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Abstract
The greatest risk factor for development of the deadly neurodegenerative disorder known as Alzheimer’s disease (AD) is 
advancing age. Currently unknown is what mediates the impact of advanced age on development of AD. Also unknown is 
what impact activity alterations in the entorhinal cortex (EC) has on the spread of AD pathology such as pathological tau 
through the brain as AD progresses. This review focuses on evidence in the literature that describes how one potential age-
related change, that of glutamate-mediated increases in neuronal activity, may ultimately increase the risk of developing AD 
and promote the spread of tau pathology in AD-affected brains from the EC to later regions such as the hippocampus and 
prefrontal cortex. A better understanding of these detrimental alterations may allow for earlier detection of AD, offering a 
better prognosis for affected individuals.

Keywords Aging · Alzheimer’s disease · Tau · Glutamate · Neuronal activity · Entorhinal cortex

Introduction

Alzheimer’s disease (AD) is the most common form of 
dementia, accounting for 60 to 80 percent of all dementia 
cases (Atri 2019). AD is characterized by three main biolog-
ical hallmarks, extracellular beta-amyloid plaques, intracel-
lular neurofibrillary tangles containing hyperphosphorylated 
tau protein, and neuronal death (Hyman et al. 2012). Though 
there are many risk factors for the development of AD, the 
greatest is advancing age (Lindsay et al. 2002). The connec-
tion between increasing age and AD is of interest because 
of the aging baby boomer population, which is expected to 
exacerbate the medical burden of age-related changes in cog-
nition as well as age-related neurodegenerative disorders like 
AD (Rajan et al. 2021).

While AD ultimately proves fatal for affected individu-
als, of additional concern is the negative functional impact 
that the development of AD has on quality of life for these 

individuals and their caretakers (Isik et al. 2019). Over time, 
AD affects multiple brain regions as pathology spreads 
throughout the neocortex, entorhinal cortex, hippocampus, 
and prefrontal cortex (Braak and Braak 1991). Some of 
the functional changes that occur, such as deficits in spa-
tial, working, or episodic memory, can be tied to network 
alterations in the entorhinal cortex (EC) and the hippocam-
pal formation, which consists of the subiculum, the dentate 
gyrus (DG), and the hippocampus proper (Baddeley et al. 
1991; deIpolyi et al. 2007; Greene et al. 1996). The hip-
pocampus in particular has been greatly studied for its role 
in the progression of AD. In fact, current diagnostic tasks 
utilized for the detection of AD, such as the mini-mental 
status exam (MMSE), focus on deficits that become apparent 
when the functional integrity of the hippocampus and pre-
frontal cortex has been compromised (Sabuncu et al. 2011). 
Less understood is the role that the EC plays in the develop-
ment of AD. This shortcoming is significant because the 
EC is one of the first areas impacted by tau pathology in the 
progression of AD and tau pathology beginning in the EC 
ultimately spreads to the hippocampus and prefrontal cortex 
as the disease progresses (Braak and Braak 1991). Thus, it is 
critical to understand the cognitive alterations resulting from 
pathology in the EC, so as to better detect cognitive defi-
cits resulting from disease-related alterations in this region. 
Understanding cognitive deficits that result from pathology 
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in this region may help identify potential novel therapeutic 
targets to attenuate the spread of tau pathology throughout 
the brain. This review will focus on animal and human work 
that delves into the relationship among aging, AD, and the 
EC.

