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Bian 2014). Besides, H2S is also related to the pathological 
process of the central diseases such as stroke, subarachnoid 
hemorrhage (SAH) and Alzheimer’s disease, etc. (Gong et 
al. 2011).We have revealed that endogenous H2S protects 
against the cerebral ischemia/reperfusion (I/R) injury via 
inhibiting RhoA/ROCK pathway (Wen et al. 2018, 2019).

Non-coding RNAs (ncRNAs) make up about 98–99% of 
RNAs generated from all mammalian genomes (Arraiano 
2021). Although ncRNAs do not have the potential to be 
translated to proteins, they could function as vital regula-
tory molecules via actively interacting with nucleic acids or 
other molecules on almost all cellular processes in normal 
development and the pathological process of various dis-
eases, containing ischemic stroke (Al Mamun et al. 2020). 
In addition, one ncRNA can directly interact with one or 
more target molecules within variously cellular signalling 
pathways such as RhoA/ROCK pathway, which make the 
regulation network mediated by ncRNAs be even more 
complicated (Sun et al. 2022). This review outlines the 
role of H2S, Rho/ROCK pathway and ncRNAs in ischemic 
stroke, which has been reported recently.

Introduction

Hydrogen sulphide (H2S) is the third gaseous molecule, 
along with carbon monoxide (CO) and nitric oxide (NO) 
(Wu et al. 2015). Endogenous H2S is one of widely dis-
tributed gaseous neurotransmitters and mainly synthesized 
by cystathionine-β-synthase (CBS), cystathionine-γ lyase 
(CSE) and 3-mercaptopyruvate (3-MST) (Wen et al. 2019). 
Numerous studies have revealed that H2S mediates the vari-
ously biological effects in different ways such as inducing 
long-term potentiation (LTP), maintaining calcium homeo-
stasis, inhibiting oxidative stress and regulating the neural 
signals under physiological condition (Kimura 2013). In 
addition to its biological effects, H2S also increases intra-
cellular calcium concentration and promotes the cyclic 
adenosine monophosphate (cAMP) production, as well as 
activates ATP-dependent potassium channels (Zhang and 
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H2S-mediated anti-neuroinflammation 
via inhibiting the RhoA/ROCK pathway in 
ischemic stroke

Until now, mechanical thrombectomy and intravenous 
thrombolysis have been widely used to treat ischemic 
stroke. Nevertheless, such treatments are often limited due 
to potential bleeding risks, narrow time window and limited 
eligibility criteria (Collaborators 2017). Hence, new treat-
ment for stroke is urgently needed. The pathological process 
of cerebral ischemic injury includes inflammatory response, 
excitatory amino acid toxicity, oxidative stress, peroxida-
tion, brain edema, free radical production, neuronal apop-
tosis and death (Zhu et al. 2015). Among all the damage 
elements, neuroinflammation is receiving increasing atten-
tion. Although inflammation and immune responses fol-
lowing cerebral ischemic insult contribute to isolating the 
injured region, an exaggerated inflammatory response could 
aggravate the ischemic injury (Magnus et al. 2012). Lively 
S et al. have found that inflammation and immune responses 
are crucial factors involved in the onset and progression of 
ischemic stroke (Lively et al. 2016).

H2S inhibits the neuroinflammation

As one of neuromodulatory and neuroprotective molecules, 
H2S can freely cross the cell membrane, thereby regulates 
various intracellular signaling processes in vivo (Zhang and 
Bian 2014), for instance, H2S acts as an endogenous neu-
romodulator modulating Ca2+ levels in astrocytes, neurons, 
and microglia (Donertas Ayaz and Zubcevic 2020). Besides, 
CBS-produced H2S has inhibitory effects on glia-mediated 
neuroinflammation, thereby exerts neuroprotective effect 
against cerebral ischemia injury (Zhang et al. 2017). Fur-
thermore, beneficial effects of exogenous H2S donors on 
glia-mediated neuroinflammation have also been found in 
various neurodegenerative conditions (Lee et al. 2016). In 
our previous study, we have found that supplement with 
H2S could inhibit the cerebral I/R-induced release of inflam-
matory factors such as IL-6 and TNF-α (Ding et al. 2022).

H2S-mediated anti-neuroinflammation via 
inhibiting RhoA/ROCK pathway

RhoA/ROCK pathway, widely expressed in neurons and 
astrocytes, is involved in the pathological process of isch-
emic stroke (Lu et al. 2021). Rho is active when bound to 
GTP while becoming inactive when bound to GDP based 
on the guanine exchange factors. Activated Rho-GTP 
activates its downstream effector, ROCK, which includes 
ROCK1 and ROCK2 isoforms and belongs to a serine/
threonine kinases family. ROCK1 transcript is prominently 

expressed in non-neuronal tissues, while ROCK2 is present 
more abundantly in the brain and skeletal muscles (Lu et al. 
2021). Besides, ROCK1 and ROCK2 can be respectively 
activated by caspase-3 and granzyme B via the cleavage of 
inhibitory C-terminal domain (Sladojevic et al. 2017).

