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Introduction

Hepatic encephalopathy (HE) is a common serious disorder, 
in a range of 20–80% in patients with hepatic cirrhosis (HC) 
(Lizardi-Cervera et al. 2003; Rose et al. 2020) with various 
grades of neurological complications particularly neuropsy-
chiatric, cognitive and motor dysfunction (Schuppan and 
Afdhal 2008; Felipo 2013). These cerebral dysfunctions are 
mainly caused by hyperammonemia and neuroinflamma-
tion, which are of relevance to the known pathomechanisms 
of HE (Rodrigo et al. 2010). In addition, the alterations 
of neurotransmitters following HC have been illustrated 
in several studies (Çelik et al. 2005; Dhanda and Sandhir 
2015; Cauli et al. 2006, 2009; Llansola et al. 2013). In our 
previous study, prominent changes in electrophysiological 
characteristics of the CA1 area of the hippocampus in the 
animal model of bile duct ligation (BDL) was observed 
(Tahamtan et al. 2017).

BDL (Leke et al. 2013; Magen et al. 2009; Aghaei et al. 
2015; Tahamtan et al. 2017), portacaval shunt (Erceg et al. 
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Abstract
Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of 
this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations 
of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male 
Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks 
after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological 
alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our 
findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 
pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.

Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the 
hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic 
encephalopathy (HE).
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2005; Méndez et al. 2008; Cauli et al. 2007; Monfort et al. 
2007), and thioacetamide intoxication (Méndez et al. 2008) 
are among animal models for HC in the experimental studies 
(Butterworth et al. 2009), which lead to behavioral dysfunc-
tions including learning, memory and motor impairments 
very similar to clinical manifestations. Regarding the cog-
nitive abnormalities in HC individuals, experimental evi-
dences discriminate impairments in hippocampal long-term 
potentiation (LTP) following hyperammonemia and HE 
(Monfort et al. 2007; Muñoz et al. 2000). LTP which plays 
a significant role in memory storage is a major feature of 
the hippocampus (Lynch et al. 1990; Bliss and Collingridge 
1993). The glutamatergic neurotransmission as a prominent 
pathway in LTP induction is impaired due to hyperammone-
mia (Hermenegildo et al. 1998; Aguilar et al. 2000; Monfort 
et al. 2001, 2004).

To date, there is no effective strategies against brain defi-
cits following HE, therefore, further studies are necessary to 
find an effective treatment to promote functional improve-
ment after HE. In the light of the several studies, piogli-
tazone (PIO), which is commonly an antidiabetic drug, has 
neuroprotective and neuroregenerative effects (Zhao et al. 
2005; Bordet et al. 2006; Swanson et al. 2011; Blackburn 
et al. 2020, 2022; Ulusoy et al. 2011; Zakaria et al. 2019; 
Bonato et al. 2018; Aghaei et al. 2019) in different cerebral 
dysfunctions including stroke, ischemia and autism (Capano 
et al. 2018; Serghides et al. 2014). One important action 
mechanism of PIO is through anti-inflammatory pathways 
including prevention of immune cells or expression of pro-
inflammatory cytokines that led to gaining increased atten-
tion in the study of this peroxisome proliferator activated 
receptors (PPARs) agent (Ribeiro et al. 2019; Kielian and 
Drew 2003). PPAR activation can reduce neuronal death and 
also protect vascular function through inhibition of oxida-
tive or inflammatory mechanisms and endothelial dysfunc-
tion which are identified following brain injuries (Bordet et 
al. 2006). PPARs can induce vascular protection by inhi-
bition of adhesion proteins (Bordet et al. 2006). PIO also 
can present neuroprotective effects by regulation of reac-
tive oxygen species production through increase in paraox-
onase-2 expression (Blackburn et al. 2020). Our previous 
study showed the neuroprotective effects of PIO against 
motor and cognitive problems following BDL (Aghaei et 
al. 2014).

Based on these reports, in line with our previous behav-
ioral and electrophysiological research, we designed the 
present study with this main goal to assess the possible 
neuroprotective effect of PIO against electrophysiological 
changes in the CA1 area of the hippocampus in BDL rats.

Materials and methods

Animals and experimental design

Male Wistar rats (n=40) weighing 180–220 g were housed 
in a controlled room (21 ± 3 °C, 12 h light/dark cycle) with 
free access to standard food and water. All procedures and 
protocols were approved by the Ethics Committee of the 
Kerman Medical University (IR.KMU.REC.1395.792). 
Four groups were involved to assess biochemical param-
eters (n = 10 rats in each group).