Aging and AD

Evidence from the literature suggests that aging is one of 
the greatest risk factors for the development of AD (Harman 
2006; Munoz and Feldman 2000; Xia et al. 2018). There 
quite a few age-related changes in brain function and activity 
that likely mediate this risk, one of which regards changes 
in network activity. Indeed, late-stage AD is associated with 
a variety of physiological changes but is frequently associ-
ated with neuron loss and subsequent network deficits in 
neuronal activity (de Haan et al. 2012; Hatanpää et al. 1996; 
Palop et al. 2007). However, there is evidence to suggest 
that in normal aging, as well as very early stages of AD, 
some brain regions are hyperactive instead. For example, 
aging has been associated with increases in hippocampal 
hyperactivity in both human and rodent models (El-Hayek 
et al. 2013; Reagh et al. 2018; Yassa et al. 2011). Neuronal 
hyperactivity, as measured by blood-oxygen level dependent 
(BOLD) functional magnetic resonance imaging (fMRI), is 
also a characteristic of amnestic mild cognitive impairment 
(aMCI) (Yassa et al. 2011), a measurable decline in cogni-
tive function that is considered by some to be a risk factor 
for the development of AD (Mauri et al. 2012). Increased 
neuronal activity in patients with aMCI is indicative of the 
rate and possibility of development of AD in these individu-
als (10 to 15% progression rate annually in clinical samples) 
(Bakker et al. 2008; Oltra-Cucarella et al. 2018). In addition, 
hyperexcitability has been associated with cognitive deficits 
even in older adults that had normal scores on the MMSE 
(Yassa et al. 2011).

Neuronal hyperactivity is also associated with a number 
of maladaptive changes in human subjects as well as rodents, 
including cognitive decline (Reagh et al. 2018), enhanced 
seizure susceptibility (Cloyd et al. 2006; Stover et al. 2017), 
and the accumulation of tau but not beta-amyloid (Huijbers 
et al. 2019). Moreover, reducing neuronal hyperactivity in 
humans and rodents is sufficient to reduce cognitive defi-
cits (Bakker et al. 2012; Hunsberger et al. 2015b; Koh et al. 
2010; Sanchez et al. 2012), suggesting not only an associa-
tion but a causative relationship between hyperactivity and 
cognitive decline. Of additional concern is evidence sug-
gesting increased neuronal activity can also lead to excito-
toxicity, a pathological process in which neurons are killed 
due to overactivation (Rudy et al. 2015). Therefore, detri-
mental changes in neuronal activity levels could serve as 
potential therapeutic targets to halt or slow the progression 

from normal aging or aMCI to AD. Of great interest, then, 
is understanding potential mechanisms that may contribute 
to these activity alterations and how they may be permissive 
for the development of AD.

One of the mechanisms that may underlie alterations in 
neuronal activity is dysregulation of glutamatergic neu-
rotransmission. There is increasing evidence that aging 
results in enhanced glutamatergic signaling, suggesting 
one mechanism by which aging might increase the risk for 
AD. Several animal studies have indicated enhanced glu-
tamate release and/or reduced glutamate clearance in aged 
rodents (Saransaari and Oja 1995; Stephens et al. 2011). 
These observations might be due to underlying increases in 
VGLUT, promoting increased release of glutamate into the 
synapse (Cheng et al. 2011). In addition, aging is associated 
with reductions in levels of EAATs, such as GLT-1, result-
ing in less glutamate clearance from the synapse (Potier 
et al. 2010; Zoia et al. 2004) leading to increased resting, 
or tonic, glutamate levels in some cases (Velasco and Tapia 
2002). However, other studies have found the opposite, such 
that aged rodents exhibit decreased glutamate release and/
or enhanced glutamate clearance (Mullany et al. 1996). The 
discrepancies that have been observed may be due to varied 
ages in the animal models as well as the methods utilized to 
measure glutamatergic alterations.

In disease states such as AD, glutamatergic signaling also 
becomes disrupted and these changes have been associated 
with the presence of tau pathology. Using enzyme-based 
microelectrode array, our laboratory has observed tau-
associated increases in glutamate release and decrease in 
glutamate clearance in the rTg4510 mouse line, which over-
expresses the mutant P301L form of human tau (Hunsberger 
et al. 2014, 2015a,  b). Increases in glutamate release were 
associated with increased levels of VGLUT, while reduc-
tions in glutamate clearance were associated with reductions 
in levels of GLT-1. Using riluzole to restore these altera-
tions resulted in attenuated cognitive deficits and pathology, 
which suggests a causative role for increased glutamatergic 
signaling and cognitive impairment.