Activated ROCK then phosphorylates its downstream 
effectors, including ezrin/radixin/moesin (ERM), myosin 
light chain (MLC), adducin, LIM kinase, collapsin response 
mediator protein 2 (CRMP2), and so on. As a consequence, 
ROCK regulates cytoskeletal rearrangement via affecting 
stress fiber formation, focal adhesion, smooth muscle con-
traction, growth cone collapse, actin filament stabilization, 
and actin network assembly (Amano et al. 2010). Further-
more, inhibition of ROCK could obviously lower the stress 
fiber formation and reduce the focal adhesion in astrocytes 
induced by Thy-1 (CD90), a glycosylphosphatidylinositol-
anchored protein. These findings indicated the importance 
of the Rho/ROCK pathway in the process of neuron-glia 
communication (Avalos et al. 2004).

In addition, stroke-induced ROCK activation contributes 
to the deterioration of brain injury in the acute phase via 
stimulating neuronal inflammation (Laufs and Liao 1998). 
Inhibition of ROCK activity could mitigate the neutrophil 
accumulation in the ischemic area and decrease the isch-
emic-induced infarct volume (Satoh et al. 1999, 2001). 
Moreover, ROCK activation in the resident macrophages 
and microglias leads to the secretion of pro-inflammatory 
cytokine (Jin et al. 2010). ROCK inhibitor Fasudil has been 
found to reduce hippocampal injury by suppressing pro-
inflammatory cytokine secretion from the microglial cells 
(Ding et al. 2010). In our previous study, we have found 
that CSE-derived H2S promotes neural functional recovery 
after cerebral I/R injury in mice via inhibiting the RhoA/
ROCK pathway (Zhang et al. 2021). Combined with the 
above description, we conclude that H2S-mediated inhibi-
tion of the neuroinflammation following cerebral I/R is via 
inhibiting the RhoA/ROCK pathway (Fig. 1).

H2S-mediated anti-neuroinflammation and 
astrocytes

Astrocytes, abundant glial cells in central nervous system 
(CNS), have emerged as vital regulators in health such as 
keeping the ionic homeostasis, as well as controlling normal 
neurotransmission, neurotransmitter reuptake and recycling 
(Abeysinghe et al. 2016). Interaction between astrocytes 
and endothelial cells in neurovascular unit (NVU) is crucial 
to adjusting BBB under both normal and pathological con-
ditions (Abbott et al. 2006). Astrocytes could connect with 
neurons and blood vessels through astrocytic endfeet. Dur-
ing the pathological process of ischemic stroke, astrocytes 
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play multifaceted roles in the context of CNS inflammation 
induced by cerebral ischemia (Linnerbauer et al. 2020).

Immediately after cerebral ischemia, activation of 
astrocytes will happen for the oxidative stress. The acti-
vated astrocytes release excessive amounts of proinflam-
matory mediators, such as TNF-α, IL-6 and IL-1β, which 
are directly deleterious to neighboring neurons (Liu et al. 
2020b; Wang et al. 2017). With the further research on 
distinct roles of astrocyte on neuronal injury, two distinct 
subtypes of reactive astrocytes, named as “A1” and “A2”, 
have been termed by Liddelow et al. (Liddelow et al. 2017), 
which is widely accepted by increasing researches (Escar-
tin et al. 2021). Ischemia and neuroinflammatory stimuli 
respectively induce the formation of A2 and A1 reactive 
astrocytes. A1 reactive astrocytes were induced by C1q, 
IL-1α and TNF-α secreted by activated microglia during 
neuroinflammation after ischemic stroke, and contribute to 
the death of neurons and oligodendrocytes. By contrast, the 
formation of A2 reactive astrocytes was induced by cere-
bral ischemia and A2 astrocytes were postulated as neuro-
protective subtype via up-regulating neurotrophic factors 
(Liddelow et al. 2017). Besides, A2 astrocytes were found 
to promote the expression of anti-inflammatory cytokine 

transforming growth factor β (Wang et al. 2021c). Further-
more, A2 astrocytes obtain the capacity to phagocytize and 
clear myelin debris following cerebral ischemia, the accu-
mulating myelin debris can exacerbate the inflammatory 
response (Jiang et al. 2021b). Therefore, promoting the for-
mation of A2 astrocytes is a potential therapeutic strategy 
for inhibition of neuroinflammation and promotion of neu-
ronal recovery after ischemic stroke (Guo et al. 2021).

Ischemic injury could induce the morphological change 
of astrocytes via activation of RhoA/ROCK pathway, which 
is complied with the retractation of astrocytic endfeet, 
thereby leading to the breakdown of neurovascular coupling, 
as well as formation of reactive astrogliosis (Abeysinghe et 
al. 2016; LeComte et al. 2015). We previously have found 
that H2S could not only restrain the proliferation of reac-
tive astrocytes induced by cerebral I/R but also promote 
the transformation of reactive astrocytes from A1 type to 
A2 type in mice hippocampal tissues (Ding et al. 2022). In 
addition, we have revealed that H2S-mediated transforma-
tion of astrocytes from “A1” to “A2” is related to inhibition 
of RhoA/ROCK pathway (Fig. 1).

