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1959; Dancis et al. 1972; Chuang et al. 2008). In this par-
ticular IEM, there is the accumulation of leucine, isoleucine, 
and valine, as well as the transaminated branched-chain 
α-ketoacids α-ketoisocaproic acid (KIC), α-ketoisovaleric 
acid (KIV), and α-keto-β-methylvaleric acid (KMV), in 
body tissues and fluids (Chuang and Shih 2001).

The estimated worldwide frequency of MSUD is approx-
imately 1:185,000 newborns (Chuang and Shih 2001). In the 
first weeks of life, patients with MSUD can present lethargy, 
hypoglycemia, ketoacidosis, apnea, and ataxia symptoms 
(Chuang and Shih 2001; Schonberger 2004). Furthermore, 
they may demonstrate psychomotor and mental retardation, 
cerebral hemisphere atrophy, generalized cerebral edema, 
delayed myelination, spongy degeneration of the cerebral 
white matter, and encephalopathy that can result in irrevers-
ible coma and death (Treacy et al. 1992; Chuang and Shih 
2001; Berry et al. 2003; Jain et al. 2013; Klee et al. 2013).

Introduction

Inborn errors of metabolism (IEMs) are caused by genetic 
mutations that impair protein or enzyme synthesis (Wasim 
et al. 2018). Maple syrup urine disease (MSUD) is a dis-
order that affects the metabolism of amino acids (Menkes 
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Abstract
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inborn error of metabolism (IEM), responsible for the 
accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, in addition to their α-keto acids 
α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) in the plasma and urine 
of patients. This process occurs due to a partial or total blockage of the dehydrogenase enzyme activity of branched-
chain α-keto acids. Oxidative stress and inflammation are conditions commonly observed on IEM, and the inflammatory 
response may play an essential role in the pathophysiology of MSUD. We aimed to investigate the acute effect of intra-
cerebroventricular (ICV) administration of KIC on inflammatory parameters in young Wistar rats. For this, sixteen 30-day-
old male Wistar rats receive ICV microinjection with 8 µmol KIC. Sixty minutes later, the animals were euthanized, and 
the cerebral cortex, hippocampus, and striatum structures were collected to assess the levels of pro-inflammatory cytokines 
(INF-γ; TNF-α, IL-1β). The acute ICV administration of KIC increased INF-γ levels in the cerebral cortex and reduced 
the levels of INF-γ and TNF-α in the hippocampus. There was no difference in IL-1β levels. KIC was related to changes 
in the levels of pro-inflammatory cytokines in the brain of rats. However, the inflammatory mechanisms involved in 
MSUD are poorly understood. Thus, studies that aim to unravel the neuroinflammation in this pathology are essential to 
understand the pathophysiology of this IEM.
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Patients affected by MSUD also present several neuro-
logical problems, including learning and memory deficits, 
caused by alterations in the synthesis of glutamate. In turn, 
changes in glutamate levels can occur due to disturbances 
in the metabolism of branched-chain amino acids (BCAAs) 
(Scaini et al. 2017). Studies have demonstrated an associa-
tion between increased levels of leucine and/or KIC and 
neurological symptoms, suggesting that these may be the 
major neurotoxic components in MSUD (Snyderman et al. 
1964; Chuang and Shih 2001). Furthermore, the accumu-
lation of metabolites in the brain promotes mitochondrial 
dysfunction, resulting in deficits in brain energy metabolism 
(Sgaravatti et al. 2003; Ribeiro et al. 2008), oxidative stress, 
reduced antioxidant defenses, decreased levels of neuro-
trophins (Bridi et al. 2005; Funchal et al. 2006; Mescka et 
al. 2011; Sitta et al. 2014; Wisniewski et al. 2016; Taschetto 
et al. 2017). In addition, it also reduces the brain uptake 
of essential amino acids, culminating in changes in neu-
rotransmitter concentrations (Wajner et al. 2000; Tavares et 
al. 2000; Ronald Zielke et al. 2002). In a previous study 
conducted by our group, evaluating the acute and chronic 
administration of KIC in different parameters, we observed 
similar damage between the acute and the chronic admin-
istration of KIC and even more significant damage in the 
acute administration in some parameters of oxidative stress 
(Taschetto et al. 2017).

