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Introduction

Depression is a prevalent and debilitating psychiatric dis-
ease affecting approximately 350 million people worldwide 
and causing a huge socioeconomic burden (Malhi & Mann, 
2018). However, current existing first-line antidepressants, 
such as selective serotonin reuptake inhibitors (SSRIs) and 
serotonin and norepinephrine reuptake inhibitors (SNRIs), 
require weeks to months to produce a therapeutic response 
and have a low effective rate (50–70%). Therefore, there is 
an urgent need to develop effective antidepressants with few 
adverse effects.

Recently, accumulating evidence has shown that Tradi-
tional Chinese Medicine (TCM) is a prospective alternative 
for treating depression with better compliance and lower 
side effects. Inulin-type oligosaccharides of Morinda offi-
cinalis (IOMO, as illustrated in Fig. 1), extracted from M. 
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Abstract
Neuroinflammation contributes to the pathogenesis of depression. Inulin-type oligosaccharides of Morinda officinalis 
(IOMO) exert antidepressant-like effects in rodents and patients with depression, while the underlying mechanisms remain 
unclear. This study used chronic restraint stress (CRS) and lipopolysaccharide (LPS) to induce depression-like behaviors 
in mice. Western blotting and ELISA analysis were used to investigate the effects of IOMO on inflammatory cytokine 
levels. Immunofluorescence analysis was used to investigate the effects of IOMO on hippocampal NLRP3 inflammasome 
and microglial cells. The results suggested that 6 weeks of CRS induced significant depression-like behaviors based on 
the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST), which were accompa-
nied by increases in the expression of IL-6 and the activation of hippocampal microglial cells. Chronic treatment with 
IOMO (25 mg/kg, i.g.) for 28 days significantly reversed these depression-like behaviors and inhibited the activation of 
microglial cells. Furthermore, LPS (0.5 mg/kg, i.p.) also significantly induced depression-like behaviors in the TST, FST, 
and novelty-suppressed feeding test (NSFT), as well as increased the expression of IL-1β and caspase-1, and activated 
the microglial cells and the NLRP3 inflammasome in the hippocampus. Treatment with IOMO for 9 days significantly 
reversed these depression-like behaviors and normalized the LPS-induced activation of the microglial cells and NLRP3 
inflammasome. Taken together, these results suggested that IOMO exerted antidepressant-like effects via hippocampal 
microglial NLRP3 inflammasome mediation followed by caspase-1 inhibition and the production of IL-1β. These findings 
provide a basis for developing new antidepressants targeting the microglial NLRP3 inflammasome.
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officinalis roots and mainly consisting of seven oligosaccha-
rides (Hao et al. 2020), were approved as a prescribed tra-
ditional herbal medicine for mild and moderate depressive 
episodes in 2012 by the Chinese Food and Drug Adminis-
tration (CFDA) (Du et al. 2021). Furthermore, preclinical 
studies suggested that IOMO exerted significant antidepres-
sant-like effects in rodent models (Chi et al. 2020; Zhu et al. 
2020). Although IOMO has been used as a safe and effective 
form of TCM for depression treatment in clinical trials, the 
molecular mechanism underlying its antidepressant effects 
remains unclear.

Accumulating evidence suggests that neuroinflamma-
tion is a critical component underlying the pathogenesis 
of depression (Beurel et al. 2020; Troubat et al. 2021; Won 
et al. 2021). Dysregulation of both the innate and adaptive 
immune systems occurs in depressed patients and hinders 
favorable prognosis, including antidepressant responses 
(Beurel et al. 2020). In addition, preclinical studies sug-
gested that pro-inflammatory factors, such as lipopolysac-
charide (LPS), could induce depression-like behaviors in 
rodents (Walker et al. 2019; Zhao et al. 2019), and chronic 
treatment with SSRIs, fluoxetine, or paroxetine, could alle-
viate inflammatory responses and depression-like behaviors 
induced by LPS (Li et al. 2021a, b; Zhang et al. 2021). A 
previous study suggested that M. officinalis extracts affected 
colitis by regulating inflammation and cell death (Liang et 
al. 2017), which provided some hints for the role of neuroin-
flammation in the antidepressant effects of IOMO.

