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Abstract
Hippocampal brain regions are strongly implicated in Niemann Pick type C disease (NPC), but little is known regarding 
distinct subregions of the hippocampal complex and whether these are equally or differentially affected. To address this gap, 
we compared volumes of five hippocampal subfields between NPC and healthy individuals using MRI. To this end, 9 adult-
onset NPC cases and 9 age- and gender-matched controls underwent a 3 T T1-weighted MRI scan. Gray matter volumes of 
the cornu ammonis (CA1, CA2 and CA3), dentate gyrus (DG), subiculum, entorhinal cortex and hippocampal-amygdalar 
transition area were calculated by integrating MRI-based image intensities with microscopically defined cytoarchitectonic 
probabilities. Compared to healthy controls, NPC patients showed smaller volumes of the CA1-3 and DG regions bilaterally, 
with the greatest difference localized to the left DG (Cohen’s d = 1.993, p = 0.008). No significant associations were shown 
between hippocampal subfield volumes and key clinical features of NPC, including disease duration, symptom severity and 
psychosis. The pattern of hippocampal subregional atrophy in NPC differs from those seen in other dementias, which may 
indicate unique cytoarchitectural vulnerabilities in this earlier-onset disorder. Future MRI studies of hippocampal subfields 
may clarify its potential as a biomarker of neurodegeneration in NPC.
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Introduction

Niemann-Pick disease type C (NPC) is a metabolic disor-
der that is inherited in an autosomal recessive manner and 
involves disruptions to intracellular endo-lysosomal choles-
terol trafficking. In 95% of cases, the disease is attributed 

to pathogenic variants in the NPC1 gene on chromosome 
18q11-q12, while the remaining 5% of cases are associated 
with the NPC2 gene on chromosome 14q24.3 (Patterson 
1993). The annual incidence of NPC ranges between 0.25 
and 2.25 in 100,000 live births (Geberhiwot 2018). Clinical 
presentations vary markedly from infancy to mid-adulthood, 
but typical manifestations often feature ataxia, dystonia, 
gelastic cataplexy, vertical supranuclear ophthalmoplegia, 
psychotic and mood disorders, hepatosplenomegaly, and 
progressive cognitive impairment (Geberhiwot et al. 2018; 
Sevin et al. 2007). On a biochemical screening test, the 
majority of patients show elevated plasma oxysterol levels. 
Intracellular accumulation of unesterified cholesterol can 
also be observed with Filipin staining in cultured fibroblasts. 
However, this confirmatory investigation is increasingly 
superseded by gene panel test or sequencing. Findings on 
structural magnetic resonance imaging (MRI) can be vari-
able, but significant gray matter atrophy has been reported, 
particularly in the cerebellum, thalamus, dorsal striatum, and 
medial temporal lobe, in addition to widespread alterations 
in white matter (Walterfang 2010; Walterfang 2013).
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Alterations of the hippocampi (within the medial tempo-
ral lobes [MTL]) are particularly notable in NPC given the 
substantial overlap of this neuropathological feature with 
other neurodegenerative diseases (Rego 2019). In addition to 
features consistent with many lysosomal storage disorders, 
including swollen axonal hillocks, meganeurites, and axonal 
spheroids, NPC brains demonstrate extensive accumulation 
of hyperphosphorylated tau and neurofibrillary tangles 
(NFT), as well as altered amyloid processing albeit without 
plaque formation (Walterfang et al. 2013; Zhang et al. 2010). 
In Alzheimer’s disease (AD), pathogenic tau deposition is 
an established marker of disease progression, where NFT 
can be observed initially in the entorhinal region of MTL 
and later across the hippocampal subfields (Braak et al. 
2006). The extent and pattern of pathogenic spread in the 
hippocampi of individuals with NPC are less known. None-
theless, increased abnormal tau has been found in the MTL 
regions of NPC patients using positron emission tomography 
(PET) imaging (Villemagne et al. 2019). Furthermore, non-
specific regional alterations have been observed in an MRI 
shape analysis of the hippocampus bilaterally and in post-
mortem studies (Walterfang et al. 2013; Zhang et al. 2010).