Several biological mechanisms can trigger neuroinflam-
mation, including oxidative stress, microglial reactions, 
and exacerbated release of inflammatory mediators such as 
cytokines, chemokines, prostaglandins, complement cas-
cade proteins, and ROS, which play a crucial role in the 
development of neurodegenerative diseases (Niranjan 2013; 
Vivekanantham et al. 2015; Gelders et al. 2018). In addition, 
previous studies have demonstrated that the inflammatory 
response plays an essential role in the pathogenesis of some 
IEMs, including phenylketonuria (Deon et al. 2015), type I 
glutaric acidemia (Seminotti et al. 2016), and methylmalo-
nic acidemia (Ribeiro et al. 2013).

According to Mescka et al. (2015a, b), MSUD patients 
on a protein-restricted diet have high levels of pro-inflam-
matory cytokines. Furthermore, animal models and cell 
cultures studies have shown that BCAAs alter the balance 
between pro- and anti-inflammatory cytokines (De Sim-
one et al. 2013; Rosa et al. 2016). Therefore, considering 
the hypothesis that KIC can cause central nervous system 
(CSN) dysfunction in MSUD, this study aimed to evaluate 
the acute effect of intracerebroventricular (ICV) administra-
tion of KIC on inflammatory parameters in the cerebral cor-
tex, hippocampus, and striatum of young Wistar rats. Since 
there are few studies on inflammation in this disease, the 
present study may contribute to a better understanding of 
the pathophysiology of MSUD.

Materials and methods

Animals

This study used male Wistar rats (60–80 g) with 30 days 
of life from the Central Animal House of the Universidade 
do Extremo Sul Catarinense (UNESC). Rats were caged in 
2 groups of 8 animals with free access to food and water, 
maintenance of a 12-hour light/dark cycle (lights on at 7:00 
am and off at 7:00 pm), and at a temperature of 23 ± 1 °C. 
All experimental procedures were approved by the UNESC 
ethics committee (protocol number 23/2021) and followed 
the recommendations of the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and the 
Brazilian Society of Neurosciences and Behavior for animal 
care.

Administration of α-ketoisocaproic acid (KIC)

The animals were anesthetized intramuscularly with a mix-
ture of ketamine (80 mg/kg) and xylazine (10 mg/kg) and 
then placed in the stereotaxic apparatus. A 2 µL solution of 
8 µmol KIC (Taschetto et al. 2017) was dissolved in freshly 
prepared artificial cerebrospinal fluid (ACSF) (NaCl 147 
mM; KCl 2.9 mM; MgCl2 1.6 mM; CaCl2 1, 7 mM and 
2.2 mM dextrose). An ACSF-only solution with the same 
volume and concentration was used for the control group. 
A small hole was drilled in the skull for microinjection, and 
the respective solution was slowly injected bilaterally over 
4 min into the lateral ventricles through a needle connected 
by a polyethylene tube to a 10 µL Hamilton syringe (de Cas-
tro Vasques et al. 2004). The needle was left in place for 
an additional 1 min before being gently removed. The pH 
of each solution was previously adjusted to 7.4 with 0.1 N 
NaOH or 0.1 N HCl. The injection coordinates used were 
0.6 mm posterior to bregma, 1.0 mm lateral to the midline, 
and 3.2 mm ventral of the dura mater (Paxinos and Watson 
1986).

Euthanasia and sample preparation

After 60 min of the ICV administration of KIC or ACSF, 
the rats were euthanized by guillotine. Then, the brain was 
quickly excised in a Petri dish and placed on an ice plate, 
where the cerebral cortex, hippocampus, and striatum were 
dissected and stored at -80º for further analysis. For ELISA 
measurement, 100 mg of the sample was homogenized in 1 
mL of PBS, centrifuged at 300 rmp, 4ºC for 10 min, and the 
supernatant was used for the analysis.
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Inflammation parameters

For measurement of pro-inflammatory cytokines (INF-γ, 
TNF-α, IL-1β), the enzyme-linked immunosorbent assay 
(DuoSet ELISA) capture method was used (R&D System, 
Inc., Minneapolis, USA). ELISA is an enzyme immunoas-
say in which antigen-antibody reactions are detectable. All 
steps for this assay were conducted according to the manu-
facturer’s instructions. First, the plate was prepared accord-
ing to the steps described below: the capture antibody was 
diluted and then coated in a microplate that was sealed and 
incubated overnight; after, a wash buffer process was con-
ducted in the microplate three times, and remaining wash 
buffer was removed for the addition of reagent diluent in 
each well; the microplate was again incubated for a mini-
mum of 1 h. This process was done twice at room tempera-
ture (R&D System, Inc., Minneapolis, USA).

