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Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disease in which the understanding of the underlying molecu-
lar mechanisms can be constructive in the diagnosis and treatment. Matrix metalloproteinase (MMPs) elevation and 
damage to the blood–brain barrier (BBB) are critical mechanisms involved in the PD separation. Studies have revealed 
that changes in miR-149-5p and CoQ10 are associated with BBB damage, and CoQ10 can affect the levels of some 
miRs. Hence, in the present study, we aimed to evaluate CoQ10 and miR-149-5p mimic on miR-149-5p, MMPs and 
TH expression, and behavioral functions of the PD models. PD was induced by injection of 6-OHDA into the rats’ 
Medial Forbrain Bundle (MFB). The behavioral tests, including the Rotation test, Rotarod test, and Open field test, 
have been directed two weeks after PD induction. Next, the MiR-149-5p mimic (miR-mimic) and CoQ10 have been 
administered to rats. The same behavioral tests have been evaluated two weeks after administration to investigate the 
effect of miR-149-5p mimic and CoQ10. The rats were followed extra four weeks, and the behavioral tests have per-
formed again. Finally, the expression of MMPs and miR-149-5p genes was measured using RT-qPCR, and tyrosine 
hydroxylase (TH) was assessed through immunohistochemistry analysis. According to the obtained results, the level 
of miR-149-5p has decreased, followed by PD induction in rats. RT-qPCR analysis has represented upregulation and 
downregulation of miR-149-5p and MMP-2,9, respectively, after miR-mimic and CoQ10 treatment. The treated rats 
have also represented improved motor function and increased TH +  cells in the striatum according to the behavioral 
tests and immunohistochemistry assay. Taking together miR-149 and CoQ10 has shown to have an impressive potential 
to prevent damage to dopaminergic neurons caused by 6-OHDA injection through reducing MMP-2,9, increased TH 
expression, and improved motor function.
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Introduction

Since Parkinson’s disease (PD) was described in 1817 
by James Parkinson, many studies have been conducted 
regarding its mechanisms and potential therapies. PD is 
inducing their destructive effect through severe progres-
sive dopaminergic neuron destruction in the nigrostriatal 
pathway that eventually leads to neurons loss in the sub-
stantia nigra dense part (Mendes Filho et al. 2018). The 
PD disease is characterized by motor complications such 
as tremor, stiffness, bradykinesia, gait and balance disor-
ders (Obeso et al. 2017). Despite dopaminergic therapies 
such as L-Dopa and other pharmacological and surgical 
procedures, the disease is still progressive (Fox et al. 2018; 
Jankovic 2019). It seems crucial to find more effective 
treatment strategies to recover the neuronal damage fol-
lowed by PD development.

The blood–brain barrier (BBB), as a highly critical 
element of the central nervous systems (CNS), plays a 
tremendous role in neuronal activity and information pro-
cessing through   controlling molecules influx. BBB defor-
mation has shown to be a primary biomarker for brain 
injury, leading to the secondary cascade of injuries such 
as apoptosis. According to previous studies, PD develop-
ment caused BBB damages, leading to more extensive PD 
complications (Chen et al. 2008; Cabezase et al. 2014; 
Sweeney et al. 2018; Nation et al. 2019; Lin et al. 2020). 
Endothelial cell tight junctions (TJs) are considered an 
essential factor in the BBB integrity. TJs have several 
complex proteins such as claudin, occluding, and zonula 
occlumency that are susceptible to matrix metalloprotein-
ase (MMPs). It has been well established that MMPs’ high 
expression following neurodegenerative disorders, includ-
ing PD, leads to TJs destruction that enhances the BBB 
permeability (Chen et al. 2008; Winkler et al. 2021). In 
this regard, MMPs inhibition could be considered as a pos-
sible therapeutic strategy to alleviate PD complications.