The hippocampus is relatively vulnerable to acute 
inflammatory challenges in depression (Zhao et al. 2019). 
Depression-like behaviors induced by chronic stress are 
accompanied by the release of inflammatory cytokines in the 
hippocampus (Yang et al. 2021; Zhao et al. 2019). Microg-
lial cells, which are the primary resident immune cells of the 
central nervous system and play an important role in the first 

immune defense line in the brain, greatly contribute to the 
development and progression of depression (Jia et al. 2021; 
Li et al. 2022a, b; Wang et al. 2022). Importantly, microglial 
cells release proinflammatory cytokines and their metabolic 
products in response to stress-triggered neuroinflammation 
and regulate depression-like behaviors by modulating the 
function of neurons and astrocytes.

Nucleotide-binding domain leucine-rich repeat fam-
ily pyrin domain containing 3 (NLRP3) inflammasome is 
a multimeric protein complex that triggers innate immune 
responses regulating the cleavage of interleukin-1β (IL-
1β) and IL-18 precursors (Swanson et al. 2019), which are 
important proinflammatory cytokines that play a role in neu-
roinflammation. Several studies have shown that the NLRP3 
inflammasome is involved in stress-induced depression by 
regulating the production of IL-1β protein, and inhibition 
of the NLRP3 inflammasome could significantly amelio-
rate depression-like behaviors (Kouba et al. 2022; Tang et 
al. 2021). Clinical studies have shown high serum levels 
of proinflammatory biomarkers in patients with depression 
(Osimo et al. 2020; Zou et al. 2018), while preclinical stud-
ies have revealed significant increases in the levels of IL-1β, 
NLRP3 inflammasome, and caspase-1 in the hippocampus 
(Fang et al. 2022).

Therefore, we hypothesized that a neuroinflamma-
tion mechanism might underly the antidepressant effects 
of IOMO. Thus, we first evaluated the antidepressant-like 
effects of IOMO in chronic restraint stress (CRS)- and LPS-
induced mice models of depression. Moreover, we inves-
tigated the role of hippocampal neuroinflammation, such 
as the release of inflammatory cytokines, the expression of 
the NLRP3 inflammasome, and the activation of microglial 
cells, in the antidepressant-like effects of IOMO.

Fig. 1 Structure of Morinda officinalis decoction pieces and M. officinalis oligosaccharides (IOMO). (A) Traditional Chinese Medicine decoction 
pieces. (B) Structural formula of Morinda oligosaccharides
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Materials and methods

Animals

Male C57BL/6J mice weighing 25–30 g were purchased 
from Beijing SPF Laboratory Animal Technology Company 
(Beijing, China). Animals were housed at a constant room 
temperature (23 ± 1 °C) and humidity (40–60%) and were 
group housed in 5 mice per cage during experiments (except 
for the sucrose preference test). Food and water were avail-
able ad libitum. Animals were randomly divided into five 
groups in the CRS experiment and three groups in the LPS 
experiment. The experiments were performed in compliance 
with the National Institutes of Health Guidelines for the 
Care and Use of Laboratory Animals (NIH publication No. 
86–23, revised 2011). All procedures were approved by the 
Institutional Animal Care and Use Committee (IACUC) of 
the Beijing Institute of Pharmacology and Toxicology (ani-
mal ethics protocol number: IACUC-DWZX-2021-757). 
The sample size was determined according to a calculator 
(http://powerandsamplesize.com/) and reported methods 
(Festing 2018). All efforts were made to minimize ani-
mal suffering and reduce the number of animals used for 
experiments.

Drug and dose

IOMO was purchased from Beijing Tong Ren Tang Ltd. 
Co. (Beijing, China), and LPS was purchased from Sigma-
Aldrich (L2880; St Louis, MO, USA). IOMO and LPS were 
dissolved in saline and administered intragastrically (i.g.) or 
intraperitoneally (i.p.) at a volume of 10 mL/kg.