While preliminary evidence implicates the hippocampal 
complex in NPC pathophysiology, differential effects across 
distinct hippocampal subfields remain unknown. We set out 
to investigate differences between adult NPC patients and 
matched healthy controls in the volumes of five hippocampal 
subfields: (i) CA1-3, (ii) dentate gyrus, (iii) subiculum, (iv) 
the adjoining entorhinal cortex; and (v) the hippocampal-
amygdalar transition area (Amunts 2005). To calculate the 
gray matter volumes of these distinct subfields, we employed 
a novel approach combining microscopically defined cyto-
architectonic probabilities with MRI-based image intensities 
(Kurth et al. 2015a, 2017b, c, 2018a, b; Luders et al. 2013). 
Based on previous results (Walterfang et al. 2013; Zhang 
et  al. 2010), we hypothesized that NPC patients would 
have smaller whole hippocampi volumes relative to healthy 
controls; however, we refrained from making assumptions 
regarding specific subfields. In an additional exploratory 
analysis, we further tested for associations between gray 
matter volumes and clinical features, including disease dura-
tion, symptom severity and the presence of psychosis within 
the NPC group.

Material and methods

Participants

Nine cases of genetically-confirmed NPC and 9 age- and 
gender-matched healthy controls were included (Walter-
fang 2020). Diagnosis of NPC was confirmed with filipin 
staining and NPC1 genotyping. Iturriaga rating scale and 

onset of neurological symptom indicated illness severity 
and duration of illness, respectively (Iturriaga et al. 2006). 
A history of a psychotic disorder was also obtained from 
medical records. Healthy controls were recruited through 
advertisements and were excluded if they reported a personal 
or first-degree family history of a neurological or psychiatric 
illness or alcohol and substance dependence as inferred from 
the Structured Clinical Interview for DSM-IV Axis I Disor-
ders (First et al. 2004). Individuals with a contraindication 
to MRI, previous head injury, impaired thyroid function, 
diabetes or pregnancy were also excluded from the study. 
Participant characteristics are shown in Table 1.

MR acquisition

T1-weighted 3D spoiled gradient recalled echo images were 
collected on a 3 Tesla Siemens Trio scanner with 32-channel 
coils at the Murdoch Children’s Research Institute, Royal 
Children’s Hospital, Parkville, Victoria. The acquisition 
parameters were 14 ms repetition time, 3 ms echo time, 
256 contiguous slices and 1 × 1x1 mm3 voxel size. The MR 
acquisition and clinical assessments were performed blinded 
to the image pre-processing and data analyses.

Image pre‑processing

All T1-weighted images were pre-processed using SPM12 
(http://​www.​fil.​ion.​ucl.​ac.​uk/​spm) and the CAT12 toolbox 
(http://​dbm.​neuro.​uni-​jena.​de/​cat/), as described previously 
(Kurth et al. 2015a, 2017b, c, 2018a, b; Luders et al. 2013). 
In short, images were corrected for magnetic field inhomo-
geneities, and then classified into gray matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF) using partial 
volume estimation. Subsequently, the resulting GM seg-
ments were spatially normalized to the DARTEL template 
provided with the CAT12 toolbox (Ashburner 2007). The 
resulting normalized GM segments were finally divided by 
the linear and non-linear components of the Jacobian deter-
minant derived from the normalization matrix to preserve 
the original amount of tissue per voxel (Ashburner and Fris-
ton 2000; Good et al. 2001; Kurth et al. 2015b). To account 
for differences in intracranial volume, the total intracranial 

Table 1   Sample characteristics

*Mean, standard deviation, and range are given

NPC Patients Controls

Age (years)* 32.2 ± 11.8 [18 – 52] 31.9 ± 9.4 [18 – 42]
Sex 5 females / 4 males 5 females / 4 males
Disease duration (years)* 9.2 ± 3.1 [5 – 13] -
Symptom severity score* 9.7 ± 3.9 [5 – 16] -
Psychosis n = 2 -
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volume (TIV) was calculated by adding the volumes of the 
tissue classes in native space (TIV = GM + WM + CSF) to be 
later included as covariate in the statistical model.

