
√

2γ 2
1

64
√
ρ
(2)
2 λ2

2

,

D= 1

162ρ
(2)2
2 

⎡
⎣2 + 13γ 4

1

22ρ
(2)2
2

+
(

3− γ 2
1

ρ
(2)
2

)2

+ 44ρ
(2)
2

γ 2
1

⎤
⎦ ,

f1 =h [B1 −B2 sinT1]−ψB3 cosT1 +
γ1

√
ρ
(2)
2

6
√

2
ψ3 + γ1h

2ψ

8
√

2ρ(2)3/22

,

f2 =B2ψ sinT1 +B4h cosT1 + γ1Ã
(1)

2
√

2ρ(2)2

ψ− γ1hψ
2

8ρ(2)2

√
2ρ(2)2

,

�1 = W

λ2
2 −2

=− γ2

3λ2
2

(
γ1

4
−λ2

√
2ρ(2)2

)
, B1 =A(2)− γ1Ã

(1)

2
√

2ρ(2)2

,

B2 = γ1�2 +γ2

2
√

2ρ(2)2

= γ2

6
√

2ρ(2)2

⎛
⎝4− γ1

λ2

√
2ρ(2)2

⎞
⎠ ,

B3 =
√
ρ
(2)
2
γ2√

2
+ γ1

2
√

2ρ(2)2

�1 =γ2

⎡
⎣
√
ρ
(2)
2

2
+ γ1

6
√

2ρ(2)2 λ2
2

(
λ2

√
2ρ(2)2 − γ1

4

)⎤
⎦ ,

B4 = 2γ2 −3�1γ1

8ρ(2)2

√
2ρ(2)2

= γ2

8ρ(2)2

√
2ρ(2)2

(
2+ γ 2

1

4λ2
2

− γ1

λ2

√
2ρ(2)2

)
.
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Appendix B

D± = 1
2

(
3βv2

B −α) θ̃
∫ ∞

−∞
2ρ±

(
−σ + 3λ

4
ρ± − γ1 cos θ±

2
√

2ρ±

)
dt

+
∫ ∞

−∞

(
−θ̃α1

√
2ρ± − 3

2
θ̃βρ2

±

)(
σ − 3

4
λρ± + γ1

2
√

2ρ±
cos θ±

)
dt

=±6
∫ 0

r̃∓

rdr√
(r− r̃−)(r̃+ − r) ± 16

3λ

(
9λ
4
ρ
(1)
2 −σ

)∫ 0

r̃∓

dr√
(r− r̃−)(r̃+ − r)

+3
2
θ̃β

{
9
16
λ

∫ ∞

−∞
r3
±dt +

(
27
16
λρ

(1)
2 − σ

2

)∫ ∞

−∞
r2
±dt+ρ(1)2

(
9
8
λρ

(1)
2 − σ

2

) ∫ ∞

−∞
r±dt

}

+
∫ ∞

−∞
θ̃α1

√
2ρ±

(
−σ + 3

4
λρ± − γ1

2
√

2ρ±
cos θ±

)

dt=∓ (3βv2
B −α) θ̃ 16

3λ

(
σθ±

0 ∓ 9λ
16
ρ̃

)

+θ̃β
{

14ρ̃σ
λ

∓ θ±
0

[(
9ρ(1)2 − 4σ

λ

)(
4σ
λ

−2ρ(1)2

)
+ 7σ(r̃+ + r̃−)

λ

]}
+ θ̃ 9λ

16
J
(±)
2

+θ̃
(

9
8
λρ

(1)
2 − σ

2

)
J
(±)
1 ,

where θ+
0 = θ0, θ−

0 =π − θ0, θ0 =arccos
(
r̃++r̃−
r̃+−r̃−

)
, ρ̃=√−r̃+r̃−,

J
(−)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
√

2
3λπ

∫ r̃+

0

rj−1
√
ρ
(1)
2 − v2

B

2 + rdr
(ρ
(1)
2 + r)√(r− r̃−)(r̃+ − r)

,
v2
B

2
−ρ(1)2 <0,

32
√

2
3λπ

∫ r̃+

v2
B
2 −ρ(1)2

rj−1
√
ρ
(1)
2 − v2

B

2 + rdr
(ρ
(1)
2 + r)√(r− r̃−)(r̃+ − r)

, 0<
v2
B

2
−ρ(1)2 <r̃+,

0,
v2
B

2
−ρ(1)2 <r̃+,

J
(+)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
√

2
3λπ

∫ r̃−

0

rj−1
√
ρ
(1)
2 − v2

B

2 + rdr
(ρ
(1)
2 + r)√(r− r̃−)(r̃+ − r)

, r̃−<
v2
B

2
−ρ(1)2 ,

32
√

2
3λπ

∫ r̃−

v2
B
2 −ρ(1)2

rj−1
√
ρ
(1)
2 − v2

B

2 + rdr
(ρ
(1)
2 + r)√(r− r̃−)(r̃+ − r)

, r̃−<
v2
B

2
−ρ(1)2 <0,

0,
v2
B

2
−ρ(1)2 <0,
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j =1,2.

A±(,λ, γ1, σ )= 9λ2

16γ1
K±

3 − 9λ
8γ1

(2σ − 3
2
ρ
(1)
2 λ)K±

2 − 1
2γ1[

9
4
γ1λ

√
2ρ(1)2 −σ(4σ −3λρ(1)2 )

]
K±

1 − 3λ
2γ1

L±
1 +

(
2σ
γ1

− 3λ
2γ1

ρ
(1)
2

)
L±

0 ,

A±(,λ, γ1, σ )= cos ech
(

8π
3ρ̃λ

){
∓8π

3λγ1

(
3
2
λρ̃ctgθ0 −2

[
2σ − 3

2
λρ

(1)
2

])

+ 2π
3λγ1

{
27
4
λ2ρ̃2ctg2θ0 −9λρ̃(2σ − 3

2
ρ
(1)
2 λ)ctg θ0 −9γ1λ

√
2ρ(1)2

+8σ(2σ − 3
2
ρ
(1)
2 λ)+ 9

4
λ2ρ̃2

}
+ π232

3γ1λ

]
sinh(′θ±

0 )

+
[
2π32
3γ1λ

+ 8π
λγ1

{
3
2
ρ̃λctgθ0 −2(2σ − 3

2
ρ
(1)
2 λ)

}]
cosh(′θ±

0 )

}
.

A± = cos ech
(

8π
3ρ̃λ

){
∓
[
const1 + const2 + π232

3γ1λ

]
sinh

(
̃θ±

0

)
+
[
2π32
3γ1λ

+3 const1

]
cosh

(
̃θ±

0

)}
,

where

const1(λ, γ1, σ )= 8π
3λγ1

(
3
2
λρ̃ctgθ0 −2

[
2σ − 3

2
λρ

(1)
2

])
,

const2(λ, γ1, σ )= 2π
3λγ1

{
27
4
λ2ρ̃2ctg2θ0 −9λρ̃

(
2σ − 3

2
ρ
(1)
2 λ

)
ctgθ0 −9γ1λ

√
2ρ(1)2

+8σ
(

2σ − 3
2
λρ

(1)
2

)
+ 9

4
λ2ρ̃2

}
.
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