Chronic restraint stress (CRS) procedure

Mice were restrained in a 50-mL centrifuge tube (diameter: 
3 cm, length: 10 cm) with some small holes in the periph-
ery for 6 h per day (09:00–15:00) for 42 consecutive days. 
The mice could freely breathe in the tube, but could not 
move forward or backward. Each mouse was successively 
assessed using the sucrose preference test (SPT), open field 
test (OFT), tail suspension test (TST), and forced swim test 
(FST). Except for the control group, post-CRS mice were 
randomly divided into CRS-vehicle and CRS-IOMO groups, 
which received saline and IOMO (12.5, 25, or 50 mg/kg), 
respectively. Drugs (including saline) were administered 
orally once a day at 8:00–9:00 a.m. from 21 days after the 
CRS regime. An outline of the treatment schedule design 
and behavioral tests is shown in Fig. 2A.

Sucrose preference test (SPT)

The SPT was performed as previously described (Liu et al. 
2018a, b). Briefly, mice were housed individually in a cage 
with free access to bottles containing a 1% sucrose solution 
or water for 2 days before testing. After adaptation, the mice 
were deprived of water and food for 24 h and then placed 
in the cage with two bottles over a 2 h period. Sucrose 
preference (%) = [sucrose consumption/(sucrose consump-
tion + water consumption)] ⋅ 100.

Open field test (OFT)

The OFT was performed as previously described (Kraeuter 
et al. 2019). Mice were placed in the corner of a plastic box 
(40 × 40 × 20 cm) and their spontaneous locomotor activity 
was videotaped for 5 min and analyzed using the SMART 
Video Tracking System V3.0 (Beijing Zhong Shi Di Chuang 
Technology Development Co., Ltd. labmazev3.0). After 
each test, the box was cleaned with a 75% ethanol solution 
to remove odor, urine, or feces.

Forced swimming test (FST)

The FST was performed as previously described with minor 
modifications (Dang et al. 2022). Briefly, mice were indi-
vidually forced to swim in an open cylindrical container 
(height: 25 cm, diameter: 10 cm) containing 18 cm of water 
maintained at 24 ± 1 °C for 6 min. The immobility duration 
in the last 4 min of the total 6-min test was recorded. Mice 
were considered immobile when they ceased struggling 
and remained floating motionless in the water, making only 
those movements necessary to keep their head above water.

Tail suspension test (TST)

The TST was performed according to a previously described 
method (Liu et al. 2022). Briefly, mice were suspended at the 
top of the apparatus by adhesive tape placed approximately 
1 cm from the tip of the tail. The duration of immobility 
in the last 4 min of a total 6 min suspension was recorded. 
Immobility was defined as an absence of any limb or body 
movements, except those caused by respiration. After each 
test, the box was cleaned with 75% ethanol solution to 
remove odor, urine, or feces.

LPS-induced depression-like behaviors

LPS was used to induce depression-like behaviors in mice 
as previously reported (Li et al. 2021a, b; Su et al. 2016; 
Sun et al. 2021; Zhao et al. 2019) with minor modifica-
tions. Briefly, mice received two injections of LPS (0.5 mg/

1 3

2067

http://powerandsamplesize.com/


Metabolic Brain Disease (2023) 38:2065–2075

IgG, IRDye680RD, Goat anti-Mouse IgG, LI-COR Bio-
sciences, Lincoln, NE, USA). Quantification analyses for 
images were performed using ImageJ software (v 1.45 J; 
National Institutes of Health, Bethesda, MD, USA). The 
relative level of each protein was expressed as the density 
ratio of the target protein band to the β-actin band, and all 
the protein expression values were normalized to the values 
obtained in the vehicle groups.