1.	 The sham group rats underwent all surgical procedures 
without bile duct ligation.

2.	 The sham + PIO group (20  mg/kg, i.p., based on the 
pilot study and our previous studies with dosages 10, 
20 and 50 mg/kg; we reached 20 mg/kg (Aghaei et al. 
2014, 2019).

3.	 BDL group rats that were subjected to bile duct ligation.
4.	 BDL + PIO group (20 mg/kg, i.p.). Pioglitazone hydro-

chloride (Sigma–Aldrich, USA) was dissolved in saline 
and administered intraperitoneally to the rats two 
weeks after BDL induction and continued for the next 
four weeks, once a day. Based on our biochemical and 
behavioral data, the rats were allocated to these three 
groups to assess electrophysiological properties: sham, 
BDL and BDL + PIO groups (Fig. 1).

Bile duct ligation surgery

The bile duct ligation procedure was carried out as 
described previously (Aghaei et al. 2014). The rats were 
generally anesthetized by using ketamine (70  mg/kg) and 
xylazine (10 mg/ kg) injected intraperitoneally and under-
went abdominal incision and the segregation of the hepatic 
ligament. The common bile duct was ligated with two 4–0 
nonabsorbent surgical sutures. The first suture was placed 
below the junction of the biliary hepatic ducts and the sec-
ond suture was placed above the entrance of the pancreatic 
ducts. The common bile duct was resected between the two 
ligatures. The abdominal incisions were closed with 4 − 0 
silk sutures under sterile condition. For the sham control 
group, all the procedures were performed in similar manner 
except the bile duct ligation. The animals were then allowed 
to recover with free access to food and water for 6 weeks 
following surgery.

Assessment of hepatic function

Following plasma biochemistry parameters were measured 
by a blinded lab technician to assess the hepatic function 
in four experimental groups (sham, sham + PIO, BDL and 
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BDL + PIO groups): total bilirubin, direct bilirubin, alka-
line phosphatase and hepatic enzymes (ALT, AST). Plasma 
samples were analyzed by using a commercially available 
kit (Zistshimi, Tehran, Iran).

Electrophysiological assessment

Slice preparation

Under ether anesthesia, the sham, BDL and BDL + PIO rats 
were decapitated 6 weeks after surgery. Brains were dis-
sected rapidly and hippocampal transverse slices were cut in 
an ice-cold artificial cerebrospinal fluid (aCSF) containing 
in mM: 206 sucrose, 26 NaHCO3, 10 D-glucose, 2.8 KCl, 
2MgSO4, 1.25 NaH2PO4, 1 CaCl2, and 1MgCl2; 290–300 
mOsm (pH justified to 7.4 with 95%O2 and 5% CO2) by 
using a vibrating microtome (752 M, Campden Instruments 
Ltd., UK). Slices were incubated in aCSF containing: 124 
NaCl, 26 NaHCO3, 10 D-glucose, 2.8 KCl, 2 CaCl2, 2 
MgSO4, 1.25 NaH2PO4; 295 mOsm, pH 7.4, for at least 
60 min at 36 °C and thereafter maintained at room tempera-
ture until used.

Whole cell patch clamp recording

We evaluated the electrophysiological properties of the 
CA1 pyramidal neurons by using whole-cell patch clamp 
recordings to examine whether chronic administration of 
PIO can protect against the alterations of neuronal func-
tion induced by bile duct ligation. Intracellular recordings 
in current clamp mode from pyramidal neurons were made, 