Several small molecules in cells, including microR-
NAs (miRs), can be applied for specific purposes. miRs 
are short, endogenous, and highly conserved non-coding 
RNAs containing approximately 22 nucleotides. These 
molecules are well known as gene post-transcriptional 
regulation agents by binding to the mRNAs 3′-untrans-
lated region (3′-UTR) specifically, inhibiting translation or 
induction of mRNA degradation of the (Qadir et al. 2020). 
As the most common pathway of miRs generation, the 
canonical path is accomplished in two separate steps. In 
which they have synthesized in the nucleus and processed 
in the cytoplasm (O’Brien et al. 2018). However, non-
canonical pathways of miRs synthesize have been recently 
recognized. Scientists have been recruiting this approach 
to the chemical production of miRs-like oligonucleotides 

known as miR mimics that mimic the miRs functions in 
cells (O’Brien et al. 2018; Titze-de-Almeida and Titze-de-
Almeida 2018). According to genetic studies, several miRs 
levels have been altered following PD development, which 
plays a significant role in its pathogenesis. Such alterations 
are ascribed to the miR-155-5p and miR-449a increasing 
and miR-146a-5p and miR-221-3p decreasing during PD 
(Caggiu et al. 2018; Oh et al. 2018; Tolosa et al. 2018). 
Among them, miR-149-5p has been critically decreased 
in brain disorders such as stroke (Wan et al. 2018) and 
Alzheimer’s (Chen et al. 2020). Based on the previous 
studies, miR-149-5p mimic molecules have reduced brain 
disease complications by reducing MMP-2,9 mRNA by 
targeting the 3′-UTR region (Lu et al. 2017; Feng et al. 
2019; Ghasemloo et al. 2021).

Coenzyme Q10 (CoQ10; chemically 2,3-dimethoxy-
5-methyl-6-decaprenyl benzoquinone) is an essential endog-
enous lipophilic molecule found in the mitochondrial respir-
atory chain of the eukaryotic cell membranes (Belhaj et al. 
2012). Q10 deficiency has been linked to neurodegenerative 
disorders (Mancuso et al. 2010), heart disease (Mugoni et al. 
2013), and cancer (Contin et al. 2015). CoQ10 improves 
ATP production through electrons capture from complexes I 
and II. Complex I has shown to be decreased in the substan-
tia nigra of patients with PD, leading to the dopaminergic 
neurons apoptosis. CoQ10 showed to restore the dopaminer-
gic neurons function and protect dopaminergic axons against 
excitotoxin-induced degradation. The antioxidant effect of 
Q10 leads to increasing the protein’s activity responsible 
for free radical scavenging Seet et al. 2014). Besides, it has 
been shown that Q10 reduces brain disease complications 
by increasing the expression of miRs (Schmelzer et al. 2008; 
Olivieri et al. 2013; Wang et al. 2014).

Previous studies have shown that the miR-149-5p mol-
ecules play an essential role in decreasing several brain 
disorders’ complications. Hence, in the present study, the 
effect of miR-149-5p alteration following PD induction has 
been evaluated for the first time by measuring motor-balance 
function, TH level, and MMP-2,9 expression in the striatum 
of rats. The effects of CoQ10 administration on miR-149-5p 
expression and PD complications have been analyzed to 
determine whether Q10 can prevent the development of PD 
complications by upregulating miR-149-5p and decreasing 
MMPs.

Materials and methods

Experimental design

Two weeks after stereotactic injection of 6-OHDA into the 
right MBF and induction of PD model in rats, a rotation 
test was performed to confirm the PD induction. Ultimately, 

2090 Metabolic Brain Disease (2021) 36:2089–2100



1 3

rotarod and open field tests were performed, and then coen-
zyme Q10 and miR-149-5p mimic were administered to the 
treatment groups, Q10 solvent to the vehicle group, scramble 
miR to the NC group, and distilled water to the PD group. 
All behavioral tests were conducted two and four weeks after 
the administrations. After deep anesthesia of the animals, 
perfusion was performed, and the brains were removed 
for immunohistochemistry and gene expression evaluation 
(Fig. 1).