Immunofluorescence staining

After behavioral testing, mice were anesthetized with 
urethane (1 g/kg, i.p.) and transcardially perfused with 
phosphate buffered saline (PBS), followed by 4% parafor-
maldehyde. The brains were then cut into 20-µm sections and 
thoroughly washed with PBS for 5 min, blocked with 10% 
goat serum for 2 h, and incubated overnight at 4 °C with pri-
mary antibody anti-NLRP3 (Rabbit pAb, 1:200, GB114320, 
Wuhan Servicebio Technology Co., Ltd., Wuhan, China) or 
Iba-1 (Rabbit, 1:200, ab178846; Abcam, Cambridge, UK). 
Secondary antibodies included anti-Rabbit Alexa Flour 
594 (# 8889 S; 1: 1000; Cell Signaling Technology), and 
Alexa Fluor 488 goat anti-mouse IgG (#4408; 1: 1000; Cell 
Signaling Technology). Coverslips were mounted on glass 
slides with fluoroshield containing DAPI (F6057-20 mL, 
Sigma-Aldrich) and incubated at room temperature over-
night. Images were acquired at a size of 560 × 900 μm with a 
20× NA 0.5 dry objective lens on a fluorescence microscope 
(Olympus IX73PIF; Olympus Corporation, Tokyo Japan) 
equipped with a microscope digital camera (Olympus DP74; 
Olympus Corporation). For analysis, at least 20 images of 
the hippocampus were used for each group of animals, and 
at least 4 images from one slice of the brain. The number 
and staining area of the Iba-1 + cells were determined using 
ImageJ software (v 1.45 J; NIH, USA), and the number was 
expressed as the number of Iba-1 + cells per mm2 in a 20-µm 
thick section. All measurements were performed by an oper-
ator blinded to the sections’ identity.

Statistical analysis

All data were analyzed by an observer blinded to the experi-
mental protocol. The normality of data was assessed by the 
Shapiro-Wilk test and Kolmogorov-Smirnov test, and the 
variance homogeneity of data was assessed by the F test. 
Parametric data were presented as mean ± standard deviation 
(S.D.), and nonparametric data were presented as median 
and interquartile range. All data were analyzed using Graph-
Pad Prism 8.0 (GraphPad, San Diego, CA, USA). For non-
parametric tests, statistical differences between two groups 
were analyzed using a two-tailed Student’s t-test, and data 
containing more than two groups were tested using one-way 

kg, i.p.) on the first and seventh day (08:00–09:00 a.m.), 
whereas control mice received a vehicle at the same time 
points. Mice exposed to LPS were randomly divided into 
LPS-vehicle and LPS-IOMO groups, which received saline 
and IOMO (25 mg/kg, i.g.), respectively. Drugs (including 
saline) were administered orally once a day at 8:00–9:00 
a.m. from day 1. Each mouse was successively tested using 
the OFT, TST, FST, and novelty-suppressed feeding test 
(NSFT).

Novelty-suppressed feeding test (NSFT)

Each mouse was placed in one corner of an open plastic 
box (40 × 40 × 30 cm) with five food pellets placed in the 
center after 24 h of food deprivation (Chen et al. 2022) The 
exploratory activity of each mouse in the plastic box was 
observed for 5 min, and the latency to feed was recorded. 
Eating behaviors were defined as chewing and biting. New 
food pellets were placed in the center after each test.

Enzyme-linked immunosorbent assay (ELISA)

Mice were sacrificed after behavioral testing and the hippo-
campal tissues were rapidly removed and stored at − 80 °C 
until assayed. The samples were centrifuged at 10,000 × g 
for 15 min at 4 °C and the supernatant was added to 96-well 
microplates. The levels of IL-6, IL-1β, IL-4, and IL-10 were 
then determined using an ELISA kit according to the man-
ufacturer’s instructions (USCN Life Sciences & Technol-
ogy Co., Ltd., Wuhan, China). Absorbance was determined 
using a microplate spectrophotometer at 450 nm (Spectra 
Max i3x Molecular Devices, Silicon Valley, CA, USA) and 
sample concentration was calculated using a standard curve.