These glutamatergic alterations can lead to excess extra-
cellular glutamate, which can initiate cell death-signal-
ing pathways by “spill-over” activation of extrasynaptic 
NMDARs (Gouix et al. 2009; Potier et al. 2010). Further-
more, an increase in activation of extrasynaptic NMDARs 
leads to increased tau phosphorylation, which can be 
reduced by blocking extrasynaptic NMDARs and their asso-
ciated receptor subunits (Allyson et al. 2010).

Ultimately, enhanced excitatory neurotransmission may 
create an excitotoxic environment with greater susceptibility 
to the development and progression of AD. This is critical, 
because increasing evidence suggests that hyperexcitability 
can exacerbate the severity of tau pathology and promote 
its spread in AD.
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Tau and AD

While much of the research over the past few decades has 
focused on beta-amyloid pathology as a therapeutic target 
for the treatment of AD, therapeutic interventions focus-
ing solely on beta-amyloid have proven largely unsuc-
cessful (Higuchi et al. 2005; Holmes et al. 2008; Honig 
et al. 2018; Rosenblum 2014; Salloway et al. 2014; Vellas 
et al. 2013). Additionally, many reports have indicated 
that the presence of tau pathology more closely correlates 
with the rate of cognitive decline than does beta-amyloid 
(Arriagada et al. 1992; Gómez-Isla et al. 1997; Nelson 
et al. 2012). Though beta-amyloid is thought to initiate 
tau pathology (Hardy and Higgins 1992; Kowalska 2004), 
tau pathology once initiated may be self-perpetuating and 
beta-amyloid independent (Ashe and Zahs 2010; Guo and 
Lee 2013). Thus, it is equally important to investigate tau 
as a therapeutic target in the treatment of AD.

One of the aspects that makes tau a unique therapeutic 
target is the pattern of its progression. Early tau pathol-
ogy is more localized than early beta-amyloid pathology, 
beginning in the entorhinal cortex before spreading to the 
hippocampus and prefrontal cortex as the disease pro-
gresses (see Fig. 1) (Braak and Braak 1991; Braak and 
Del Tredici 2018; Liu et al. 2012). The mechanisms behind 
this spread are still not well understood. However, increas-
ing evidence suggests that increases in excitatory neuro-
transmission may mediate the spread of tau pathology 
across synaptically connected circuits, a process termed 
trans-synaptic spread. Additionally, there is evidence from 
the literature that suggests that the presence of pathologi-
cal tau also results in excess excitatory neurotransmission, 
indicating a feedback loop between the two phenomena 

(Bi et al. 2017; Siano et al. 2019). In agreement, knocking 
down or knocking out tau in rodent or drosophila models 
resulted in protection from kainic acid-induced seizures, 
indicating that tau itself plays a role in excitotoxicity in 
the absence of beta-amyloid (Pallo et al. 2016; Palop et al. 
2007; Roberson et al. 2011). Thus, the importance of bet-
ter understanding the role that tau pathology plays in the 
progression of the disease and as a potential therapeutic 
target is clear. An overview of tau protein and the ways in 
which it becomes dysfunctional in tauopathies like Alz-
heimer’s disease will be discussed below.

Tau is a protein important for the assembly and stabiliza-
tion of microtubules (Weingarten et al. 1975), which earns 
it the name microtubule-associated protein tau (or MAPT). 
Tau is a phosphoprotein, which means it is post-transla-
tionally modified by the addition of phosphate groups in 
a process known as phosphorylation (Mawal-Dewan et al. 
1994). Its longest isoform (containing 441 amino acids) 
has 80 serine or threonine sites on which it can be phos-
phorylated, though tau protein can be phosphorylated on 
tyrosine sites as well (Goedert et al. 1989). While tau is 
highly phosphorylated in fetal brains, this phosphorylation 
generally decreases throughout development and as the brain 
ages (Goedert et al. 1989). Changes in the amount of tau 
phosphorylation as the brain ages are due to alterations in 
the levels of kinases, enzymes that phosphorylate proteins, 
and phosphatases, enzymes that dephosphorylate proteins 
(Mawal-Dewan et al. 1994).