Study population

Male Wistar rats weighing 250–300 g were purchased from 
the Karaj Pasteur Institute and kept under the standard con-
dition with the temperature of 22 ± 2 °C, the light cycle of 
12 h of light and 12 h of darkness (light from 8 am to 8 pm), 
and unlimited access to water and special food (pellets). The 
animals were treated according to the International Organi-
zation for Medical Science Working with Laboratory Ani-
mals guidelines. This study has been approved by the ethics 
committee of Zanjan University of Medical Sciences (Ethi-
cal No: IR.ZUMS.REC.1400.005).

Study groups

Animals were randomly divided into six groups, each con-
sisting of six Wistar rats. The Study groups were labeled as 
sham (Healthy rats that undergo surgical stress only), PD 
model (Parkinson’s rats that without any treatment), the 
treatment groups receiving CoQ10 and miR-149-5p mimic 
(miR-mimic), respectively, vehicle group (Parkinson’s rats 
receiving Q10 solvent) and NC (Negative Control) group 
(receiving Scramble miR (S-miR)).

PD models

The animals were anesthetized with ketamine (100 mg/
kg) and xylazine (10 mg/kg) and fixed in a stereotactic 

device (Stoelting, USA) to induce the PD. The surface of 
the skull was dissected using a razor blade. The Medial 
Forbrain Bundle (MFB) coordinates of rats were defined 
as AP: − 4 mm from Bregma, ML: 1.8 mm from Midline, 
and DV: 8.8 mm from the skull based on the Paxinos and 
Watson Atlas. A small hole was made in the skull bone 
using a dental drill, and 6-OHDA (6-hydroxydopamine) 
was injected through into the target area with a Hamilton 
syringe (8 µg/2 µl normal saline containing 0.01% ascorbic 
acid, pH = 5), leading to the destruction of the nigrostriatal 
pathway (Fig. 1a).

miR‑149‑5p mimic and CoQ10 treatment of PD rats

To intracerebral injection miR-149-5p mimic and CoQ10, 
the animals were anesthesia first, and the lateral ventric-
ular coordinates were determined according to Paxinos 
& Watson atlas (1 mm posteriorly relative to Bergma, 
2.5 mm from the sagittal line, and 3.5 mm deep from the 
surface of the skull) (Wan et al. 2018). The cannulation 
was performed at the target point using a stereotactic 
device. The cannula was secured with dental cement, and 
a cap was placed on it to prevent contamination. After 
regaining consciousness, the animals were transferred to 
the cages and were observed for two weeks to reduce pain 
and discomfort. A nozzle 0.5 mm larger than the prepared 
cannula connected to a 5 μl Hamilton syringe have been 
used to inject the miR-149-5p mimic and CoQ10. 5 μl of 
rno-miR-149-5p mimic (MIMAT0035726, MC12788, 
Thermo Fisher, USA) and mirVana™ miRNA mimic 
negative control #1 with a concentration of 0.5 nmol were 
injected into the right lateral ventricle by Lipofectamine™ 
RNAiMax (Thermo Fisher Scientific) in the miR treatment 
group according to manufacturer’s instructions (Ruili et al. 
2020). The injection was performed a week at the same 
time, followed by the behavioral studies. In The Q10 treat-
ment group, Q10 was administered orally by gavage by the 
200 mg/kg/day dose for two weeks (Prajapati et al. 2017).

Fig. 1  The schematic diagram of the experimental process
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Rotation test

This test is based on dopamine receptors’ sensitivity in the 
substantia nigra to dopamine and dopamine agonists agents 
such as apomorphine. Hence, the animals begin to rotate 
towards the opposite direction of the affected area after 
apomorphine injection. The number of rotations is directly 
related to the extent of the lesion. The animals’ rotational 
behavior was measured by apomorphine injection (0.5 mg/
kg, i.p) both before and after treatments consecutively. The 
rats were fixed in a rotameter (Borj sanat azma RT-5300, 
Tehran, Iran) for 5 min to adapt. 1 mg/kg of apomorphine 
hydrochloride dissolved in saline was injected intraperito-
neally into rats, and the number of rotations towards the 
opposite direction of the lesion (left) was measured using 
a rotameter. Data are expressed in the form of a complete 
rotation of the body every minute. (Outcome of rotations: 
rotations towards the direction of lesion—rotations towards 
the opposite direction of the lesion) (Mostafavi et al. 2019). 
The animals were evaluated at week zero (two weeks after 
Parkinson’s induction and right before treatment), second 
(two weeks after treatment), and fourth (four weeks after 
treatment).

