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Abstract
Ischemic stroke is one of the most common and undertreated cerebral diseases with high mortality and disability rate. Various
intrinsic and extrinsic factors regulate the onset, severity, and progression of ischemic stroke. As an integral part of the neuronal
glia system, astrocytes provide many housekeeping functions in nervous system, and perform multiple functions both beneficial
and detrimental for neuronal survival after ischemic stroke. In addition, the small GTPase Rho and its downstream Rho kinase
(ROCK) are associated with various neuronal functions such as dendrite development, migration and axonal extension, and
numerous central nervous system (CNS) diseases. The aim of this review is to summarize the role of RhoA/ROCK signaling
pathway and astrocytes on neurological function after ischemic stroke. We also discuss the interaction of RhoA/ROCK signaling
pathway and astrocytes on the tissue repair after brain injury.
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Introduction

Ischemic stroke is one of main causes responsible for disabil-
ity and death over the world. The tissue plasminogen activator
(t-PA) is the only FDA-approved therapeutic drug for acute
ischemic stroke. But only a small proportion of brain ischemia
patients are suitable for t-PA treatment for the high risk of
secondary impairments (Malone et al. 2019). Consequently,
there is a pressing need to explore the intrinsic and extrinsic
factors which regulate the onset, severity, and progression of
ischemic stroke.

The brain is surprisingly plastic after stroke, and patholog-
ical processes of cerebral ischemia can increase neurogenesis
in the adult brain (Liepert et al. 2000; Rossini et al. 2003).
Neuroblasts from the sub-ventricular zone proliferate and mi-
grate to the damaged regions (Jin et al. 2003) and then differ-
entiate (Arvidsson et al. 2002), which is called neurogenesis
(Spadafora et al. 2010). Neurogenesis has become a hot topic

of interest in research since it was shown that the brain main-
tains the capability to generate new neurons (Codega et al.
2014; Thier et al. 2019). Besides neurogenesis, the recovering
brain also experiences angiogenesis, which is also regarded as
a treatment strategy for stroke (Brea et al. 2009). After stroke,
intercellular signaling among the neuron, glial and brain en-
dothelial cell mediates angiogenesis (Shibuya 2009), and this
leads to a new concept of neurovascular unit, which has gen-
erally been accepted and considered as an important therapeu-
tic strategy in the stroke (Sa-Pereira et al. 2012). Therefore,
both neurogenesis and angiogenesis are critical events contrib-
uting to neuronal rehabilitation and survival (Du et al. 2019).

In the brain, astrocytes are the most abundant glial cells, the
astrocytic inflammatory response to stroke may exacerbate the
ischemic injury, but astrocytes also provide neuroprotective po-
tential by releasing neurotrophins and limiting lesion extension
via anti-excitotoxicity effects (Liu and Chopp 2016), which
caused increasing number of researches that concentrate on the
effect of brain astrocytes after stroke in recent years. In addition,
accumulated evidences have revealed that astrocytes were in-
volved in the retinal angiogenesis under hypoxic conditions
(Rattner et al. 2019; Scott et al. 2010) or during development
(Hirota et al. 2011; Stenzel et al. 2011). In conclusion, astrocytes
perform multiple functions both beneficial and detrimental for
neuronal survival during the acute phase of an ischemic stroke.

The small G protein RhoA (Ras homolog gene family) and
its downstream effector Rho-dependent kinase (ROCK) are
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ubiquitous expression in astrocytes and neurons, and are in-
volved in the regulation of the cytoskeleton via downstream
regulation of myosin, actin, and so on. The effects of RhoA/
ROCK on cellular functions of astrocytes and neurons under
normal and pathological conditions have been intensively
studied (Maldonado et al. 2017; Tonges et al. 2011; Wen
et al. 2019).Thus, the key focus of this review was to discuss
the functions of RhoA/ROCK pathway in astrocyte-mediated
events during stroke and recovery.