Tau is normally an intracellular protein primarily found 
in neurons, specifically in the axons (Wood et al. 1986). 
Besides stabilization of the microtubule, tau is thought to 
have some other functional roles in a healthy brain. Intra-
cellularly, tau is important for axonal transport of signaling 
molecules via motor proteins such as kinesin and dynein 

Fig. 1  In comparison to early beta-amyloid pathology, early tau 
pathology is more localized in most patients. Stages I-II consists of 
early tau pathology primarily deposited in the EC (LEC, specifically). 
In stages III-IV, tau pathology has begun to spread to the hippocam-

pus and prefrontal cortex. In stages V-VI, tau pathology has spread 
into the neocortex. By the time tau pathology reaches these areas, it 
is severe in the origin areas. Darker shading/coloration indicates more 
severe pathology progression
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(Chaudhary et al. 2018). Tau is also critical for neuronal 
development, as it plays a role in neurite outgrowth (Wang 
and Mandelkow 2016). Additionally, though the presence 
of extracellular tau has been indicated as a major player in 
tauopathies such as AD (Delacourte and Defossez 1986; 
Grundke-Iqbal et al. 1986), there is evidence that tau can be 
found extracellularly in the absence of disease. For exam-
ple, tau has been found in the interstitial fluid of wild-type 
mice (Yamada et al. 2011) and in human cerebral spinal fluid 
(CSF) in the absence of any measurable cognitive changes 
(Fagan et al. 2009; Handoko et al. 2013; Laws et al. 2017). 
This evidence appears to suggest that there is a normal, 
physiological role for extracellular tau. As such, it has been 
proposed that tau may play an important role in inter-neu-
ronal signaling (Chaudhary et al. 2018). In disease states, 
however, tau protein becomes dysfunctional in a myriad of 
ways.

In AD, tau aggregates into paired-helical filaments (PHF), 
which are the main structural element of neurofibrillary tan-
gles (Goedert et al. 1989). Increased tau phosphorylation, 
generally termed as hyperphosphorylation, was found to be 
a key player in the formation of PHFs (Goedert 1993). Addi-
tional research determined that in AD, tau is hyperphospho-
rylated at a rate about three to fourfold higher than in normal 
brains (Kenessey and Yen 1993; Köpke et al. 1993), which 
may be due to increased levels of kinases and decreased 
levels of phosphatases. There are several consequences of 
these changes in phosphorylation. Hyperphosphorylation of 
tau negatively impacts its ability to bind to microtubules 
(Lindwall and Cole 1984). This hyperphosphorylation of 
tau has been observed to cause mislocalization of tau from 
axons to somatodendritic compartments leading to synaptic 
deficits and mediating beta-amyloid toxicity (Hoover et al. 
2010; Ittner et al. 2010). In addition to changes in phospho-
rylation, tau protein can also become misfolded in AD (Tai 
et al. 2012). This conformational change results in increased 
propensity of aggregation into neurofibrillary tangles (Tai 
et al. 2012).