After the microplate preparation, 100 µL of the sample 
prepared with the reagent diluent was added to each well, 
covered, and incubated for 2 h at room temperature. Right 
after, the aspiration and wash described in plate preparation 
were conducted again. Then, the detection antibody (100 
µL) in reagent diluent was added to each well, covered, 
incubated for 2 h at room temperature, and aspirated and 
washed as described. After, a working dilution of Streptav-
idin-HRP B (100 µL) was added in each well, covered, and 
incubated for 20 min at room temperature, with the aspira-
tion and wash steps performed again. The same process was 
made with a substrate solution (100 µL). Finally, 50 µL of 
stop solution was added to each well and measured spectro-
photometrically at 450 nm d (R&D System, Inc., Minneapo-
lis, USA). Each pro-inflammatory cytokine (INF-γ, TNF-α, 
IL-1β) was dosed separately, according to the ELISA assay 
technique described above.

Statistical analysis

Data on inflammatory parameters were analyzed using Stu-
dent’s t-test, with a significance level of 5% (p-value ≤ 0.05), 
and are expressed as a mean with standard deviation (±). 
All analyses were performed using the Statistic software 

version 7.0, and the graphs were constructed using Graph-
Pad Prism version 7.03.

Results

There were increased INF-γ levels in the cerebral cortex 
(control: 0.10 pg/mg protein ± 0.02 vs. KIC: 0.12 pg/mg 
protein ± 0.02; p = 0.0246), while in the hippocampus, the 
levels of INF-γ were reduced compared to the control group 
(control: 0.21 pg/mg protein ± 0.06 vs. KIC: 0.12 pg/mg pro-
tein ± 0.03; p = 0.0003). In the striatum, there was no change 
in INF-γ levels after the administration of KIC compared 
to the control group (control: 0.24 pg/mg protein ± 0.07 vs. 
KIC: 0.25 pg/mg protein ± 0.08; p = 0.8692) (Fig. 1).

Regarding TNF-α level, ICV administration of KIC 
caused no difference in the cerebral cortex (control: 22.36 
pg/mg protein ± 5.44 vs. KIC: 23.74 pg/mg protein ± 8.79; 
p = 0.7492) and the striatum (control: 61.54 pg/mg pro-
tein ± 11.59 vs. 60.29 pg/mg protein ± 14.83; p = 0.8737) 
compared to the control group. However, a decrease in 
TNF-α levels in the hippocampus of rats with ICV admin-
istration of KIC was observed compared to the controls 
(control: 39.24 pg/mg protein ± 4.78 vs. KIC: 27.17 pg/mg 
protein ± 5.85; p = 0.0073) (Fig. 2).

Administration of KIC by ICV did not cause statistically 
significant differences in IL-1β levels in the cerebral cortex 
(control: 316.74 pg/mg protein ± 75,72 vs. 333.72 pg/mg 
protein ± 129,15; p = 0.7868), striatum (control: 675.91 pg/
mg protein ± 123.78 vs. KIC: 739.75 pg/mg protein ± 229,27; 
p = 0.4485), and hippocampus (control: 377.38 pg/mg 
protein ± 107.10 vs. KIC: 361.60 pg/mg protein ± 72,74; 
p = 0.7046) compared to the control group (Fig. 3).

Discussion

Leucine and its α-keto acids, such as KIC, are potentially 
neurotoxic in MSUD, especially during metabolic decom-
pensation crises, where this compound concentration dra-
matically increases (Snyderman et al. 1964; Chuang and 

Fig. 1 The effect of acute intra-
cerebroventricular administra-
tion (ICV) of α-ketoisocaproic 
acid (KIC) on interferon-gamma 
(INF-γ) levels in the cerebral cor-
tex (A), striatum (B), hippocam-
pus (C) of 30-day-old male rats. 
Data are expressed as mean with 
standard deviation (mean ± SD). 
Student’s t-test (n = 6). *p < 0.05 
vs. Control
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cortex of Wistar rats that received acute subcutaneous 
administration of BCAA, compared to the control group. 
On the other hand, animals that received chronic subcutane-
ous administration of BCAA presented a decrease of IL-1β 
in the cerebral cortex and a reduction in the levels of INF-γ 
in the cerebral cortex and hippocampus compared to the 
controls (Rosa et al. 2016; Scaini et al. 2018), in a study 
with 12 MSUD patients treated with a protein-restricted 
diet with isoleucine and valine supplementation, observed 
elevated levels of pro-inflammatory cytokines, including 
IFN-γ, TNF-α, IL-1β, and IL-6 when compared to a control 
group. These results highlight the disparities in the markers 
of neuroinflammation existing in MSUD.