as described previously by Razavinasab et al. (Razavina-
sab et al. 2016), under direct visual control using differen-
tial interference contrast optics (Olympus; BX 51WI). CA1 
pyramidal neurons were visualized with a 40× water immer-
sion objective using Nomarski-type differential interference 
contrast imaging with infrared illumination. Images were 
captured with a CCD camera (Hmamatsu, ORSA,Japan). 
The hippocampal slices were continuously perfused with 
normal aCSF (2 ml/min) at room temperature (22–25 °C) in 
a recording chamber. Whole cell current clamp recordings 
were obtained from CA1 pyramidal neurons using Multi-
clamp 700B amplifiers (Axon Instruments, Foster City, CA) 
equipped with Digidata 1440 A/D converter (Axon Instru-
ments, Foster City, CA). Micropipettes were pulled with an 
electrode puller (PC10; Narishige, Tokyo, Japan) and had 
a resistance of 4–9 MΩ when filled with an internal solu-
tion. The composition of the internal solution was as follows 
(in mM): 0.33GTPtris, 125 K-gluconate, 5 KCl, 5 BAPTA, 
0.5 CaCl2, 5 MgATP, and 10 HEPES. The final pH of the 
internal solution was adjusted to 7.2 by adding 1M KOH; 
the final osmolarity was adjusted to 280–285 mOsm. Cells 
with a seal < 1 GΩ before rupture of the membrane were dis-
carded and the test seal function was constantly monitored 
throughout the recording to ensure that the seal was stable. 
Spontaneous firing properties of CA1 cells including resting 
membrane potential (RMP), spontaneous firing frequency 
and membrane input resistance were measured. To inves-
tigate the excitability of neurons, action potentials were 
induced in pyramidal cells from V holding = − 70 mV in 100 
ms duration current steps ranging from − 500 to + 500 pA in 
100 pA increments. Before positive current steps, a negative 
prepulse protocol current with 300 PA was also identified. 

Fig. 1  Experimental design; biochemical and electrophysiological tests schedule
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We sought to reveal the effect of PIO on excitability changes 
induced by BDL, by examining these parameters: the num-
ber of action potentials and action potentials rebound gener-
ated by these current injections. The first spike latency was 
defined as the time between the offset of the negative cur-
rent steps and the peak of the first spike.

Statistical analysis

Results are presented as the mean ± SEM. To investigate 
the characterization of spontaneous and evoked electro-
physiological activities of CA1 pyramidal neurons in the 
experimental groups, statistical data were first analyzed for 
normality using a Kolmogorov-Smirnov (K-S) test. Results 
that found to be normally distributed (p > 0.05 in K-S test) 
were evaluated using one-way ANOVA. Results that were 
not normally distributed (p < 0.05 in K-S test) were assessed 
using a Kruskal Wallis test. P < 0.05 was considered statisti-
cally significant.

Results

The effect of chronic administration of PIO on the 
biochemical parameters following induction of BDL 
in rats

As demonstrated in Table  1, BDL group rats had higher 
plasma concentration of ALT than sham, sham + PIO and 
BDL + PIO groups (F (3, 36) = 2.1, p < 0.05). Also Alk.ph 
level increased in BDL group compared to the sham (F (3, 

36) = 7.3, p < 0.001) and PIO could reverse this effect of BDL 
significantly in BDL + PIO group (p < 0.01). The mean level 
of direct and total bilirubin increased in BDL compared 
to sham and sham + PIO groups and were not reversed in 
BDL + PIO group (p < 0.001). The albumin level had lower 
level in BDL and BDL + PIO rats than sham and sham + PIO 
groups (F (3, 36) = 5.8, p < 0.001). No significant difference 
was observed in the level of AST amongst four groups of 
study (Table 1).

The effect of chronic administration of PIO on the 
electrophysiological activities of hippocampal cells 
following induction of BDL in rats

As mentioned in the methods section, we designed our elec-
trophysiological assessments in the following three groups: 
Sham, BDL and BDL + PIO groups, because we found 
no significant differences between sham and sham + PIO 
groups in the biochemical and also our previous published 
behavioral data (Aghaei et al. 2014). Therefore, we removed 
sham + PIO group from the electrophysiological evaluation. 
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p < 0.05). Following 520 ms negative and positive current 
protocol, the number of rebound action potential (AP) in 
the BDL and BDL + PIO groups decreased compared to 
the sham group animals (Figs.  3B and 4 A, p < 0.001 and 
p < 0.01 respectively).

Firing properties were changed in BDL and PIO treated 
rats as shown in Fig. 4B for all repetitive currents with a 
fixed duration (0.2  s) and amplitude (200 pA). The num-
ber of action potentials in the BDL group evoked by this 
protocol decreased compared to that in the sham group and 
were not reversed by PIO administration in rats subjected to 
BDL (Fig. 4B, p < 0.05). In negative pre-pulse injection fol-
lowing 0.3 nA test pulse, significant increased delay in the 
first spike latency in the BDL and BDL + PIO groups was 
indicated compared to the sham group (Fig. 5 A, p < 0.001, 
p < 0.01, p < 0.05 following − 0.1 nA to -0.3 nA pre pulses). 
Also firing properties were altered in BDL and BDL + PIO 
rats as shown in Fig. 4B for all five current pre pulses. The 
number of AP in the BDL and BDL + PIO groups evoked by 
this protocol decreased significantly compared to the sham 
group (Fig. 5B, p < 0.05 following − 0.1 nA and p < 0.01 for 
all four current pre pulses).