Western blotting (WB)

After behavioral testing, mice were sacrificed for WB, and 
hippocampal tissue was extracted by RIPA buffer (Beyo-
time Biotechnology, Beijing, China) with protease inhibi-
tors and a phosphatase inhibitor cocktail (Thermo Fisher 
Scientific, Waltham, MA, USA). Samples containing 40 µg 
of protein were separated using SDS-PAGE before transfer 
to PVDF membranes, which were then incubated with anti-
INOS (1:1000, D6B6S Rabbit; Cell Signaling Technology, 
Danvers, MA, USA), anti-NLRP3 (1:500, DF7438 Rab-
bit; Affinity Biologicals, Ancaster, Canada), anti-caspase-1 
(1:1000, Rabbit; Proteintech, Rosemont, USA), anti-IL-1β 
(1:500, Rabbit; ABMART, Shanghai, China), and anti-
β-actin (1:1000, Mouse; CWBIO, Beijing, China). Next, 
the membranes were washed in TBST for three times and 
incubated for 2 h at room temperature with fluorescent sec-
ondary antibodies (1:5000, IRDye800CW Goat anti-Rabbit 
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days significantly increased the sucrose preference in the 
SPT (one-way ANOVA followed by Dunnett’s tests; F(3, 

36) = 3.922, p = 0.0161< 0.05; 12.5 vs. CRS, p = 0.9656; 25 
vs. CRS, p = 0.0095 < 0.01; 50 vs. CRS, p = 0.6511), and 
significantly decreased the immobility duration in the TST 
(Kruskal-Wallis H test, H = 13.14, p = 0.0043 < 0.01; 12.5 
vs. CRS, p = 0.0311 < 0.05; 25 vs. CRS, p = 0.0024 < 0.01;50 
vs. CRS, p = 0.6516) and in the FST (Kruskal-Wallis H test, 
H = 10.08, p = 0.0179 < 0.05; 12.5 vs. CRS, p = 0.2349; 25 
vs. CRS, p = 0.0077 < 0.01; 50 vs. CRS, p > 0.9999) com-
pared with CRS mice. These results indicated that chronic 
treatment with IOMO could reverse the depression-like 
behaviors induced by CRS.

IOMO alleviated hippocampal inflammatory 
cytokines induced by CRS

To investigate the mechanism underlying the antidepres-
sant-like effects of IOMO, we assessed the effects of IOMO 
on hippocampal inflammatory cytokines and microglial 
cells. CRS significantly increased the expression of IL-6 
in the hippocampus, and treatment with IOMO (25 mg/
kg, i.g.) for 28 days significantly reduced the expression of 
IL-6 (F(2, 12) = 5.495, p = 0.0202 < 0.05; Control vs. CRS, 
p = 0.0197 < 0.05; IOMO + CRS vs. CRS, p = 0.0351 < 
0.05; Fig. 3B), indicating that IOMO decreased the expres-
sion of hippocampal pro-inflammatory factors. However, 

ANOVA followed by Dunnett’s test. For nonparametric 
tests, statistical differences between two groups were ana-
lyzed using the Mann-Whitney U test, and data containing 
more than two groups were tested using the Kruskal-Wallis 
H test followed by the Nemenyi test. For all tests, differ-
ences were considered statistically significant at a level of 
p < 0.05.

Results

IOMO reversed the depression-like behaviors 
induced by CRS

To evaluate the antidepressant-like behavioral effects of 
IOMO, we first investigated the effects of IOMO on mice 
exposed to 6 weeks of CRS. CRS significantly decreased 
the sucrose preference in the SPT (t(18) = 2.288, p = 0.0344 
< 0.05; Fig. 2B), decreased the entries into the central zone 
in the OFT (Mann Whitney U test, U = 14, p = 0.0047 < 
0.01), and increased the immobility durations in the TST 
(Mann Whitney U test, U = 10.5, p = 0.0016 < 0.01) and 
FST (Mann Whitney U test, U = 14.5, p = 0.0056 < 0.01). 
These results indicated that 6 weeks of CRS induced sig-
nificant depression-like behaviors in the mice. Furthermore, 
IOMO significantly reversed the depression-like behaviors 
caused by CRS. Specifically, treatment with IOMO for 28 