Data analyses

To investigate differences between NPC patients and healthy 
controls in the hippocampal complex, we assessed the hip-
pocampus as a whole (HIPPO) as well as across five subre-
gions: cornu ammonis (CA1, CA2, and CA3), dentate gyrus 
(DG), subiculum (SUB) hippocampus-adjacent entorhinal 
cortex (EC) and hippocampal-amygdalar transition area 
(HATA). As detailed in Amunts et al. (2005), those sub-
areas were originally established by first defining them in 
cell body-stained histological sections, followed by recon-
struction in MNI single-subject space, and finally conver-
sion into voxel-wise probabilities, see Fig. 1. As described 
in detail previously (Kurth et al. 2015a, 2017b, c, 2018a, b; 
Luders et al. 2013), these subarea-specific probability maps 
(Amunts et al. 2005), as provided by the Anatomy toolbox, 
version 2.2c (Eickhoff et al. 2005), were integrated with the 
preprocessed gray matter segments by voxel-wise multipli-
cation. This voxel-wise integration yielded a probability-
weighted measure of gray matter content (in mm3) within 
the left and right hippocampal subareas as well as adjacent 
regions of the hippocampal complex. Gray matter content 
for the left and right hippocampus as a whole was calculated 
by summing the volumes of all subfields (HIPPO = CA1 
+ CA2 + CA3 + DG + SUB). The resulting means as well 
as adjusted means of the resulting volumes are provided in 
Table 2.

Statistical analyses were conducted in Matlab (The Math-
Works, Natick, MA) using a mass-univariate general lin-
ear model (GLM). Specifically, the left and right volumes 
for HIPPO, CA1, CA2, CA3, DG, SUB, EC, and HATA 

were used as dependent variables, group as the independent 
variable, and age, sex, as well as TIV as covariates. Impor-
tantly, an assessment of the assumptions for parametric 
testing revealed a non-normal distribution of the residu-
als for left CA2 and left SUB as per a significant Lilliefors 
test. Thus, significance was assessed using a Monte-Carlo 
Simulation with 10,000 permutations. All results were cor-
rected for multiple comparisons (across the 10 [five bilat-
eral] subfields) by controlling the false discovery rate (FDR) 
at p ≤ 0.05 (Benjamini and Yekutieli 2001; Hochberg and 
Benjamini 1990). Demographic and clinical measures were 
analyzed using either t-tests or chi-squared tests, according 
to data distribution.

In exploratory analyses, GLMs assessed associations 
between the subfields gray matter volumes and clinical fea-
tures, including disease duration, symptom severity and his-
tory of psychosis in NPC patients only. These models used 
the left and right volumes for HIPPO, CA1, CA2, CA3, DG, 
SUB, EC, and HATA as dependent variables, disease dura-
tion, symptom severity, or psychosis as the respective inde-
pendent variable, and age, sex, and TIV as covariates. Sig-
nificance was assessed using Monte-Carlo Simulations with 
10,000 permutations.

Results

Patients and controls did not differ in age (Cohen’s 
d = 0.034, t = 0.067, p = 0.947) or sex (see Table 1). Within 
the patient group, there was no significant correlation 
between age and disease duration (r = 0.396, p = 0.292), 
between age and symptom severity (r = -0.261, p = 0.498), 
or between disease duration and symptom severity 
(r = 0.184, p = 0.636). Two NPC cases had a history of 
psychosis; however, these cases did not significantly differ 

Fig. 1   Hippocampal subregions. Top Row: Cytoarchitectonically-
derived probability maps of the cornu ammonis (CA), dentate gyrus 
(DG), subiculum (SUB), entorhinal cortex (EC), and hippocampal-
amygdalar transition area (HATA), shown on sagittal sections of 
the MNI single-subject template. Note that the current study further 
distinguished CA into CA1, CA2, and CA3. Bottom Row: The same 

probability maps are displayed on the coronal sections, depicting the 
hippocampal head (left), body (middle), and tail (right). The color 
bar encodes the probability for each voxel to belong to the respective 
region. Reprinted and adapted from Kurth et al. (2017a) with permis-
sion from Elsevier
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from the others in terms of age (d = -0.169, T = -0.224, 
p = 0.829), disease duration (d = -0.269, T = -0.356, 
p = 0.733), or symptom severity (d = 0.244, T = 0.323, 
p = 0.757).