Discussion

The main goal of the current study was to examine the 
potential neuroprotective effect of pioglitazone against 
electrophysiological alterations induced by BDL in the CA1 
area of the hippocampus by using whole cell patch clamp 

Compared with sham animals (-60.01 ± 1.22), the mean rest-
ing membrane potential parameter is significantly more neg-
ative in the BDL (-71.4 ± 2.01) and BDL + PIO (-75 ± 2.27) 
group rats (Fig. 2, p < 0.05). Only 5 from 14 recorded hip-
pocampal cells of the sham group showed spontaneous 
firing frequency, while in BDL and BDL + PIO groups, no 
spontaneous firing frequency from 12 recorded cells was 
reported all during the experiment. No difference were seen 
in the membrane input resistance among three experimental 
groups (F (2, 27) = 0.83, p > 0.05).

The effect of chronic administration of PIO on 
the evoked electrophysiological properties of 
hippocampal cells following induction of BDL in rats

Five trains of depolarizing and hyperpolarizing current 
pulses (0.1–0.5 and − 0.1– −0.5 nA, 520 ms) were used to 
evaluate the possible neuroprotective effects of PIO on the 
evoked firing responses of hippocampal neurons of rats sub-
jected to BDL (Figs. 3 and 4). The relationship between the 
number of spikes evoked per pulse and first spike latency 
was examined in the sham, BDL and BDL + PIO animals. In 
negative current pulses injection (Fig. 3 A-D), we found a 
significant increase in delay in the first spike latency in the 
first three pulses and steady state (in the last three pulses) 
in the BDL and BDL + PIO group rats compared to the 
sham operated animals (Fig.  3 A, C, p < 0.01 and p < 0.05 
respectively). Compared with sham operated animals sag 
voltage amplitude had a significant reduction in the BDL 
and BDL + PIO group rats in the last three pulses (Fig. 3D, 

Fig. 2  Effect of PIO administration on alterations in the spontaneous firing pattern of the hippocampal cells in BDL animals. (Sham) Blue color 
traces, (BDL) green color traces and (BDL + PIO) red color traces.
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impaired balance, learning and spatial memory in rotarod, 
passive avoidance learning task and Morris water maze in 
BDL animals, respectively (Aghaei et al. 2014). A signifi-
cant cognitive dysfunction was observed in Morris water 
maze and novel object recognition tests in BDL rats prob-
ably by reducing the expression of brain derived neuro-
trophic factor (BDNF) (Dhanda et al. 2018). Another study 
reported cognitive problem in the eight arm maze and the 
T-maze tests and also locomotor dysfunction in the open 
field test following BDL (Magen et al. 2009).

Decreasing the brain deficiencies can increase the quality 
of life in HC patients, therefore discovering the involved 
exact mechanisms is valuable. Previous studies showed 
several pathways which lead to behavioral dysfunctions 
following HE. Underlying pathophysiological mecha-
nisms of HE are not well understood, but over production 

technique. Our findings indicated that PIO could not reverse 
these intrinsic electrophysiological alterations. Also, we 
measured biochemical parameters to evaluate whether PIO 
can protect hepatic function in BDL rats. PIO could reverse 
diminished hepatic function due to BDL. These biomedical 
findings is in consistent with our previous study (Aghaei et 
al. 2014).

Patients with HC suffer from various neurological and 
neuropsychiatric problems. Motor, learning and memory 
impairments seem to currently occur following HC (Aghaei 
et al. 2014, 2015; Weissenborn et al. 2005; Pflugrad et al. 
2015; Arias et al. 2014).