Fig. 1  Relationship between 
RhoA/ROCK pathway and H2S 
in ischemic stroke
 ROCK: Rho kinase
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ischemic stroke risk factors. For instance, single nucleotide 
polymorphisms (SNPs) within the binding site of miRNA 
could affect miRNA-induced genetic repression, which is 
called miR-SNP. Mu-En Liu et al. have found that miR-SNP 
rs3735590 at the paraoxonase 1 (PON1) gene is associated 
with an elevated risk for ischemic stroke because it could 
affect genetic expression (Liu et al. 2013).

Afterwards, increasing circulatory miRNAs such as 
PC-3p-57,664, miR-211-5p, PC-5p-12,969 and miR-122-5p 
were successively identified as biomarkers for early diag-
nosis of ischemic stroke because of their up-regulation in 
human ischemic stroke serum samples (Vijayan et al. 2018). 
Furthermore, accumulated researches have revealed that 
miRNAs are related to neurogenesis, angiogenesis and neu-
roprotection after ischemic stroke (Bulygin et al. 2020). 
Therefore, miRNAs have recently been used as potential 
biomarkers for early diagnosis and prognosis, and used as a 
therapeutic target for ischemic stroke.

Circular RNAs

CircRNAs, containing multiple exons or a single exon, are 
mainly expressed from known protein coding genes, and 
generally locate in the cytoplasm (Memczak et al. 2013). 
Despite the generally lower expression than their linear 
counterparts, many circRNAs are the predominant tran-
scripts. Besides, competition between back splicing and 
canonical splicing is likelihood to exist for the majority of 
loci that produce circRNAs (Hansen et al. 2013). It is well 
known that circRNAs are enriched in the nervous system, 
and affect neuronal migration and axon growth (Ostolaza 
et al. 2020). Besides, circRNAs interact with human RNA 
binding proteins and take part in neuronal development 
under physiological status and participate in the pathogen-
esis of neurological diseases. CircRNAs protect the dys-
function of BBB, and inhibit the neuroinflammation and 
apoptosis following cerebrovascular diseases (Wang et al. 
2020c). Thus, circRNAs are gaining interest as a possible 
biomarker for their several functions in the onset and pro-
gression of ischemic stroke. Therefore, understanding the 
role of circRNAs on the ischemic stroke process will pro-
vide us new biomarkers for the diagnosis and prognosis of 
ischemic stroke.

CircRNAs were initially known as viroids in 1976. Sub-
sequently, circRNAs were detected in many species such as 
unicellular prokaryotes, eukaryotes and mammals (Huang 
et al. 2020). Further researches have revealed that circRNAs 
could act as protein scaffolds or miRNA sponges and could 
be translated into polypeptides (Wang et al. 2018b). Nota-
bly, circRNAs are revealed to adjust the target genes expres-
sion at the post-transcriptional level through antagonizing 
the activity of miRNA through a sponge-like mechanism 

The relationship between H2S-mediated 
inhibition of RhoA/ROCK pathway and 
ncRNAs in ischemic stroke

What is ncRNA and its contribution to ischemic 
stroke

Noncoding RNAs (ncRNAs) constitute the majority of the 
human transcribed genome, they initially were considered 
as junk. NcRNAs started to gain more and more attention 
for they were considered as key regulatory factors in cellu-
lar and biological processes, ranging from gene expression 
to genome remodeling in the early 21st century (Jae and 
Dimmeler 2020). Besides, the ncRNAs have been recog-
nized as important contributors to both disorder and cellular 
homeostasis in CNS (Deng et al. 2022; Zhang et al. 2022). 
The group of ncRNAs contain microRNA (miRNA), circu-
lar RNA (circRNA), long noncoding RNA (lncRNA), and 
so on (DeOcesano-Pereira et al. 2020).

MiRNA

MiRNAs, consisting of 20–22 nucleotides, adjust gene 
expression via interacting with the 30-untranslated region 
(UTR) of the target mRNAs (Mirzaei et al. 2018). Primary 
RNA (pri-RNA) of miRNA, transcribed from genomic 
DNA, contains at least one hairpin loop and some long 
loops with several thousand base pairs. This hairpin loop of 
pri-RNA is cleaved by the endonuclease Drosha to generate 
precursor miRNA (pre-miRNA) (Basyuk et al. 2003; Han et 
al. 2004; Lee et al. 2002), which is transported by the inter-
vention of exportin-5 from the nucleus to the cytoplasm. In 
the cytoplasm, pre-miRNAs are cleaved to form a duplex of 
mature miRNA strands (Chendrimada et al. 2005; Hutvag-
ner et al. 2001; Lau et al. 2001). Mature miRNAs control 
various cellular functions such as neuronal development, 
proliferation, metabolism and differentiation, and synaptic 
plasticity (Bartel 2004). Previous studies have shown that 
miRNAs participated in pathological process of stroke via 
affecting the neuroinflammation, apoptosis, oxidative stress 
and vascular endothelial damage (Bam et al. 2018; Khosh-
nam et al. 2017).