Rotarod test

The rats’ motor-balance coordination was evaluated by the 
Rotarod device (Stoelting USA) at week zero, second and 
fourth after treatment. Adopting the animals was accom-
plished through two exercises for two consecutive days 
(4 rpm on the first day and 15 rpm on the second day). The 
device automatically starts recording time 0.1 s after the rat 
is placed on the rotating rod. The device’s rotation speed 
increased from 4 to 40 rpm in 180 s, and the animals’ motor 
coordination was assessed. Each rat’s retention time on the 
rotating rod was recorded after three replications with an 
interval of 5 min (Mostafavi et al. 2019).

Open field test

The improvement of cognitive activities of the treated ani-
mals has been executed through an Open field test. The ani-
mals were first adopted to the device. PD-induced rats were 
placed in the center of the open field device (OPF; insight 
model open field EP 154C, Borj Sanat azma RT-5300, Teh-
ran, Iran), and their performance was evaluated through the 
frequency of movements recording for 5 min (Mostafavi 
et al. 2019).

RT‑qPCR

Quantitative Real-Time PCR (RT-qPCR) was used to evalu-
ate the expression of miR-149-5p and MMP-2,9. Briefly, the 

total RNA was extracted using Trizol. The nanodrop device 
(Thermo Scientific NanoDrop 2000c) has been employed 
to measure the quantity and purity of the extracted RNA. 
According to the manufacturer’s instructions, the mRNA/
miRNA cDNA Synthesis Kit (Stem Cell Technology 
Research Center BON209002) has been used to synthesize 
cDNA. Real Plus 2 × Master Mix green and Real-Time PCR 
Instrument (Applied BiosystemsTM) were recruited to the 
miR-149-5p, MMP-2, and MMP-9 genes using specific 
primers (Table 1).

Immunohistochemistry analysis

Tyrosine hydroxylase (TH) has been determined through 
Immunohistochemistry analysis. In summary, the rats were 
deeply anesthetized using Ketamine/xylazine (100/10 mg/
kg, i.p.) injection. Then, were transcranial perfused using 
250 ml sodium chloride 0.9% and 100 ml formaldehyde 4%, 
respectively. The brains were removed, fixed in formalin 4%, 
and embedded in paraffin. After preparing thin brain sec-
tions, xylene was used for deparaffinization. The sections 
were then dehydrated in a serial dilution of ethanol (100%, 
96%, and 70% ethanol). Next, the sections were treated with 
0.5% Triton X-100 for 10 min, followed by 12 h incuba-
tion at 4 °C with TH primary antibodies. The sections were 
also incubated with the PE-conjugated IgG as the secondary 
antibody for 1 h at room temperature. Diaminobenzidine 
(DAB) staining was performed on the slides, the sections 
were incubated with the DAB solution for 10 s at room tem-
perature and were analyzed by a fluorescence microscope 
(Olympus, Japan).

Statistical analysis

All statistics were reported as mean ± SD. The One-Way 
ANOVA and Tukey post hoc test was used to analyze data, 
and p < 0.05 was considered the significant threshold.

Table 1  Primer sequence for RT-qPCR

Genes Primer sequences

miR-149-5p Forward: 5′-TCT GGC TCC GTG TCT TCA CTCCC-3′
Common reverse primer in BON microRNA QPCR 

Master mix kit
MMP-2 Forward: 5′-CGA TGT CTC CCC CAA AAC AG-3′

Reverse: 5′-GCA GCC ATA GAA AGT GTT CA-3′
MMP-9 Forward: 5′-GCA AAC CCT GCG TAT TTC CAT-3′

Reverse: 5′-CCA TCT TTG GAC CGA TTG CTG-3′
β-actin Forward: 5′-GCT CTG GCT CCT AGC ACC AT-3′

Reverse: 5′-GCC ACC GAT CCA CAC AGA GT-3′
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Results

miR‑149‑5p expression

According to the qRT-PCR results, PD induction has signifi-
cantly decreased the miR level in the striatum region than 
the sham group (Fig. 2a). However, miR-mimic and CoQ10 
treated rats have been led to upregulation of miR-149-5p 
(Fig. 2a, b). In contrast, the use of Q10 and S-miR solvents 
did not affect the expression of miR-149-5p (Fig. 2c).