RhoA/ROCK pathway in astrocyte‐mediated
angiogenesis

Angiogenesis occurs more frequently in ischemic/hypoxic tis-
sues, and is formed by new capillaries from pre-existing blood
vessels (Liu et al. 2018). The hedgehog gene (Hh) was first
discovered in the fruit fly, drosophila melanogaster (Nusslein-
Volhard and Wieschaus 1980). There are three Hh family
members in mammals, namely sonic hedgehog (Shh), desert
hedgehog (Dhh), and indian hedgehog (Ihh). Among them,
Shh is a soluble extracellular protein and the best studied
ligand of the hedgehog signaling pathway. As a morphogen
and mitogen, Shh is involved in cell migration and prolifera-
tion in a variety types of cells in individual development
(Chen et al. 2016; He et al. 2017) and tissue repair after injury
(Kawagishi et al. 2018; Peng et al. 2015). Furthermore, Shh is
considered as an indirect angiogenic factor that can up-
regulate two families of angiogenic growth factors,
angiopoietins and vascular endothelial growth factor
(VEGF) (Pola et al. 2001). More importantly, exogenous
Shh has been found to directly promote the tube formation
of peripheral endothelial cells (ECs) under normal conditions
(Chinchilla et al. 2010; Renault et al. 2010).

Further studies have found that Shh could be secreted by
astrocytes under oxidative stress and protected astrocytes and
neurons against oxidative stress, suggesting that endogenous
Shh derived from astrocytes may acts as an angiogenic factor
and also participates in ischemic insults (Dai et al. 2011; Xia
et al. 2012). Furthermore, RhoA/ROCK pathway also plays
an essential role on the angiogenesis of endothelial cells, and
is found to be involved in VEGF-induced angiogenesis
(Bryan et al. 2010; van der Meel et al. 2011). ROCK inhibitor,
Fasudil has been found to inhibit the angiogenesis (Washida
et al. 2011). Besides, RhoA/ROCK is likewise involved in
angiogenesis of HCT116 and LS174T colon carcinoma cells
(Croft et al. 2004). In addition, ROCK inhibitor HA1077 is
reported to block the glioma-induced angiogenesis
(Nakabayashi and Shimizu 2011).

By using a co-culture of astrocytes with brain microvascu-
lar endothelial cells (BMECs) under oxygen–glucose depriva-
tion (OGD) condition, Quanwei He et al. found that the secre-
tion of Shh by astrocytes significantly up-regulated after

OGD, and migration, proliferation, and tube formation of
BMECs co-cultured with astrocytes significantly enhanced.
But the migration, proliferation, and tube formation of
BMECs after OGD could be blocked by Shh antagonist
cyclopamine, silencing RhoA gene of BMECs or ROCK an-
tagonist Y27632 (He et al. 2013). These findings suggested
that RhoA/ROCK pathway may be involved in the angiogen-
esis mediated by activated astrocytes-produced shh after cere-
bral ischemia.

In addition, RhoA/ROCK pathway has been found to be
involved in Shh-mediated tube formation of peripheral vascu-
lar ECs (Chinchilla et al. 2010; Polizio et al. 2011), cellular
proliferation, promotion of fibroblast migration, and pattern-
ing during vertebrate development (Kasai et al. 2004; Polizio
et al. 2011). In view of the fact that upregulation of angiogen-
esis induced by activated astrocytes-derived Shh after
oxygen–glucose deprivation (OGD) are remarkably reversed
by downregulating RhoA or by treatment with special ROCK
antagonist (Chinchilla et al. 2010; He et al. 2013; Renault et al.
2010). These findings further confirmed that RhoA/ROCK
pathway not surprisingly participates in endogenous Shh-
induced angiogenesis after ischemia. In conclusion, RhoA/
ROCK pathway is involved in the astrocyte-mediated angio-
genesis via facilitating the effect of astrocytes-derived Shh.