Fig. 2 Treatment with IOMO (28 
days) reversed the depression-
like behaviors induced by CRS. 
(A) Schematic drawing of the 
experimental timeline. (B) Effects 
of IOMO on sucrose preference 
in the SPT. (C, D) Total distance 
and entries in the central zone in 
the OFT, and (E, F) immobility 
durations in the TST and FST. *p 
< 0.05 and **p < 0.01, compared 
with control mice; #p < 0.05 and 
##p < 0.01, compared with CRS 
mice, n = 10 mice/group
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IOMO reversed the depression-like behaviors 
induced by LPS

We further evaluated the antidepressant-like effects of 
IOMO in an LPS mouse model. An outline of the treat-
ment schedule design and behavioral tests is illustrated in 
Fig. 4A. The results suggested that treatment with IOMO 
significantly reversed depression-like behaviors induced by 
LPS. In the OFT, LPS exerted no effect on total distance 
(F(2, 21) = 0.7230, p = 0.4970; LPS vs. Control, p = 0.9245; 
IOMO + LPS vs. LPS, p = 0.4136) and entries in the cen-
tral zone (Kruskal-Wallis H test, H = 4.775, p = 0.0919; LPS 
vs. Control, p = 0.1823; IOMO + LPS vs. LPS, p = 0.0817). 
Notably, LPS significantly increased the immobility dura-
tions in the TST and FST, and increased the latency to feed 
in the NSFT, whereas treatment with IOMO (25 mg/kg, i.g.) 

IOMO exerted no effects on IL-1β (Kruskal-Wallis H test, 
H = 2.340, p = 0.3304), IL-4 (F(2, 12) = 4.363, p = 0.0377 < 
0.05; Control vs. CRS, p = 0.0295 < 0.05; IOMO + CRS vs. 
CRS, p = 0.7947), and IL-10 (F(2,12) = 1.929, p = 0.1877). 
Notably, CRS significantly increased the number of hippo-
campal microglial cells compared with that of control mice, 
and IOMO significantly inhibited the activation of microg-
lial cells (F(2, 10) = 9.355, p = 0.0051 < 0.01; CRS vs. Con-
trol, p = 0.0071 < 0.01; IOMO + CRS vs. CRS, p = 0.0091 < 
0.01). These results indicated that IOMO could normalize 
the activity of hippocampal microglial cells.

Fig. 4 Treatment with IOMO for 
9 days reversed the depression-
like behaviors induced by LPS. 
(A) Schematic drawing of the 
experimental timeline. (B, C) 
Effects of IOMO on total distance 
and entries in the central zone in 
the OFT, (D, E) immobility dura-
tions in the TST and FST, and (F) 
the latency to feed in the NFST. 
*p < 0.05, **p < 0.01, and ***p 
< 0.001, compared with control 
mice; #p < 0.05 and ##p < 0.01, 
compared with LPS mice, n = 8 
mice/group

 

Fig. 3 Treatment with IOMO 
(25 mg/kg, i.g.) for 28 days 
alleviated hippocampal inflam-
matory cytokines and microglial 
cells induced by CRS. (A-D) 
Effects of IOMO on the expres-
sion of IL-1β, IL-6, IL-4, and 
IL-10 in the hippocampus. (E) 
Representative immunofluores-
cence images showing Iba-1 in 
the hippocampus of Control, 
CRS, and CRS + IOMO treated 
mice. (F) Quantification of the 
effect of IOMO on the number 
of hippocampal microglial cells. 
*p < 0.05 and **p < 0.01, compared 
with control mice; #p < 0.05 and 
##p < 0.01, compared with CRS 
mice; n = 4–5 mice/group
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might be implicated in the mechanism of antidepressant-
like effects of IOMO.