Rotation tests

According to the obtained results, 6-OHDA injection leads 
to the force rotation in the opposite lesion direction in all 
study groups (Fig. 3a). However, a significant reduction in 
the rotations number was observed following miR-149-5p 
mimic and CoQ10 administration compared to the PD rats 
two weeks after treatments. On the other hand, Q10 (vehicle 
group) and S-miR (NC group) injection did not represent any 

significant decrease in the rotations number compared to the 
PD rats (Fig. 3b). The same reduction in the rotations num-
ber has been observed in subsequent weeks (Fig. 3c). How-
ever, the effect of miR-149-5p mimic and CoQ10 adminis-
tration have shown a time-dependent manner regarding the 
rotation number in animals. The treated groups showed a 
significant decrease in the fourth week compared to the sec-
ond week and week zero, and a significant difference was 
revealed between the rotations number in the second week 
and week zero (Fig. 3d).

Rotarod test

A significant reduction of retention time on the rotating rod 
has been indicated for rats following PD induction than the 
sham group (Fig. 4a). Nevertheless, miR-mimic and CoQ10 
treatment promoted rats’ retention time on the rotating rod 
compared to the PD rats group, but there was no signifi-
cant difference in NC and vehicle groups compared to PD 
rats (Fig. 4b). The balance improvement of the miR-mimic 
and CoQ10 treated groups compared to the PD group was 

Fig. 2  miR-149-5p alterations in 
the striatum region. PD induc-
tion result in the miR-149-5p 
significant decrease in the PD 
group (*P < 0.05 compared to 
the sham group). miR-mimic 
injection resulted in miR con-
siderable increase in the rat’s 
striatum (**P < 0.05 compared 
to the PD group) (a). The use 
of CoQ10 leads to a significant 
rise in miR-149-5p level in the 
treated rats’ striatum compared 
to the PD group (#P < 0.05 
compared to the PD group) (b). 
The use of CoQ10 and S-miR 
solvents did not affect the 
miR-149-5p level (C) (*P < 0.05 
compared to the sham group, 
**P < 0.05 compared to PD and 
vehicle groups, #P < 0.05 com-
pared to PD and NC groups). 
Values include mean ± standard 
deviation (n = 6)
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also observed at week fourth (Fig. 4c). Notwithstanding, 
the retention time of miR-149-5p mimic and CoQ10 treated 
groups significantly increased in the fourth week compared 
to the second week and week zero and in the second week 
compared to week zero (Fig. 4d).

Open field test

PD induction following 6-OHDA injection has reduced the 
mobility and locomotion frequency of rats (Fig. 5a). CoQ10 
and miR-mimic treatments have significantly improved the 
rats’ functional ability and movement frequency two and 
four weeks after Parkinson’s induction, compared to the PD 
group (Fig. 5b,c). From a temporal perspective, the CoQ10 
and miR-mimic treated animals’ movement frequency sig-
nificantly increased in week fourth compared to week sec-
ond and zero and in week second compared to week zero 
(Fig. 5d).

Gene analysis

Gene expression analysis has indicated significant MMP-2,9 
upregulation following MFB degradation in PD rats com-
pared to the sham group. CoQ10 and miR-mimic treatment 
resulted in a considerable decrease of MMP-2,9 in rats than 
the PD rats’ group. No significant difference was observed 
between vehicle and NC groups compared to the PD group 
(Fig. 7a, b).