MiRNAs mediate post-transcriptional gene regulation by 
controlling the mRNA translation into protein (O’Brien et al. 
2018), thereby involve in multiple cellular functions such as 
injured tissue repair, neuronal development, remodeling dif-
ferent neuronal activities in ischemic stroke (Khoshnam et 
al. 2017). MiRNAs and their target genes exert a key inhibi-
tory effect on the cerebral I/R-induced neuroinflamma-
tion, which make miRNAs as potential therapeutic targets 
in ischemic stroke (Khoshnam et al. 2017). Lots of miR-
NAs participate in controlling target genes expression of 
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XIST markedly impairs the angiogenesis and exacerbates 
cerebral vascular injury (Wang et al. 2021a).

What’s the relationship between H2S-mediated 
inhibition of RhoA/ROCK pathway and ncRNAs

MiRNA

Endogenous H2S mediates biological effects in a variety of 
ways in plenty of disease models. Controlling H2S content 
exerts a protective role on the cerebral ischemia, making 
it becomes a therapeutic candidate for cerebrovascular dis-
eases. In CNS of mammals, H2S is mainly produced by CBS 
(Renga 2011), which is expressed in radial glial/astrocyte 
cell lines. The up-regulation of CBS expression in active 
astrocytes promotes the recovery of injured neurons, sug-
gesting that CBS-produced H2S, mainly from astrocytes, 
plays important roles in a variety neuronal damages induce 
by I/R and oxidative stress (Campagnoli et al. 1971; Kimura 
et al. 2010). At present, accumulating literature reports have 
revealed a close relationship between miRNA and H2S, 
uncovered that H2S is involved in different pathophysiologi-
cal processes via up-regulating the expression of miRNAs 
such as miR-393, miR-396 and miR-398 (Liu et al. 2011). 
Using miScript microRNA (miRNA) polymerase chain 
reaction array-based screening, Jyotirmaya et al. have iden-
tified miR‐218 as a particular miRNA, and found that H2S 
could up-regulate the expression of miR‐218 and then pro-
tect endothelial cells against ethanol‐induced permeability 
(Behera et al. 2021).

Despite the diverse target genes of miRNAs associated 
with ischemic stroke, RhoA/ROCK pathway related with 
miRNAs was only wildly reported in ischemic stroke in 
recent years (Kimura et al. 2021). Jiang et al. have revealed 
that RhoA was a direct target of miR-190 by using cerebral 
I/R model and found that the overexpression of miR-190 
ameliorates the brain damage and apoptosis via down-
regulation of RhoA/ROCK pathway (Jiang et al. 2021a). 
Using model of traumatic brain injury, Lilja Meissner have 
found that MiR-190 is down-regulated after cerebral injury 
(Meissner et al. 2016). Besides, RhoA/ROCK pathway is 
up-regulated in mice brain tissues after cerebral I/R (Ding 
et al. 2022). These findings confirmed that MiR-190 may be 
used as a biomarker for diagnosis of cerebral injury and a 
therapeutic target of ischemic stroke.

Along with decreased miR-431 expression, Han et al. 
have observed a significant increment of RhoA expression 
in rat middle cerebral artery occlusion

(MCAO)/R model, suggesting that RhoA was the poten-
tial target gene of miR-431. They revealed the neuropro-
tective effects of miR-431 and concluded that miR-431 
inhibited apoptosis and promoted proliferation by negatively 

(Granados-Riveron and Aquino-Jarquin 2016). CircRNAs 
could act as competitive endogenous RNAs (ceRNAs), 
which contains harbors miRNA response elements (MREs) 
and can compete for miRNA binding.

Moreover, circRNAs have the same selective tran-
scribed sequences which can capture the corresponding 
linear mRNAs and may exert specific roles via influenc-
ing the combination of other RNAs. CircRNAs affect the 
miRNA expression through micro-adjustment, for example, 
circRNAs perturb miRNA function via competing with 
miRNA combination, and then, blocking the posttransla-
tional repression of target-coding RNA species and adjust-
ing the expression levels of target genes (Rybak-Wolf et al. 
2015). The combination ability of circRNAs with miRNAs 
is 10 times higher than other known transcriptions (Chen et 
al. 2015). Furthermore, circRNAs serve as a natural miRNA 
sponges those bind with corresponding miRNAs and then 
restrain the activity of them, thus regulating target genes 
(Shao and Chen 2016).

LncRNAs

LncRNAs, comprising more than 200 nucleotides, regu-
late gene expression via various mechanisms (Mercer et 
al. 2009) at transcriptional, epigenetic, post-transcriptional 
and chromatin remodeling levels (Bali and Kuner 2014). 
LncRNAs can activate or inhibit target genes expression by 
directly binding to the recruiting transcription factors or the 
target genes (Li et al. 2018b). LncRNAs exert the spatio-
temporal regulation for cell type-specific genes expression 
and physiological functions via regulating the transcription 
at multiple levels (Li et al. 2022b). Thus, not surprisingly, 
lncRNAs have been shown to adjust the neural differentia-
tion and specification, and maintain the cell identity. Fur-
thermore, dysregulation of lncRNA function has been found 
to be involved in multiple neurological diseases such as 
ischemic stroke (Bao et al. 2018).