The levels of inflammatory mediators can change accord-
ing to the brain structure analyzed due to receptors and cell 
populations. Thus, it is impossible to establish the same 
inflammatory pattern in different brain areas (Arisi 2014). 
When an imbalance between pro- and anti-inflammatory 
activities occurs and brain homeostasis is disturbed, neu-
ronal compromise can ensue. During immune activation, 
the increase in pro-inflammatory cytokines can induce the 
production of oxidants, prostaglandins, and reactive spe-
cies, exacerbating inflammation (Muralidharan and Man-
drekar 2013). Chronic neuroinflammation can occur when 
the release of pro-inflammatory factors is continuous and 
persistent, as in some neurodegenerative and neurological 
diseases (Di Benedetto et al. 2017), including Alzheimer’s 
disease, Parkinson’s disease, and amyotrophic lateral scle-
rosis, as well as multiple sclerosis (Stephenson et al. 2018).

There is an increase in TNF-α, IFN-ɣ, IL-1β, and IL-6 in 
MSUD (Amaral and Wajner 2022). However, studies with 

Shih 2001). Furthermore, Zinnanti et al. (2008) showed a 
correlation between severe brain damage and death in mice 
with classic and intermediate MSUD and high levels of KIC 
(above 100 µmol) in the animals’ brains. Moreover, acute 
administration of KIC by ICV was associated with lower 
levels of BDNF in the hippocampus, striatum, and cerebral 
cortex and lower levels of neuronal growth factor (NGF) 
in the hippocampus of young rats (Wisniewski et al. 2016).

Previous studies demonstrate that BCAAs influence 
immune functions and, in MSUD, also affect the balance of 
pro- and anti-inflammatory cytokines in the brain of Wis-
tar rats with acute and chronic administration of BCAAs 
(Calder 2006; Rosa et al. 2016). Inflammation often causes 
acute decompensation and neurological deterioration in 
MSUD patients (Chuang and Shih 2001). So, our results 
indicate that ICV administration of KIC was associated 
with changes in the levels of pro-inflammatory cytokines 
INF-γ and TNF-α. There was an increase in INF-γ levels in 
the cerebral cortex, while a reduction in INF-γ and TNF-α 
levels was observed in the hippocampus. IL-1β levels did 
not change.

The findings of Wessler et al. (2019) also related the 
pathogenesis of MSUD with a pro-inflammatory state in an 
animal model. Different from our results, acute and subcu-
taneous administration of BCAA and BCAA together with 
lipopolysaccharide (LPS) was associated with increased 
IL-1β levels in the cerebral cortex. The same administration 
of BCAA and LPS was related to higher levels of TNF-α 
in the cerebral cortex and hippocampus and of INF-γ only 
in the hippocampus (Wessler et al. 2019; Rosa et al. 2016) 
found an increase in IL-1β and TNF-α levels in the cerebral 

Fig. 3 The effect of acute intra-
cerebroventricular (ICV) admin-
istration of α-ketoisocaproic acid 
(KIC) on interleukin-1 beta (IL-
1β) levels in the cerebral cortex 
(A), striatum (B), hippocampus 
(C) of 30-day-old male rats. 
Data are expressed as mean with 
standard deviation (mean ± SD). 
Student’s t-test (n = 6). *p < 0.05 
vs. Control

 

Fig. 2 The effect of acute intra-
cerebroventricular (ICV) admin-
istration of α-ketoisocaproic 
acid (KIC) on tumor necrosis 
factor-alpha (TNF-α) levels in the 
cerebral cortex (A), striatum (B), 
hippocampus (C) of 30-day-old 
male rats. Data are expressed as 
mean with standard deviation 
(mean ± SD). Student’s t-test 
(n = 6). *p < 0.05 vs. Control
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pro-inflammatory response from macrophages M1, causing 
lower levels of IFN-ɣ and, consequently, of TNF-α to be 
secreted on the animals’ hippocampus, but not sufficient to 
affect IL-1β levels significantly.