Histochemical analysis

TH+ cells have been investigated through histochemical 
analysis. PD induction significantly decreased the TH+ 
cell number in rats’ striatum compared to healthy rats’ 
striatum. 6-OHDA injection reduced the number of TH+ 
cells (Fig. 6a, c). There was a significant increase in TH 

Fig. 3  Graphs are comparing the rotations number between groups 
during different weeks. 6-OHDA injection resulted in apomorphine-
induced rotations in the opposite direction of the lesion in animals 
(*P < 0.05 compared to the sham group) (a). Two weeks after miR-
mimic and coQ10 treatment, the rotations number significantly 
decreased in the treatment groups compared to the PD group (b). 
The same reduction was also observed two weeks later (week 4) (c) 
(*P < 0.05 compared to the sham group, **P < 0.05 compared to 

PD and vehicle groups, #P < 0.05 compared to PD and NC groups). 
The number of rotations in both treatment groups in weeks 2 and 4 
showed a significant decrease compared to week zero. Also, a signifi-
cant difference was observed in the treatment groups between weeks 
2 and 4 (*P < 0.05 compared to week two and zero, **P < 0.05 com-
pared to week zero) (d). Values include mean ± standard deviation 
(n = 6)
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expression in the CoQ10 and miR-mimic receiving rat’s 
striatum region compared to the PD group (Fig. 6b, c).

Discussion

According to the previous studies, miR-149-5p reduced level 
following brain damages such as stroke and Alzheimer’s dis-
ease can be elevated by a miR-149-5p mimic (Wan et al. 
2018; Chen et al. 2020). It has been reported miR-mimic 
treatment following cerebral ischemia has increased miR-
149-5p expression that eventually promoted the BBB integ-
rity and reduced neuronal death (Wan et al. 2018; Xiong 
et al. 2020). Here in the present study, the miR-149-5p level 
has been reduced through PD induction, which plays an 
essential role in PD development. Even so, miR-mimic and 
CoQ10 injection leads to an upregulation of miR-149-5p in 
PD rats (Fig. 1). Various studies have investigated the effect 
of CoQ10 in different miRs regulation. CoQ10 has been 
shown to regulate the miR-378 levels by affecting Activa-
tor Protein-1 (Wang et al. 2014). Besides, the modulatory 

effect of Q10 on the miR-146a expression has been indicated 
through inflammatory pathways (Olivieri et al. 2013). In a 
comprehensive study, the impact of Q10 consumption has 
been investigated on more than 100 miRs expression for four 
years. The results have signified the Q10 modulatory effect 
on various miRs, both upregulation and downregulation. 
Among the upregulation miRgs, 2.2, 3, and twofold increas-
ing of miR-29b-3p, miR-19a, and a miR-30e-3p, respec-
tively, were outstanding (Alehagen et al. 2017). Each has 
been reported to be a vital element in different pathological 
conditions. Rapid reduction of miR-29b-3p and miR-30e-3p 
level have been observed in myocardial injury compared to 
normal conditions (Singh et al. 2007; Fan et al. 2017) and 
the level of miR-19a have been represented to be downregu-
lated in patients with cerebral ischemia (Jickling et al. 2014). 
Because Q10 is influenced the pathological conditions by 
upregulating the reduced miRs level, such as decreased miR-
149-5p in brain injuries, it seems that Q10 reducing the PD 
progression through miR-149-5p upregulate (Fig. 7).

It has been shown that the promotion of downregulated 
miRs following PD has a vital impact on mobility and TH 