LncRNAs are associated with inflammation, cell apop-
tosis, angiogenesis and cell death in ischemic stroke (Wang 
et al. 2020a, b; Xiang et al. 2020; Zhang and Zhang 2020). 
Thus, lncRNAs are emerging as a new therapeutic target 
of ischemic stroke (Bao et al. 2018). X-inactive specific 
transcript (XIST) RNA is one of lncRNAs, which regu-
lates X chromosome inactivation in mammals (Chen et 
al. 2017). During the late stage after the onset of ischemic 
stroke, LncRNA XIST exhibits increased expression, and 
the lncRNA XIST level in sera of ischemic stroke patients 
was obviously negatively correlated with the severity of 
neurological impairments. Therefore, lncRNA XIST has 
been regarded as a therapeutic target for stroke patients and 
been considered as a potential biomarker for the prognosis 
of ischemic stroke (Wang et al. 2021a). Silencing lncRNA 
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the up-regulation of RhoA/ROCK pathway after ischemic 
stroke (Fig. 2). Combined with the previous description that 
H2S could up-regulate the expression of miRNAs such as 
miR-393, miR-396 and miR-398 [56], we speculate that 
H2S-mediated inhibition of RhoA/ROCK pathway maybe 
related to up-regulation of miRNAs expression, which 
needs further exploration.

Circular RNAs

As aforementioned, circRNAs are shown to play a key 
role in regulating genes expression through the circRNA-
miRNA-mRNA pathway via acting as miRNA sponges 
(Liu et al. 2017). Zhao et al. have found that circRNAs 
play a vital role in cerebral ischemia. They have revealed 
that knockdown of circRNA_0072309 can accelerate the 
cell apoptosis following ischemic stroke and demonstrated 
that the role of circRNA is via sponge miR-100 (Zhao et al. 
2020). Silencing circRNA cZNF292 alleviates oxygen-glu-
cose deprivation/reperfusion (OGD/R)-induced injury of rat 
neural stem cells by upregulating miR-22 (Cao et al. 2020). 
Furthermore, Circ_002664 has been found to participate in 
neuronal apoptosis following OGD/R via directly target-
ing miR-182–5p/Herpud1 pathway (Liu et al. 2020a). All 
of these studies illustrated the relationship between miRNA 
and circRNAs (Fig. 3).

Although there is no finding about the relationship 
between circRNA and RhoA/ROCK pathway in the 

regulating the RhoA/ROCK pathway (Han et al. 2018). 
The relationship between anti-apoptotic effect of miR-335 
and the RhoA/ROCK pathway has been revealed by Si et 
al. They have found that miR-335 promotes the formation 
of stress granules (SGs) by inhibiting the ROCK2 expres-
sion (Si et al. 2019). SGs generates in the cytoplasm when 
eukaryotic cells suffer from stress such as heat shock, acute 
energy starvation and endoplasmic reticulum stress (Guti-
errez-Beltran et al. 2015). The formation of SGs protects 
the mRNA and proteins against misfolding and degradation, 
which enhances cellular resistance to apoptosis (Sampuda 
et al. 2017). Stein ES et al. have found that miR-582-5p 
expression decreases after cerebral I/R, while the expres-
sion of RhoA and ROCK2 increases. The over-expression of 
miR-582 alleviates the neuronal apoptosis via inhibiting the 
up-regulation of RhoA/ROCK pathway (Olson et al. 2004; 
Stein et al. 2015).

MiR-135, one of miRNAs, has been shown to be involved 
in regulation of cell regeneration and differentiation (Xie et 
al. 2016). Liu et al have found that miR-135a-5p is involved 
in the regulation of ROCK2 expression by targeting the 
3’-UTR of ROCK2 mRNA to inhibit its protein translation 
in a mouse model for Parkinson’s disease (Liu et al. 2016). 
They have revealed that H2S could inhibit the up-regulation 
of ROCK2 expression in brain tissues but not affect the 
mRNA of ROCK2. Furthermore, the research demonstrated 
that miR-135a-5p mediated the inhibitory effect of H2S on 
ROCK2 expression. In a word, some miRNAs could inhibit 

Fig. 2  Relationship between RhoA/ROCK pathway and miRNA in ischemic stroke
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reduction of ROCK in small cell lung cancer cells (Li et al. 
2019). In addition, the researchers have found that FECR 
reduces the inhibitory effects of miR‑584‑3p on ROCK1 
expression by sponging the miRNA away from its target (Li 
et al. 2019). Furthermore, in melanoma cells, ROCK1 was 
directly targeted by miR‑431‑5p. Circ0001591 could antag-
onize the miR‑431‑5p‑mediated targeting of ROCK1 (Yin 
et al. 2021). Circ_101141, an oncogenic circRNA has been 

ischemic stroke, circNRIP1, one of circRNAs, has been 
demonstrated to enhance ROCK1 expression in gastric can-
cer cells, thereby promoting carcinogenesis. Overexpres-
sion of miR‑182 could significantly inhibit the luciferase 
activity of ROCK1‑expressing MGC‑803 in AGS cancer 
cells (Liang and Li 2020). ROCK1 has been founded to 
be upregulated in miR‑584‑3p inhibitor‑transfected SCLC 
cells. FLI1 exonic circRNA (FECR) silencing results in a 

Fig. 4  Relationship among 
lncRNA, miRNA and RhoA/
ROCK pathway in ischemic 
stroke

 

Fig. 3  Relationship between circRNA pathway and miRNA in ischemic stroke
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related to endothelial dysfunction and pathological process 
of ischemic stroke (Narne et al. 2019). Cerebrovascular pro-
tection of H2S was validated by the promotion of vascular 
remodeling and regeneration induced by supplement with 
H2S (Nath et al. 2019). CBS is the main synthase for H2S 
production in the brain, enhancement of CBS-produced H2S 
concentration alleviates brain injury and exerts inhibitory 
effect on the inflammatory responses following mimicking 
ischemia stroke of mice (Zhang et al. 2017).