Many studies have used BDL as an animal model for 
induction of HC (Butterworth et al. 2009). BDL exhibits 
cognitive deficiencies very similar to neurological symp-
toms in human. Our previous published study reported 

Fig. 3  Effect of PIO administration on alterations in first spike latency (A), rebound (B), steady state (C) and sag voltage (D) following negative 
current pulses injection in BDL animals. The traces indicate the response of the hippocampal cells from − 0.1 to − 0.5 nA negative current pulses 
injection. (Sham) Blue color traces, (BDL) green color traces and (BDL + PIO) red color traces. #p < 0.05, ##p < 0.01 and ###p < 0.001 as compared 
represent significant differences between the sham group vs. the BDL group. $p < 0.05, $$p < 0.01 and $$$p < 0.001 represent significant differences 
between the sham group vs. the BDL + PIO group. Data represent the mean ± S.E.M
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the cerebellar Purkinje cells, BDL caused hyperexcitability, 
larger AHP amplitude, and shortened action potentials com-
pared to sham animals (Aghaei et al. 2016). In CA1 neurons 
of the hippocampus, lower excitability in BDL animals is 
indicated when compared to the sham group by alteration 
in the frequency of AP, amplitude of AHP, AP duration at 
half-amplitude and first spike latency. The AHP amplitude 
was significantly larger in the hippocampal neurons of the 
BDL group than that of sham rats. Increased levels in KV2 
and KV3 channel activity (McKay and Turner 2004), direct 
activation of voltage gated K+ channels, including fast tran-
sient (A-type) and large conductance calcium activated K+ 

of ammonia (Cauli et al. 2006), deficit in neurotransmitter 
systems particularly GABAergic (Cauli et al. 2009), gluta-
matergic (Llansola et al. 2013) and dopaminergic pathways 
(Dhanda and Sandhir 2015; El Hiba et al. 2013), oxidative 
stress, neural apoptosis, and excitotoxicity (Felipo 2013; 
Javadi-Paydar et al. 2013) contribute in pathomechanism 
of HE. Since the cerebellum (Rodrigo et al. 2010) and hip-
pocampus (Ahmadi et al. 2015) are two main vulnerable 
regions compared to other brain regions to hyperammone-
mia, so these two regions are of great interest of many stud-
ies. The electrophysiological alterations were observed in 
the cerebellum (Aghaei et al. 2016) and hippocampus (Taha-
mtan et al. 2017) in animals subjected to BDL procedure. In 

Fig. 4  Effect of PIO administration on alterations in the evoked firing responses of the hippocampal cells following positive current pulses injec-
tion (Fig. 3 A) and 5 repeated depolarizing pulses (Fig. 3B) in BDL animals. The relationship between firing rate and different positive current 
injection with fixed step amplitude A; the relationship between firing rate and repetitive current injection with fixed step amplitude B. (Sham) Blue 
color traces, (BDL) green color traces and (BDL + PIO) red color traces. #p < 0.05 and ##p < 0.01 represent significant differences between the 
sham group vs. the BDL group. $p < 0.05 and $$p < 0.01 represent significant differences between the sham group vs. the BDL + PIO group. Data 
represent the mean ± S.E.M
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Significance of understanding the involved mechanisms 
of HE certainly is finding more effective treatment strategies 
against cognitive and motor impairments following BDL. 
There are a vast body of evidences showing neuroprotective 
effect of PIO through anti-inflammatory by lowering neu-
trophilia, TNFα, C-reactive protein and IL-6, anti-apoptotic 
and also interaction with oxidative stress pathways by the 
activation of PPAR receptors, maintaining mitochondrial 
respiration, induction of constitutive nitric oxide synthase, 
against different cerebral diseases including Parkinson’s, 
traumatic brain injury, ischemia, spinal cord injury and 

channels by NH4+ (Allert et al. 1998) are suggested that par-
ticipate in these mentioned electrophysiological changes.

Impaired LTP and reduced effectiveness of excitatory 
synaptic transmission in hippocampal slices of rats, due 
to dysfunction in AMPA or NMDA receptors and soluble 
guanylate cyclase (Szerb and Butterworth 1992; Monfort 
et al. 2005, 2007; Muñoz et al. 2000; Rodrigo et al. 2005; 
ElMlili et al. 2010; El-Mlili et al. 2008), the block of action 
potential conduction in the presynaptic terminals in the cat 
spinal cord (Raabe 1990) are suggested as consequences of 
hyperammonemia.

Fig. 5  Effect of PIO administration on alterations in delay in the first spike latency (A) and rate of action potential (B), by negative current prepulse 
injection (− 0.1 to − 0.5 nA) following 0.3 nA test pulse injection. (Sham) Blue color traces, (BDL) green color traces and (BDL + PIO) red color 
traces. #p < 0.05, ##p < 0.01 and ###p < 0.001 as compared represent significant differences between the sham group vs. the BDL group. $p < 0.05, 
$$p < 0.01 and $$$p < 0.001 represent significant differences between the sham group vs. the BDL + PIO group. Data represent the mean ± S.E.M
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