Fig. 4  Comparison of dif-
ferences in the rats’ balance 
before, after and during differ-
ent treatment weeks. 6-OHDA 
injection reduced the rats’ 
retention time on the rotating 
rod (*P < 0.05 compared to the 
sham group) (a). Two weeks 
after miR-mimic and CoQ10 
treatment, there was a signifi-
cant improvement in the animal 
balance compared to the PD 
group (b). The same trend was 
also observed in the performed 
test two weeks later (week 4) 
(c) (*P < 0.05 compared to the 
sham group, **P < 0.05 com-
pared to PD and vehicle groups, 
#P < 0.05 compared to PD and 
NC groups). The animals’ reten-
tion time length on the rotating 
rod had a significant increase in 
both treatment groups in weeks 
2 and 4 compared to week 0. 
Also, a significant difference 
was observed in the treatment 
groups between weeks 2 and 
4 (d) (*P < 0.05 compared 
to week 2 and 0 **P < 0.05 
compared to weeks 0 and 2). 
Values include mean ± standard 
deviation (n = 6)
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expression. In this regard, the decreased miR-124-3p level 
in animals PD brain has been upregulated through miR-
124-3p mimic stimulation, leading to TH high expression 
and improved motor abilities (Li et al. 2020). miR-29c is 
another studied molecule that downregulated in PD and has 
been successfully upregulated using miR-29c mimic, which 
in turn causes increasing TH expression in the striatum 
region and inducing a protective effect against dopaminer-
gic neurons damages(Ruili et al. 2020). In line with previous 
studies, our results indicated that miR-149-5p high expres-
sion following miR-mimic and Q10 administration leads to 
raising TH expression in the striatum and improving rats’ 
motor abilities.

Several studies have represented that miR-149-5p and 
CoQ10 can affect the pathways involved in apoptosis and 
thus prevent cell death. For example, miR-149-5p-mimic 
leads to increased miR-149-5p, which cased dimenshing the 
expression of P53 and a variety of caspases. In this regard, 
one of the reduced caspases is attributed to caspase-3, an 
involved factor in mitochondrial-mediated cell death and 
thus reduced neuronal death (Teertam et al. 2020). CoQ10 
inhibits mitochondrial-induced cell death and increases 
neuronal survival by maintaining mitochondrial membrane 

stability, inhibiting cytochrome C release, and suppressing 
caspase-9 (Prajapati et al. 2017). Furthermore, Zamani et al. 
(2012) Also reported that CoQ10 administration reduced 
apoptosis following cerebral ischemia by modulating the 
BAX-Bcl-2 signaling cascade. Thus, we hypothesize that 
our interventions may increase TH cells by reducing neu-
ronal death. Park et al. (2020) reported that CoQ10 injec-
tion into the striatum and its oral administration significantly 
reduced the number of asymmetric rotations in animals 
diagnosed with PD and significantly increased TH expres-
sion in the striatum and substantia nigra compared to the 
PD group. Besides, Q10 has been revealed to prevent PD 
development through improving motor functions, including 
reduced stiffness, increased muscle function, and swimming 
ability in animals with PD (Guapta et al. 2018). Although, 
14 days orally administration of Q10 has increased animals’ 
motor capabilities, balance, and body’s antioxidant capac-
ity (Prajapati et al. 2017). Inconsistent with the previous 
studies, at the present study, the treated rats with CoQ10 
represented decreased rotations numbers, increased animal 
balance, increased frequency of movements, and increased 
TH expression in the striatum that ascribed as the improved 
motor functions.

Fig. 5  analyzing the move-
ment frequencies. PD induction 
reduced the movement frequen-
cies (*P < 0.05 compared to 
the sham group) (a). Two 
weeks after miR-mimic and 
CoQ10treatment of animals, the 
rats motor abilities significantly 
improved compared to the 
PD group (b), and the same 
improvement was also observed 
four weeks after treatment (c) 
(*P < 0.05 compared to the 
sham group, **P < 0.05 com-
pared to PD and vehicle groups, 
#P < 0.05 compared to PD and 
NC groups). The increase in the 
fourth and second weeks com-
pared to week zero was signifi-
cant, and also a significant dif-
ference was observed between 
the movement frequencies 
of the fourth and third weeks 
between the treated groups 
(d) (*P < 0.05 compared to 
weeks two and zero, **P < 0.05 
compared to week zero and 2). 
Values include mean ± standard 
deviation (n = 6)