Bioinformatics predictions indicate the direct interaction 
between H2S synthase CBS and miR-376a, which is closely 
related to the occurrence and development of stroke (van 
Kralingen et al. 2019). Moreover, risk factors of ischemic 
stroke such as apoptosis, oxidative stress, inflammation and 
excitotoxity are all found to be regulated by miRNAs (Li 
et al. 2018a). Thus, the hypothesis is worthy discussing to 
explore whether miRNA can regulate the pathological pro-
cess of stroke through CBS/H2S pathway.

Recent studies have indicated that lncRNA can act as 
competing endogenous RNAs and interact with and immo-
bilize miRNA via conserved sequences, protecting their 
target genes (Zhang et al. 2016). Abnormal expression of 
lncRNA is also related to the occurrence of many diseases 
such as cerebral ischemic stroke (Yu et al. 2019). Besides, 
lncRNA SNHG1 can alleviate oxygen-glucose depriva-
tion (OGD) injury of brain microvascular endothelial cells, 
which confirms that lncRNAs exert a key role in the patho-
genesis of stroke (Yang and Zi 2019). Bioinformatics analy-
sis have further revealed that the targeting effect of SNHG1 
is via inhibiting miR-376a (Meng et al. 2021).

Using OGD model of human cerebral microvascular 
endothelial cell line (HCMIEC/D3), Li et al. sought to 
explore whether lncRNA SNHG1 can ameliorate OGD 
injury of HCMIEC/D3 through CBS/H2S pathway through 
targeting miR-376a. They have found that SNHG1 and CBS 
expression at RNA level in HCMEC/D3 cells is downreg-
ulated while miR-376a is upregulated, inhibition of miR-
376a blocks the apoptosis and inflammation in HCMEC/
D3 cells under OGD conditions. In addition, the research-
ers have revealed that miR-376a exacerbates apoptosis and 
inflammation in OGD-induced HCMEC/D3 cells via inhib-
iting CBS/H2S production. While the researchers also have 
found that overexpression of lncRNA SNHG1 reduces the 
apoptosis and inflammation in OGD-induced HCMEC/D3 
via inhibiting miR-376a and up-regulating CBS/H2S pro-
duction (Lv et al. 2021).

found to block miR‑1297‑mediated inhibition of ROCK1 
expression (Zhang et al. 2020).

LncRNAs

Previous studies have revealed that lncRNAs interact func-
tionally with various miRNA molecules via competitively 
binding with miRNAs, thereby resulting in miRNA degra-
dation (Siddeek et al. 2014). This interaction has been found 
in ischemic stroke (Yan et al. 2017). Among the predicted 
potential XIST targeting miRNAs, Liu et al. have found 
that XIST directly interacts with miR-362-5p on breast 
cancer cell malignant behaviors, they have revealed that 
miR-362-5p mediates the regulatory effects of XIST over-
expression (Liu et al. 2021). MiR-362 acts as a target of 
lncRNAs in regulation of the development of tumors (Wei 
et al. 2020). However, the studies on the functional role of 
miR-362 in ischemic stroke are still rarely.

In the acute phase of stroke, ROCK activation leads to 
the deterioration of cerebral injury by stimulating neuro-
inflammation (Laufs and Liao 1998). Inhibition of ROCK 
reduces neutrophil accumulation in the ischemic region and 
lessened the infarct volume (Satoh et al. 2001). Wang et 
al. have found that ROCK2 is the candidate target of miR-
362 using the TargetScan database. Using the cerebral I/R 
model, Wang et al. have revealed the relationship among 
XIST, miR-362, and ROCK2. They found that knockdown 
of miR-362 or over-expression of ROCK2 attenuates the 
effect of XIST down-regulation on OGD/R-induced neu-
ronal impairment and inflammation injury. These findings 
revealed that knockdown of XIST ameliorates the ischemic 
stroke injury through regulation of miR-362/ROCK2 axis 
(Wang et al. 2021b). Using bioinformatic software com-
bined with sequence complementation analysis, Zeng et al. 
have demonstrated that miR-148a-3p is an inhibitory target 
of lncRNA-H19. They found that miR-148a-3p is a located 
downstream of lncRNA-H19 that regulates cerebral isch-
emic processes. Besides, the researchers have revealed that 
miR-148a-3p directly targets the 3′UTR of ROCK2 in N2a 
cells and inhibits the expression of ROCK2 at both mRNA 
and protein levels in N2a cells. As a result, lncRNA-H19 
promotes the OGD/R-induced oxidative stress by down-
regulating miR-148a-3p to increase ROCK2 expression 
(Zeng et al. 2019).