IOMO reduced hippocampal inflammatory-related 
factors induced by LPS

To further investigate the mechanism underlying the anti-
depressant-like effects of IOMO, we performed western 
blotting to quantitate the expression levels of hippocam-
pal inflammatory-related cytokines (Fig. 6). Notably, we 
found that LPS treatment led to significant increases in the 
expression of inflammation-related factors in the hippo-
campus, and treatment with IOMO (25 mg/kg, i.g.) for 9 
days significantly decreased the expression of INOS (one-
way ANOVA followed by Dunnett’s tests; F(2, 15) = 7.138, 
p = 0.0066 < 0.01; LPS vs. Control, p = 0.0307 < 0.05; 
IOMO + LPS vs. LPS, p = 0.0050 < 0.01), caspase-1 (F(2, 

15) = 6.515, p = 0.0092 < 0.01; LPS vs. Control, p = 0.0248 
< 0.05; LPS vs. IOMO + LPS, p = 0.0078 < 0.01), and 
IL-β (F(2, 15) = 4.632, p = 0.0271 < 0.05; LPS vs. Control, 
p = 0.0475 < 0.05; LPS vs. IOMO + LPS, p = 0.0259 < 0.05), 
induced by LPS. In addition, treatment with IOMO slightly 
decreased the expression of NLRP3 (Kruskal-Wallis H test, 
H = 5.930, p = 0.0468 < 0.05; LPS vs. Control, p = 0.0699; 
LPS vs. IOMO + LPS, p = 0.0699). These results indicated 
that inflammation-related factors in the hippocampus might 
be implicated in the mechanism of the antidepressant-like 
effects of IOMO.

for 9 days significantly reduced the immobility durations in 
the TST (F(2, 21) = 4.450, p = 0.0245 < 0.05; LPS vs. Control, 
p = 0.0482 < 0.05; IOMO + LPS vs. LPS, p = 0.0227 < 0.05) 
and in the FST (Kruskal-Wallis H test, H = 14.51, p = 0.0007 
< 0.001; LPS vs. Control, p = 0.0033 < 0.01; IOMO + LPS vs. 
LPS, p = 0.0012 < 0.01), and reduced the latency to feed in 
the NSFT (F(2, 21) = 12.21, p = 0.0003 < 0.001; LPS vs. Con-
trol, p = 0.0001 < 0.001; IOMO + LPS vs. LPS, p = 0.0385 < 
0.05). These results indicated that IOMO exhibited signifi-
cant antidepressant-like effects in the LPS model.

IOMO exerted antidepressant-like effects through 
microglial cells and NLRP3 inflammasome

To investigate the mechanism of the antidepressant-like 
effects of IOMO (25 mg/kg, i.g.) in the LPS model, we 
performed an immunofluorescence assay on hippocampal 
microglial cells and the NLRP3 inflammasome (Fig. 5). 
LPS (0.5 mg/kg, i.p.) significantly increased the number of 
hippocampal microglial cells, whereas IOMO significantly 
decreased them (one-way ANOVA followed by Dunnett’s 
tests; F(2, 10) = 17.46, p = 0.0005 < 0.001; LPS vs. Control, 
p = 0.0004 < 0.001; IOMO + LPS vs. LPS, p = 0.0082 < 
0.01). In addition, IOMO significantly inhibited the expres-
sion of the NLRP3 inflammasome (Kruskal-Wallis H test, 
H = 9.099, p = 0.0012 < 0.01; LPS vs. Control, p = 0.0082 < 
0.01; IOMO + LPS vs. LPS, p = 0.0705). These findings indi-
cated that microglial cells and the NLRP3 inflammasome 

Fig. 5 Effects of IOMO (25 mg/
kg, i.g.) on hippocampal 
microglial cells and the NLRP3 
inflammasome. (A, B) Repre-
sentative immunofluorescence 
images showing Iba-1 and the 
NLRP3 inflammasome in the 
hippocampus, respectively. (C, 
D) Quantitative analysis of the 
effects of treatment with IOMO 
on the number of microglial cells 
and the NLRP3 inflammasome in 
the hippocampus. **p < 0.01 and 
***p < 0.001, compared with con-
trol mice; ##p < 0.01, compared 
with LPS mice. n = 4–5 mice/
group