Controls had larger mean gray matter volumes than NPC 
patients in most hippocampal subfields. The group difference 
reached statistical significance for the whole hippocampus, 
CA1-3, and DG bilaterally. The largest effect was observed 
in the left DG (d = 1.993; T = 3.593; p = 0.008). There was 
no significant group difference in the subiculum, EC and 
HATA (pFDR > 0.05). Complete regional effect sizes, t-sta-
tistics and FDR-corrected p-values for all regions are shown 
in Table 2, and boxplots indicating the medians, quartiles, 
and 1.5 interquartile ranges are shown in Fig. 2.

Within the NPC group, gray matter volumes in the hip-
pocampal and adjacent regions were not significantly associ-
ated with disease duration, symptom severity, or psychosis. 
When omitting the correction for multiple comparisons, 
there was a trend for an uncorrected positive association 
between symptom severity and gray matter volume in the 
left entorhinal cortex (r = 0.778, p = 0.056), and between 
disease duration and gray matter volume in the left CA3 
(r = 0.772, p = 0.061), as well as a negative association 
between disease duration and gray matter volume in right 
HATA (r = -0.770, p = 0.060).

Discussion

We examined hippocampal subfields in adult NPC patients 
to determine if there was subfield-specific atrophy. In our 
cohort, the illness severity and duration (mean 9.2 years) 
corresponded to moderate disease stages of NPC, where 
we expect to observe reduced whole hippocampal volume 
accompanied by memory loss and other cognitive impair-
ments (Bonnot et al. 2019; Heitz et al. 2017; Stampfer 2013; 
Walterfang et al. 2010; Walterfang et al. 2013). In this study, 
we found global and regional-specific hippocampal volume 
reductions in NPC patients compared to healthy controls. 
Regional effects were localized to the CA1-3 and the DG.

The marked reduction of DG and CA3 volume in the 
present study concurs with a pattern of tau deposition 
observed in previous post-mortem studies of NPC-affected 
brains (Distl et al. 2003; Zhang et al. 2010). NFTs in these 
regions have been reported across all age groups, including 
in children and adults (Distl et al. 2003; Zhang et al. 2010). 
Numerous NPC animal models also suggest early involve-
ment of CA3-DG regions, where the boundary between the 
severely affected CA3-DG and relatively spared CA1 can be 
consistently demarcated at an early age (Treiber-Held et al. 
2003; Zervas et al. 2001; Zhou et al. 2011). Besides tau, 
the affected neurons often show axonal spheroids, ectopic 

Table 2   Regional volumes of the hippocampal complex, including adjacent areas in mm3 (mean ± SD)

For each region, raw volumes, as well as volumes adjusted for the mean TIV, age and gender, are presented
HIPPO whole hippocampus, CA1-3 subareas 1–3 of the cornu ammonis, DG dentate gyrus, SUB subiculum, EC entorhinal cortex, HATA​ hip-
pocampal-amygdala transition area, TIV total intracranial volume
*Adjusted for TIV, age, and sex
**FDR-corrected for multiple comparisons

Region Patients Controls Group difference**
Raw Adjusted* Raw Adjusted* Cohen’s d T-value p-value