LncRNA/miR-376a/CBS/H2S axis

H2S, an uprising gasotransmitter, is associated with stoke 
regulation. H2S exerts imperious role in maintaining 
homeostasis of cerebrovascular function under physiologi-
cal condition. Not surprisingly, reduction of H2S level is 
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The challenges of ncRNA-based therapies for 
ischemic stroke

MiRNA

MiRNAs, enriched in brain, can regulate the expression of 
potentially deleterious genes in post-transcriptional man-
ner after ischemic stroke, thereby might be potential tar-
gets. However, all the mechanisms of cerebral I/R injury 
are simultaneously present during ischemic stroke and it is 
not easy to isolate these events from each other. Neuropro-
tective effect of miRNAs is interlinked with inhibition of 
neuroinflammation (Alhadidi et al. 2022), oxidative stress 
damage (Zhai et al. 2022) and neurons loss, as well as pro-
motion of neuronal recovery (Zhou and Qiao 2022). Over-
expression of the miRNAs such as miR-216a (Tian et al. 
2018) and miRNA-589 (Ma et al. 2020) exerts neuropro-
tection and improves the outcome after cerebral I/R. While 
some other miRNAs such as microRNA-153 (Yan et al. 
2020) impair the presynaptic plasticity and injure the neu-
rological function after cerebral I/R. Therefore, “reversing” 
the expression of the miRNAs (overexpression or inhibiting 
an overexpressed miRNA) improves the outcome and stud-
ied parameters. These findings could mean that a miRNA-
centered therapeutic approach could be beneficial. It is very 
likely that this strategy in a clinical setting is insufficient. 
Further study is needed to evaluate the exact roles of miR-
NAs in cerebral I/R injuries and to assess the most favorable 
candidates as treatment options.

CircRNA

Based on mouse model subjected to transient MCAO, Mehta 
et al. have found that there are 283 circular RNAs altered 
compared with sham control by using circular RNA micro-
arrays and real-time PCR (Mehta et al. 2017). Bai et al. have 
found that circRNA DLGAP4 (circDLGAP4) is increased 
both in the plasma of ischemic stroke patients including 13 
females and 13 males and in mice plasma of stroke model. 
Besides, they have revealed that circDLGAP4 serves as a 
microRNA-143 sponge. More importantly, the research 
revealed that overexpression of circDLGAP4 could obvi-
ously reduce infarct area and decrease neurological deficits 
in mouse stroke model following transient MCAO. These 
data indicated that circDLGAP4 provide a novel therapeutic 
target for treatment of cerebral ischemic diseases (Bai et al. 
2018).

LncRNA

The potential diagnostic and therapeutic roles of lncRNAs 
have been made in ischemic stroke. Nevertheless, there is 

The challenges of H2S and RhoA/ROCK 
pathway-based therapies for ischemic stroke

H2S

Although H2S has specific neuroprotection on the cerebral 
ischemic injury, several issues hinder the clinical translation 
of H2S-based therapies from the bench. First, we know very 
little about the effect of endogenous H2S in pathological 
process of stroke. Second, the neuroprotective mechanisms 
underlying the therapeutic effects of H2S is not complete 
clear. Besides, it is not clear whether the therapeutic mecha-
nisms of H2S can be isolated from its toxic mechanisms. 
Until now, research mainly use the gene knockout of H2S 
synthases or the inhibitors of them to investigate the effect 
of endogenous H2S in pathological process of stroke. No 
clear conclusion has been obtained based on these studies 
(Jia et al. 2019). Third, present research almost exclusively 
focuses on the acute neuroprotection of H2S against cerebral 
ischemia. It is of great importance to examine the effect of 
H2S on long-term stroke outcomes.

ROCK inhibitors

In view of the evidence of increased ROCK activity in 
pathological conditions of ischemic stroke, it is of great 
importance to determine the precise effect of ROCK in 
ischemic stroke and stroke recovery by using ROCK inhibi-
tors. Y-27,632 is a selective and highly potent inhibitor of 
ROCK. It binds intracellularly to the catalytic site of ROCK 
(both ROCK1 and 2), thereby inhibits its kinase activity. 
Y-27,632 has been shown to inhibit ROCK kinase activity 
in neurons, smooth muscle cells and epithelial cells (Gong 
and Yang 2014). Y-27,632 has been used in treating spinal 
cord injury, for it is known to promote neurite outgrowth 
and axonal regeneration in neurons (Wang et al. 2018a).

But for the important limitation of the nonselective 
mechanism of ROCK inhibitor and for the use of ROCK 
inhibitors which inhibit other serine-threonine kinases such 
as PKC and PKA at higher concentrations, Fasudil is the 
only ROCK inhibitor approved for human use in China 
and Japan to treat and prevent cerebral ischemia, and sub-
arachnoid hemorrhage-induced vasospasm (Sladojevic et 
al. 2017). KD025 (formerly SLx2119), a selective ROCK2 
inhibitor, also has neuroprotective effect and can improve 
the mice outcome after focal cerebral ischemia in a dose-
dependent manner by improving collateral cortical blood 
flow. Interestingly, KD025 has been shown to be safe when 
compared with nonselective ROCK inhibitors in aged, dia-
betic, or female (Lee et al. 2014).