 

1 3

2071



Metabolic Brain Disease (2023) 38:2065–2075

Chronic stress leads to the activation of microglia in 
the hippocampus (Du Preez et al. 2021; Duan et al. 2022). 
Microglial activation is a key mediator of neuroinflamma-
tory processes (Jia et al. 2021), promoting the release of 
inflammatory factors in the hippocampus, leading to the 
disruption of neuroplasticity and cognitive impairment, and 
contributing to the development of depression (Ruilian et al. 
2021; Zhong et al. 2019). Consistent with these studies, the 
immunofluorescence analysis in the present study showed 
that CRS induced the activation of microglial cells in the 
hippocampus, which was accompanied by depression-like 
behaviors and the release of IL-6. Treatment with IOMO 
reversed the activation of microglial cells, indicating that 
microglial cells in the hippocampus might contribute to the 
mechanism of the antidepressant-like effects of IOMO.

LPS-induced depression is a commonly used animal 
model of inflammation-induced depression, which causes 
several depression-like behaviors in rodents (Walker et al. 
2019; Zhao et al. 2019). LPS increased the expression of 
pro-inflammatory cytokine (IL-1β, IL-6) levels (Han et al. 
2021; Zhang et al. 2019), and the inhibition of hippocam-
pal inflammation could alleviate LPS-induced depression-
like behaviors in mice (Bian et al. 2020; Liu et al. 2018a, 
b). Consistent with these results, our study also suggested 
that LPS induced depression-like behaviors. For example, 
LPS increased immobility durations in the TST and FST, 
and increased latency to feed in the NSFT. In addition, 
depression-like behaviors induced by LPS were accompa-
nied by changes in hippocampal inflammation. The subse-
quent western blotting results suggested that LPS caused 

Discussion

In the present study, we confirmed that IOMO exerts signifi-
cant antidepressant-like effects on CRS- and LPS-induced 
depression models and we preliminarily uncovered an 
important role of IL-6 and microglial cells in the antide-
pressant-like effects of IOMO in CRS mice. Moreover, we 
revealed that IOMO decreased the expression of the NLRP3 
inflammasome, caspase-1, and IL-1β, and inhibited the 
activation of microglial cells induced by LPS. Collectively, 
these results indicate that the antidepressant-like action of 
IOMO may be mediated by the regulation of hippocampal 
inflammation, which includes inflammatory cytokines, the 
NLRP3 inflammasome, and microglial activity.

CRS can induce depression-like behaviors, which are 
accompanied by increases in inflammatory cytokines, such 
as IL-1β and IL-6 (Yang et al. 2021). Given that CRS is a 
classical depression model, the present study used this model 
to evaluate the antidepressant effects of IOMO. Our results 
showed that 6 weeks of CRS caused significant depression-
like behaviors in mice; for example, CRS decreased sucrose 
preference in the SPT and increased immobility durations in 
the TST and FST. However, chronic treatment with IOMO 
significantly reversed these depression-like behaviors 
induced by CRS, revealing that IOMO exerted significant 
antidepressant-like behavioral effects on CRS mice. Nota-
bly, treatment with IOMO reversed the increase in hippo-
campal IL-6 induced by CRS, indicating that hippocampal 
IL-6 might play an important role in the mechanism of the 
antidepressant effects of IOMO.

Fig. 6 Treatment with IOMO 
(25 mg/kg, i.g.) for 9 days 
reduced expression of hippocam-
pal inflammatory-related factors 
induced by LPS. (A) Western 
blotting analysis of the expres-
sion of INOS, NLRP3, caspase-1, 
and IL-1β in the hippocampus. 
(B-E) Quantitative analysis of the 
effects of IOMO on the expres-
sion of INOS, NLRP3, caspase-1, 
and IL-1β in the hippocampus. 
*p < 0.05, compared with control 
mice; #p < 0.05 and ##p < 0.01, 
compared with LPS mice. n = 6 
mice/group
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