Tau is normally an intracellular protein; however, after 
pathological tau results in neuronal death, it can accumu-
late extracellularly as ghost tangles (Bancher et al. 1989). 
Because of this, it had been assumed that the increased neu-
ronal death that occurs in the disease state may underlie the 
release of tau into the extracellular space and findings of 
increased tau in cerebral spinal fluid (CSF) as the disease 
progresses. However, multiple studies have indicated that the 
neuron need not die for tau to be released into the extracel-
lular space, and the presence of extracellular tau does not 
seem to be correlated with markers of cell damage such as 
LDH activity (Chai et al. 2012; Yamada et al. 2014; Yamada 
and Iwatsubo 2018). Tau can also be found in interstitial spi-
nal fluid and CSF prior to neurodegeneration (Barten et al. 
2012; Yamada et al. 2011). Additionally, the spread of tau 

seeds precedes neurodegeneration and neither the presence 
of hyperphosphorylated tau nor tau aggregates are immedi-
ately toxic to neurons (Hallinan et al. 2018).

Once tau reaches the extracellular space, regardless of 
the mechanism, it can be taken up by neighboring neurons, 
ultimately compromising them as well (Wu et al. 2016). It 
is in this way that pathological tau is thought to behave in a 
prion-like fashion along synaptically connected neural net-
works (Frost and Diamond 2009; Guo and Lee 2011; Kfoury 
et al. 2012). Prions are misfolded proteins with the ability 
to transmit their misfolded shape onto normal variants of 
the same protein. Supporting the prion tau-spread theory, 
human pluripotent stem-cell models have been utilized to 
demonstrate that pathological tau released from initially 
infected cells into the medium can thereafter be taken in 
by previously unaffected recipient cells. Further, aberrant 
tau can be released by these recipients and taken in by new 
recipients, indicating a cell-to-cell propagation (Wu et al. 
2016). The prion-like propagation of tau pathology has also 
been demonstrated in vivo. Injection of brain homogenates 
from mice expressing mutant tau into mice expressing wild-
type tau results in the assembly of the wild-type tau into 
NFTs and neuropil threads (NTs), and this pathology spreads 
to synaptically connected brain regions (Clavaguera et al. 
2015). Additionally, injection of brain extract from older 
mice expressing mutated tau (Ahmed et al. 2014; Peeraer 
et al. 2015), or synthetic pre-formed fibrils from full-length 
or truncated tau (Iba et al. 2013) into the brains of younger 
mice expressing mutant tau (prior to expression of tau 
pathology) also resulted in enhanced prion-like spread of 
tau pathology along synaptically connected circuits.

The latter finding, that of the spread of tau from brain 
region to brain region, has also been of great focus in the 
literature. Tau can spread along mono-synaptic (across one 
synapse) or trans-synaptic (across more than one synapse) 
circuits (Liu et al. 2012). Mice expressing mutant P301L tau 
restricted to layer II of the EC also exhibit propagation to 
connected regions such as hippocampal subregions and the 
cingulate cortex (de Calignon et al. 2012). This spread of 
tau is not limited to pathological or mutant tau, as wild-type 
tau also can spread along axonal connections to distal brain 
regions (Dujardin et al. 2014). The trans-synaptic pathol-
ogy spread suggests that propagation of tau pathology is 
an active process that is synaptically-linked and not solely 
limited to targeting nearby neurons.

The entorhinal cortex, tau, and AD

The literature suggests that the EC is one of the first regions 
in the brain to develop tau pathology (Braak and Braak 
1991; Kaufman et al. 2018; Welikovitch et al. 2018). How-
ever, compared to the hippocampus, the functional role of 
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the EC in cognition as well as in the progression of AD is 
relatively poorly understood. In order to target maladaptive 
alterations that are EC-dependent, this region needs to be 
further studied. An overview of the EC and its role in the 
spread of tau in AD is discussed further, below.

The entorhinal cortex, so named because it is partially 
enclosed by the rhinal sulcus, is located in the medial tempo-
ral lobe between the transentorhinal area and the hippocam-
pal formation. In mice, the EC consists of the medial and 
lateral entorhinal cortices (MEC and LEC, respectively), 
whereas in humans, the EC is divided into the anterolateral 
(front and to the side) and posteromedial (to the back and at 
the center) entorhinal areas (Maass et al. 2015).