Left HIPPO 2,639 ± 421 2,680 ± 213 3,018 ± 128 2,936 ± 125 1.439 2.595 0.016
CA1 691 ± 104 692 ± 57 802 ± 56 775 ± 36 1.716 3.093 0.008
CA2 229 ± 45 234 ± 26 275 ± 29 268 ± 31 1.150 2.074 0.032
CA3 269 ± 45 276 ± 23 320 ± 24 314 ± 24 1.551 2.797 0.013
DG 461 ± 67 473 ± 43 562 ± 41 553 ± 36 1.993 3.593 0.008
SUB 989 ± 170 1,005 ± 85 1,059 ± 27 1,027 ± 58 0.298 0.537 0.193
EC 964 ± 194 980 ± 112 1,078 ± 92 1,045 ± 93 0.629 1.133 0.112
HATA​ 81 ± 18 82 ± 8 86 ± 8 82 ± 6 0.008 0.015 0.245

Right HIPPO 2,632 ± 373 2,690 ± 204 3,007 ± 306 2,916 ± 171 1.178 2.123 0.031
CA1 695 ± 105 709 ± 67 792 ± 72 770 ± 52 0.996 1.796 0.037
CA2 281 ± 42 295 ± 25 334 ± 49 328 ± 36 1.051 1.895 0.032
CA3 308 ± 44 317 ± 24 371 ± 49 361 ± 32 1.508 2.718 0.013
DG 430 ± 60 437 ± 40 526 ± 58 511 ± 39 1.812 3.266 0.008
SUB 918 ± 135 931 ± 66 984 ± 113 946 ± 64 0.219 0.395 0.204
EC 1,123 ± 224 1,161 ± 134 1,231 ± 132 1,197 ± 111 0.288 0.518 0.193
HATA​ 68 ± 12 68 ± 7 73 ± 13 69 ± 11 0.129 0.233 0.217

TIV 1,448 ± 112 1,365 ± 178
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dendritogenesis, unesterified cholesterol, and GM3 ganglio-
sides staining, which may underlie the volume reductions 
observed in the current study.

DG and CA3 are anatomically connected via mossy fib-
ers (Kesner 2018). In healthy individuals, these structures 
continue to develop postnatally, as evidenced by mitotically 
active neurons. In NPC mouse model, higher mitotic activ-
ity in CA3 and DG than CA1 may assert greater metabolic 

demand, which subsequently amplifies the NPC pathogenic 
processes (Treiber-Held et al. 2003). Elsewhere, human 
cerebellar neurons, which are characteristically affected in 
NPC, are known to have high mitotic kinase cdc2/cyclin 
B1 activity with abnormal tau phosphorylation (Bu et al. 
2002). Co-localization of mitotic epitope and NFT in the 
human hippocampi has also been observed in NPC (Zhang 
et al. 2010). Thus, abnormal tau phosphorylation, cholesterol 

Fig. 2   Group differences within 
the hippocampal subfields and 
adjacent regions. The boxplots 
present the medians, quartiles, 
and 1.5 interquartile ranges 
(IQR) of the regional volumes, 
separately for controls and 
NPC patients, within each 
hemisphere (left-hemispheric 
volumes are shown on the left 
in red-spectrum colors, and 
right-hemispheric volumes 
on the right in blue-spectrum 
colors). Outliers beyond 1.5 
IQR were denoted in red, 
‘ + ’ < 3 IQR < ‘0’. The volumes 
are adjusted for TIV, age, and 
sex (see Table 2). The asterisks 
(*) indicate significant group 
differences (controls > patients) 
FDR-corrected for multiple 
comparisons at p ≤ 0.05
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mistrafficking and elevated mitotic activity in NPC may 
synergistically accelerate neuronal damage in the CA3-DG 
region.