Studies have linked inflammation as a risk factor for the 
development of disorders in the balance between reactive 
species production and antioxidant defenses. Taschetto et 
al. (2017) showed damage in the hippocampus, striatum, 
and cerebral cortex, increased oxidative stress, changes in 
enzymatic antioxidant defenses, and behavioral changes 
in Wistar rats after 1 h and 15 days of ICV administration 
of KIC. These results may also be related to a recent study 
conducted by Farias et al. (2021), where was demonstrate 
that ICV administration of KIC reduced the activity of 
mitochondrial complexes in vivo and in vitro, at the same 
time that induced a high production of reactive species and 
was able to alter cell viability, showing the toxicity of KIC. 
These findings corroborate with the neuroinflammatory 
conditions in MSUD once it is indicated that dysfunctions 
in the respiratory chair can generate high concentrations of 
reactive species, which, in turn, can induce neuroinflamma-
tion, establishing a significant connection between inflam-
mation and oxidative stress. This sets a vicious cycle that 
is capable of perpetuating and propagating the inflamma-
tory response (Lugrin et al. 2014), which could be related to 
MSUD pathophysiology.

Conclusion

Our study demonstrated that ICV administration of KIC was 
related to changes in INF-y and TNF-α levels in the cere-
bral cortex and hippocampus of young male rats. However, 
decreasing TNF-α and IFN-ɣ levels in the animals’ hippo-
campus points out some important future considerations. 
Despite these findings supporting the hypothesis that immu-
nological mechanisms are involved in MSUD pathogenesis, 
especially neuroinflammation, they highlight the need to 
clarify the activation conformation of macrophages M1 and 
M2 in this disease since it may represent a key point for an 
insufficient pro-inflammatory response, as found here. Thus, 
considering the few studies and the disparity of results on 
neuroinflammation in MSUD, as well as the possible path-
ways with influence on the topic, more studies are needed to 
understand the pathophysiology of this disease better.
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biomarkers are still conflicting. Cytokines have the poten-
tial to exacerbate or reduce neuroinflammation. IL-1β and 
TNF-α are essential in inflammation and neurodegenera-
tive disease progression (Opal and DePalo 2000). Likewise, 
IFN-ɣ is produced mainly by T helper type 1 (Th1) lympho-
cytes, and during the Th1 response, IFN-ɣ can induce high 
production of reactive species (Mescka et al. 2015a).

In the case of TNF-α, its presence is responsible for acti-
vating nuclear factor kappa B (NFκB), neural cell apoptosis, 
and c-Jun N-terminal kinase (JNK), pathways and mecha-
nisms involved in neuroinflammatory status (Olmos and 
Lladó 2014; Muhammad 2020). In turn, T cell release IFN-ɣ 
in CNS, which is linked to the activation of the production 
of TNF-α by microglia. IFN-ɣ is also directly connected 
with neuroinflammation, although its mechanisms are not 
entirely described (Olmos and Lladó 2014). The outcomes 
of these processes are various: glutamate exocytosis, an 
increase of excitatory synaptic, a decrease in the expression 
of GABA receptors, neuronal death, and oxidative stress 
(Olmos and Lladó 2014).

Curiously, in our study, lower levels of TNF-α and 
IFN-ɣ were found in the hippocampus of rats with acute 
ICV administration of KIC. It is well known that microg-
lia is essential for the inflammation in the brain and that its 
dysfunction can affect this process (Colonna and Butovsky 
2017; Teleanu et al. 2022). Usually, there is a consensus that 
the activation of macrophages M1 is pro-inflammatory and 
induces secretion of cytokines like TNF-α (whose produc-
tion is also related to IFN-ɣ levels) and IL-1β, while the 
activation of macrophages M2 is anti-inflammatory (Varella 
and Forte 2001; Colonna and Butovsky 2017). However, the 
literature has observed that the activity of macrophages M1 
or M2 is context dependable, especially in neurodegenera-
tion (Colonna and Butovsky 2017). For example, in neuro-
degenerative diseases like amyotrophic lateral sclerosis, the 
gene expression of macrophages does not fit in the M1/M2 
normal activation, reflecting the microglial response from 
the protein aggregation, oxidative stress and cellular death 
(Colonna and Butovsky 2017).

It is hypothesized that the levels of BCAA in the organ-
ism might affect the functional activity of microglia, influ-
encing the M1/M2 activity regulation. According to that, the 
study of de Simone et al. (2013), with primary glial cul-
tures from the cortex of 1-day-old rats, demonstrated that 
high levels of BCAA reduced transcripts encoding levels 
for M1 genes. That may indicate that high levels of BCAA 
can change the immune proprieties of microglia, generat-
ing a lower expression of genes M1 and, consequently, a 
reduced secretion of IL-1β and TNF-α. This less inflamma-
tory M1 response suggests a microglial activity less efficient 
for the damage (De Simone et al. 2013). So, it is possible to 
assume that KIC levels could have created an inadequate 
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