The EC can be separated into six layers. Layer I of the 
entorhinal cortex receives olfactory input and projects to the 
presubiculum, peririhinal cortices, and amygdala. Layer II 
projects to the dentate gyrus (DG) and cornu ammonis 3 
(CA3) subregions of the hippocampus, whereas Layer III 
projects to the cornu ammonis 1 (CA1) and subiculum sub-
regions of the hippocampus. The Layer II and III hippocam-
pal projections are referred to as the perforant pathway. In 
turn, the deeper layers (Layers IV and V) of the EC receive 
input from the CA1, a pathway called the third synaptic con-
nection (see Fig. 2). Information processed via the third syn-
aptic connection eventually projects to the striatum, amyg-
dala, and thalamus. Layer VI is still not well understood 
(Canto and Witter 2012). The projections between the EC 
and hippocampus are impacted in both early AD and aMCI, 
causing disruptions in neuronal signaling (see Fig. 2).

Generally, the hippocampus is most commonly denoted as 
the neurobiological source for episodic memory (Desgranges 
et al. 1998). However, it is also clear that the entorhinal cor-
tex plays a significant role in episodic memory (Wilson et al. 
2013b). Memory tasks that assess performance in regard to 

this type of contextual information have been purported to 
represent a rodent model of episodic memory (Eacott and 
Easton 2010). Briefly, components of this model include 
information regarding objects within a given environment, 
information regarding the spatial aspects of the objects in 
that environment, and aspects of the environment itself.

The combination of processing non-spatial and spatial 
information as described above is important for a type of 
memory known as associative memory. Associative memory 
tasks involve altering two or more aspects (object recogni-
tion, object location, and contextual properties) of the envi-
ronment in order to assess an animal’s ability to detect nov-
elty. For example, a task may involve exposing the animal 
to a specific environment and then either altering the objects 
within the environment, the locations of said objects, the 
context itself, or some combination thereof. The combina-
tions are thus referred to as associative memory, as proper 
performance on these tasks requires the animal to remember 
the association between the object, locations, and context 
to which the animal has been previously exposed. Lesion 
studies have determined that while LEC-lesioned rodents 
are able to detect changes in object or object location alone, 
these animals are unable to detect changes in tasks that 
involve associative memory, such as object-object location, 
object location-context, or object-object location-context 
combinations (Hunsaker et al. 2013; Wilson, et al. 2013a, b).

To our knowledge, there are no currently existing ani-
mal studies examining the impact of tau (or beta-amyloid) 
pathology within the EC on EC-dependent cognition. 
However, evidence from human literature sheds some light 
on what impact AD-associated changes, such as altera-
tions in excitotoxicity has on EC-dependent cognitive 
performance. For example, hypoactivity in the EC and 
hyperactivity of hippocampal DG and CA3 subregions, as 

Fig. 2  The entorhinal cortex 
projects to the dentate gyrus 
(DG) and CA1 hippocampal 
subregions (referred to as the 
perforant pathway). The dentate 
gyrus projects to the CA3 hip-
pocampal subregion (referred 
to as the mossy fiber pathway). 
The CA3 has autoassocia-
tive (or recurrent) tracts that 
project onto itself. The CA3 
also projects to the CA1 via the 
Schaffer collateral pathway, and 
the CA1 projects back to the 
entorhinal cortex (third synaptic 
connection). Evidence from the 
literature suggests that altera-
tions such as hypoactivity (blue 
arrow) in the EC are associated 
with increases in activity (red 
arrows) in the DG and CA3
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identified by changes in fMRI blood-oxygen level depend-
ent (BOLD) activation, is associated with a shift toward 
responses indicating pattern completion rather than pat-
tern separation (Bakker et al. 2012), which is not observed 
when the task has a spatial component (i.e. objects within 
a specific location in an environment) (Reagh et al. 2018). 
Recent studies have identified the anterolateral entorhinal 
cortex (alEC), rather than the posteromedial entorhinal 
cortex (pmEC), as the specific subregion of the entorhi-
nal cortex that is hypoactive in older adults (Berron et al. 
2019; Reagh et al. 2018) and that this dysfunction is asso-
ciated with higher levels of tau in cerebrospinal fluid.