Neural dysconnectivity manifests globally in NPC and 
is seen across biological scales, ranging from cellular (syn-
aptic structures) to macrostructural (brain volume) levels 
(Rego et al. 2019). Indeed, preliminary work has linked 
these findings across biological scales, such that dyscon-
nectivity of the DG has been associated with DG atrophy 
in animal models of NPC. Following an injection of pseu-
dorabies virus into the DG of NPC mice, the virus spreads 
and traces neuronal loss along its pathway, passing through 
CA2-3 and other subcortical regions (Byun 2011). A recent 
study implicates neuroinflammation via microglial activa-
tion as a potential mechanism underlying dysconnectivity 
in adult NPC patients (Walterfang et al. 2020). Clinically, 
widespread dysconnectivity and DG atrophy have been 
implicated in schizophrenia (Bora 2011; Nakahara et al. 
2018; Tavitian et al. 2019), which may underpin the high 
incidence of schizophrenia-like psychosis in NPC (Bonnot 
et al. 2019; Rego et al. 2019). However, due to our small 
sample, we did not find any clinical associations with the 
subfields.

Reduced CA1 volume is also prominent in our NPC 
cohort. This is in line with a previous MRI study which 
observed hippocampal deformation in the CA1 region and 
widespread white matter alterations (Walterfang et al. 2013). 
Susceptibilities to tau-related pathology and glutaminergic 
excitotoxicity have been proposed in this region (Steve et al. 
2014). Tauopathy in CA1 seems to present early in NPC 
patients. In a post-mortem study, the appearance of NFT 
and hyperphosphorylated tau in CA1 are found in children 
as young as 4 years old (Zhang et al. 2010). The involve-
ment of CA1 also supports the view of prenatal neuronal 
damage in NPC, as this subfield and other cortical midline 
structure mature early in utero (Walterfang 2011). Besides 
tau, accumulation of amyloidogenic proteins is seen in CA1 
NPC neurons (Causevic 2018). Clinically, early CA1 dam-
age and its progression towards neighboring regions may 
predispose NPC patients to develop seizures and memory 
deficits (Bartsch 2015).

The absence of significant subiculum and EC changes 
in our NPC cohort contrasts with reports in AD popula-
tions, where early deposition of NFT in these regions are 
pathognomonic (Braak et al. 2006). This difference may 
be associated with the relative absence of amyloid plaque 
pathology and the young-onset nature of NPC (Causevic 
et al. 2018; Zhang et al. 2010). Reduced subicular volume is 
known to correlate with aging and conversion to dementia in 
the general population, MCI and Parkinson’s disease (Evans 
2018; Kurth et al. 2017a; Low et al. 2019; Mak 2019). Fur-
thermore, as the volumes of subiculum and MTL have been 
correlated with the cerebrospinal fluid Aβ-amyloid level in 

conditions where amyloid plaques are common (i.e., AD, 
dementia with Lewy Bodies and Parkinson’s disease), the 
absence of amyloid plaque in NPC may have spared the sub-
iculum and EC (Mak et al. 2019; Muller-Ehrenberg et al. 
2018; Stav 2016).

Several limitations are noteworthy, including our small 
sample size, which may have constrained power to detect 
associations between hippocampal volumes and NPC clini-
cal measures (Walterfang et al. 2013). Furthermore, our 
macroscopic MRI analysis cannot capture distinct cellular 
and molecular processes underlying atrophy in NPC patients. 
To disentangle the influence of different patho-molecular 
processes in NPC, future studies could examine cerebrospi-
nal fluid and radionucleotide imaging biomarkers for tau, 
Aβ-amyloid, neurofilament-light and microglial activation 
(Eratne et al. 2019; Mattsson 2012; Villemagne et al. 2019; 
Walterfang et al. 2020). As these biomarkers may precede 
atrophy (reduced hippocampal volume), their incorporation 
could be complemented by longitudinal evaluation of hip-
pocampal subfields (Henneman 2009).

Conclusions

Overall, our case–control study has revealed an extensive 
pattern of hippocampal atrophy in NPC that is consistent 
with previous MRI and post-mortem studies. Despite NPC 
having a similar molecular pathogenic mechanism to AD 
and other neurodegenerative diseases, the regional pat-
tern of hippocampal subfield involvement differs in NPC, 
which may indicate unique cytoarchitectural vulnerabilities. 
Regardless of the precise mechanisms, MRI-based measures 
of hippocampal subfields may serve as a potential biomarker 
of neurodegeneration in NPC.
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