2096 Metabolic Brain Disease (2021) 36:2089–2100



1 3

MMPs expression, particularly MMP-2,9, have been 
observed to be upregulated in various brain disorders, 
including PD that have an important role in the PD com-
plications. Twenty-four hours after PD induction, the 
MMP-9 level has increased with the rate of 1.8 and 2.2-fold 
in substantia nigra and striatum, and have been raised 2.5-
fold in the SN reached 48 h after PD induction (Annesa 
et al. 2015). Chen et al. (2008) showed that the MMP-9 

gelatinase activity increased in PD animals’ striatum, lead-
ing to BBB damages and PD complications development 
through tight junctions degradation. BBB disruption due 
to the MMP-9 levels increase following PD caused CNS 
homeostasis disruption and mitophagy inhibition, leading to 
damaged mitochondria accumulation, cell death promotion, 
and PD progression. Thus, MMP-9 inhibitor can be used 
for BBB integrity improvement and eventually functional 

Fig. 6  Differences in the striatum TH expression (100 µm). 6-OHDA 
injection and MBF degradation resulted in a significant reduction 
in the number of striatum TH+ cells (a, c) (*P < 0.05 compared to 
the sham group). Injection of miR-mimic and CoQ10 resulted in a 

significant increase in the striatum region TH+ cells number (b, c) 
(**P < 0.05 compared to the PD and vehicle groups, #P < 0.05 com-
pared to the PD and NC groups). Values include mean ± standard 
deviation (n = 4)
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abilities promotion of animals (Lin et al. 2020). Further-
more, studies showed that MMP-2,9 could be targeted by 
miR-149-5p through the 3′-UTR region of the mRNA and 
decreased. (Feng et al. 2019; Nyariki et al. 2019; Lin et al. 
2020). On the other hand, Q10 has reduced the MMP-2,9 
level in malaria, leading to oxidative stress and neuroinflam-
mation abatement (Nyariki et al. 2019). The present study 
has shared similar results, in which miR-149-5p uprising 
following miR-mimic and CoQ10 injection and subsequently 
MMP-2,9 decreasing, could improve the BBB integrity and 
reduces the PD complications.

Studies have shown that neurodegenerative agents such 
as caspase-3 and BAX increased during the early days fol-
lowing the 6-OHDA injection. Although, the Bcl-2 activity 
decreases in a time-dependent manner, leading to TH+ cells 
number decrease during 3 to 14 days after the neurotoxin 
injection (Chi et al. 2019). It was also found that PD induc-
tion by neurotoxin injection resulted in about a 58% decrease 
of the neuronal population compared to the opposite hemi-
sphere (Haddadi et al. 2020).

By examining the rat’s behavior in different groups dur-
ing consecutive weeks after treatment, it may be stated that 
the protective effects of CoQ10 and miR-149-5p are likely 
to begin during the early stages (two weeks after treat-
ment). It is due to the significant difference in the number 
of rotations and motor performance of rats in the second 
week after treatment that the time before treatment and 
compared to the model group (Figs. 3, 4, 5). Therefore, 
it appears that CoQ10 in the early stages of disease pro-
gression can reduce the expression of MMPs by inducing 
its antioxidant effects and thus prevent further damage to 
the BBB. However, further studies need to reveal other 

mechanisms involved in the protective development of 
CoQ10. On the other hand, by upregulation of miR-149-5p 
by CoQ10 and its mimic, the favorite effects may continue 
in the following weeks because a significant difference 
between rats’ motor and behavioral actions was revealed 
in the next weeks.

PD is a common neurodegenerative disease with 
a complex mechanism. Hence the detailed molecular 
mechanisms exploration may be useful for emerging new 
therapeutic or diagnostic strategies (Ruili et al. 2020). 
Our results indicted PD complications reduction through 
MMP-2,9 inhibition. Despite the expanding MMP inhibi-
tors’ use, their harmful side-effects, including abnormal 
blockade, should be vigorously considered (Annesa et al. 
2015). Nonetheless, using biological pathways to inhibit 
MMPs could be a potential therapeutic strategy for PD. 
Here at the present study, we have shown for the first time 
that miR-149-5p mimic and CoQ10 improved PD compli-
cations by reducing the involved factors in disrupting BBB 
integrity. Besides, miR-149-5p mimic and CoQ10 treat-
ments may lead to dopaminergic neurons protect against 
PD induction through TH high expression in the striatum 
and reduced the motor complications caused by PD.
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