1 3

171



Metabolic Brain Disease (2023) 38:163–176

References

Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial 
interactions at the blood-brain barrier. Nature reviews Neurosci-
ence 7:41–53. https://doi.10.1038/nrn1824

Abeysinghe HC, Phillips EL, Chin-Cheng H, Beart PM, Roulston 
CL (2016) Modulating Astrocyte Transition after Stroke to Pro-
mote Brain Rescue and Functional Recovery: Emerging Targets 
Include Rho Kinase. International journal of molecular sciences 
17:288. https://doi.10.3390/ijms17030288

Al Mamun A, Chauhan A, Qi S, Ngwa C, Xu Y, Sharmeen R, Hazen 
AL, Li J, Aronowski JA, McCullough LD, Liu F (2020) Microg-
lial IRF5-IRF4 regulatory axis regulates neuroinflammation after 
cerebral ischemia and impacts stroke outcomes. Proceedings of 
the National Academy of Sciences of the United States of Amer-
ica 117:1742–1752. https://doi.10.1073/pnas.1914742117

Alhadidi QM, Xu L, Sun X, Althobaiti YS, Almalki A, Alsaab HO, 
Stary CM (2022) MiR-182 Inhibition Protects Against Experi-
mental Stroke in vivo and Mitigates Astrocyte Injury and 
Inflammation in vitro via Modulation of Cortactin Activity. Neu-
rochemical research. https://doi.10.1007/s11064-022-03718-6

Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: A 
key regulator of the cytoskeleton and cell polarity. Cytoskeleton 
67:545–554. https://doi.10.1002/cm.20472

Arraiano CM (2021) Regulatory noncoding RNAs: functions and 
applications in health and disease. The FEBS journal 288:6308–
6309. https://doi.10.1111/febs.16027

Avalos AM, Arthur WT, Schneider P, Quest AF, Burridge K, Ley-
ton L (2004) Aggregation of integrins and RhoA activation are 
required for Thy-1-induced morphological changes in astrocytes. 
The Journal of biological chemistry 279:39139–39145. https://
doi.10.1074/jbc.M403439200

Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, 
Liu P, Hu G, Zhang JH, Yao H (2018) Circular RNA DLGAP4 
Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to 
Regulate Endothelial-Mesenchymal Transition Associated with 
Blood-Brain Barrier Integrity. The Journal of neuroscience: the 
official journal of the Society for Neuroscience 38:32–50. https://
doi.10.1523/JNEUROSCI.1348-17.2017

Bali KK, Kuner R (2014) Noncoding RNAs: key molecules in under-
standing and treating pain. Trends in molecular medicine 20:437–
448. https://doi.10.1016/j.molmed.2014.05.006

Bam M, Yang X, Sen S, Zumbrun EE, Dennis L, Zhang J, Nagar-
katti PS, Nagarkatti M (2018) Characterization of Dysregulated 
miRNA in Peripheral Blood Mononuclear Cells from Ischemic 
Stroke Patients. Molecular neurobiology 55:1419–1429. https://
doi.10.1007/s12035-016-0347-8

Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP (2018) Long 
non-coding RNAs in ischemic stroke. Cell death & disease 9:281. 
https://doi.10.1038/s41419-018-0282-x

Bar C, Chatterjee S, Thum T (2016) Long Noncoding RNAs in Cardio-
vascular Pathology, Diagnosis, and Therapy. Circulation 134:1484–
1499. https://doi.10.1161/CIRCULATIONAHA.116.023686

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mecha-
nism, and function. Cell 116:281–297. https://doi.10.1016/
s0092-8674(04)00045-5

Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E (2003) Human 
let-7 stem-loop precursors harbor features of RNase III cleav-
age products. Nucleic acids research 31:6593–6597. https://
doi.10.1093/nar/gkg855

Behera J, Kelly KE, Tyagi N (2021) Hydrogen sulfide prevents eth-
anol-induced ZO-1 CpG promoter hypermethylation-dependent 
vascular permeability via miR-218/DNMT3a axis. J Cell Physiol 
236:6852–6867. https://doi.10.1002/jcp.30382

still several challenges in the way of lncRNA-based trans-
lational research for ischemic stroke. For example, more 
sensitive methods for RNA detection should be established 
due to the lncRNAs expression is relatively low in com-
parison to the levels of mRNAs and proteins in the circula-
tion system. In addition, there is still a significant challenge 
that the targeted lncRNAs deliver into the CNS of stroke 
patients. The carry ability of viral vectors, non-viral vectors, 
nanoparticles, exosomes, chemically modified antisense oli-
gonucleotides, and liposomes to carry lncRNA-based drugs 
into the cerebral infarction area should be evaluated (Bar et 
al. 2016; Li et al. 2022a).

Conclusion

Cerebral ischemia-induced upregulation of RhoA/ROCK 
pathway is deeply involved in the pathological process of 
ischemic stroke in various ways such as neuroinflammation. 
Growing evidences have revealed that both exogenous and 
endogenous H2S could ameliorate cerebral I/R-induced brain 
injury via inhibiting of the RhoA/ROCK pathway. Here, we 
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