The functional imbalance observed in these cases may 
well have to do with the projections from EC to DG and 
CA3 hippocampal subregions via the perforant pathway. 
The projections between the EC and hippocampus are 
impacted in both early AD and aMCI, causing disruptions 
in neuronal signaling (see Fig. 2). What is unknown is 
the directionality of these alterations in human studies. 
That is, whether it is the EC hypoactivity that is causing 
DG/CA3 hyperactivity, or the reverse. It has been theo-
rized that CA3/DG hyperactivity could lead to retrograde 
degeneration of the perforant pathway in human subjects 
(Reagh et al. 2018). It has been also been theorized that 
the disrupted EC signaling leads to inadvertent activation 
of the CA3 recurrent tracts, promoting a state of hyperex-
citability (Reagh et al. 2018). Studies assessing the role of 
early EC activity in humans are lacking, potentially due to 
the degradation of this region by the time hippocampal-
dependent changes are apparent.

Volumetric changes in the alEC are also predictive of 
ability to process repeated versus similar objects (Yeung 
et al. 2017). As volume decreases are also observed in the 
LEC in preclinical AD (Yeung et al. 2017), these region-
specific changes and resultant impact on object-recognition 
memory may represent a precise target for development of a 
diagnostic task sensitive to early AD alterations.

In addition, because hippocampal subregions receive 
major excitatory input from Layer II of the EC, it has been 
proposed that changes observed in cognitive aging and aMCI 
are likely resultant from a disruption in EC-hippocampal 
afferents (Smith et al. 2000). Indeed, evidence has shown 
that input from Layer II of the EC is reduced with increasing 
age (Geinisman et al. 1992; Scheff et al. 2006). Addition-
ally, synapses that project from Layer II of the EC to the 
CA1 hippocampal subregion undergo degeneration in AD 
mouse models (Shih et al. 2016). The EC is also one of the 
first areas to undergo neuronal loss in early AD. For exam-
ple, by the time individuals affected by cognitive aging or 
aMCI have progressed to even mild AD, they can exhibit 
60% neuron loss in Layer II of the EC compared to a normal 
individual (Gómez-Isla et al. 1996; Kordower et al. 2001). 
In conjunction, the EC is significantly atrophied in AD 

compared to other brain regions (Kordower et al. 2001; Van 
Hoesen et al. 1991).

While there are several studies examining the role of EC 
in cognition via EC-lesions, as well as studies assessing the 
impact of EC activity alterations on cognition, there is a gap 
in the literature regarding the impact of pathological tau in 
the EC on EC-dependent cognitive tasks.

Conclusion

The key to better understanding the pathophysiology of AD, 
and therefore offering a better prognosis for affected indi-
viduals, is understanding one of the major regions that AD 
pathology originates from. It is clear from the evidence in 
the literature, as disseminated in this review, that aging and 
early AD result in alterations in network activity in the EC 
and hippocampus. These alterations create an environment 
of excitotoxicity which is then permissive to promote and 
propagate the spread of tau pathology. In turn, pathological 
tau deposition, once initiated, begets further tau pathology 
as well as mediating both beta-amyloid toxicity and exac-
erbated excitatory neurotransmission. While these obser-
vations have been documented in the literature, not much 
focus has been given to the impact of early AD pathology 
within the entorhinal cortex on EC-related cognitive func-
tion. This review hopes to offer a comprehensive starting 
point in terms of the currently known information and the 
gaps that need to currently be filled. In addition, understand-
ing what changes that occur in this region lead to the spread 
of pathological tau, such as hyperactivity, is fundamental in 
the advancement of the field.
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