RhoA/ROCK pathway in astrocyte‐mediated
neurogenesis

Neurogenesis in the cerebral cortex is significantly influenced
by Shh during the embryonic stage, and possesses a multiple
effect to the development of central nervous system (CNS).
Shh induces neural cells specialization, proliferation, as well
as growth of dendrites and axons in various CNS regions,
including hindbrain, forebrain, and spinal cord. Shh also acts
as a mitogen to regulate survival and proliferation of neural
progenitor cells (NPCs) and neural stem cells (NSCs)
(Alvarez-Buylla and Ihrie 2014). Besides, the notable impor-
tance at the beginning of life, Shh also plays a key role in
regulating proliferation of NPCs in adult hippocampus (Lai
et al. 2003; Yao et al. 2016). Down-regulation of Shh holds
close correlation with senescence, which makes the body
more susceptible to aging associated disorders (Dashti et al.
2012). Accordingly, the activation of shh signaling plays par-
ticularly role on maintaining the activity of neurons in adults
(Han et al. 2008). Several lines of studies have reported the
crucial role of Shh in neurological diseases due to the capa-
bility of neurogenesis (Alvarez-Buylla and Ihrie 2014; Yao
et al. 2016). Salvianolic acid, a free radical scavenger and an
antioxidant, has been found to promote neurogenesis and
functional recovery via activation of Shh after stroke in mice
(Zhang et al. 2017).
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Astrocytes are ubiquitous glial cells throughout the CNS,
and play vital and diverse roles in the normal function and
development of the CNS (Ben Haim and Rowitch 2017).
Increasing studies have reported that astrocytes could regain
multipotency and even revert back to its initiative undifferen-
tiated state after stroke, focal ischemia, kainate-induced neural
excitotoxicity, etc. (Feng et al. 2014; Shin et al. 2013). More
importantly, increasing research groups have further revealed
that astrocytes could revert to lineage-restricted neural progen-
itors, pluripotent neural stem cells (NSCs), and even certain
subtypes of neurons by application of specific interventions or
by forced expression of defined factors (Gao et al. 2017; Niu
et al. 2015; Wang et al. 2015). Recent research revealed that
mature astrocytes could directly convert into NSCs induced
by Oct4, a single transcription factor. These induced-NSCs
displayed authentic NSC gene expression, typical
neurosphere morphology, multipotency and self-renewal
capacity(Yang et al. 2019). Moreover, the neurons derived
from induced NSC possessed functionality as neurons.
Surprisingly, continuous Shh stimulation could potentiate
the Oct4-mediated reprogramming of astrocytes into induced
NSCs, which was as demonstrated by increased conversion
efficiency and a sped-up reprogramming (Yang et al. 2019).

The RhoA/ROCK pathway is best known for its effect on
cytoskeletal rearrangement, resulting in retraction and growth
cone collapse. Inhibition of Rho kinase in neurons by using
ROCK inhibitors rescues embryonic stem cell-derived neural
precursor cells from apoptosis after transplantation (Koyanagi
et al. 2008), blocks the effect of neurite outgrowth inhibitors,
promotes neurite outgrowth and axon regeneration and
sprouting following injury (Murakoshi et al. 2011).
Inhibition of RhoA/ROCK pathway could induce the changes
of neurogenesis in adult hippocampal and increase the surviv-
al of new born neurons, which could aid in the recovery of
brain function following injury to the brain (Christie et al.
2013). In addition, Jing Ding et al. have found that ROCK
inhibitor Fasudil could up-regulate astrocytes to produce gran-
ulocyte colony-stimulating factor (G-CSF), which could trig-
ger neurogenesis and protect neurons in astrocyte-conditioned
medium containing G-CSF (Ding et al. 2009).

In a word, activation of RhoA/ROCK pathway blocks the
neurogenesis, which is harmful to the neural recovery after
ischemic stroke. However, the relationship between the
RhoA/ROCK pathway and astrocyte-mediated neurogenesis
is not fully understood.

Astrocyte‐mediated neuroprotection

Astrocytes, most abundant cell types in the brain, are critical
functional and structural part of the neurovascular unit (NVU)
and the tripartite synapses, which communicate with oligo-
dendrocytes, neurons and endothelial cells. The branches of

astrocyte finely contact all parts of neurons, containing soma,
axons, dendrites and synaptic terminals, and envelop all cel-
lular components throughout the CNS (Scemes et al. 2000).
As integral part of the NVU, astrocytes are involved in many
housekeeping functions, including formation of blood brain
barrier (BBB), structural support, maintenance of the extracel-
lular environment, neuronal metabolism, regulation of cere-
bral blood flow, mediation of cell-cell communications, de-
fense against oxidative stress, and modulation of neurotrans-
mitter synthesis. Furthermore, as aforementioned, astrocytes
play key roles in adult angiogenesis and neurogenesis after
stroke (Becerra-Calixto and Cardona-Gomez 2017).

The astrocytic processes form a physical barrier to limit
diffusion of the neurotransmitter away from the synapse via
enveloping the pre- and post-synaptic terminals, termed as
tripartite synapse. To maintain the concentration of extracel-
lular neurotransmitters, astrocytes rapidly remove the K+ ac-
cumulation induced by neuronal activity, and convert the glu-
tamate to glutamine and uptake it back into presynaptic termi-
nals released during neurotransmission. More than 90% of
glutamate uptake dues to astrocyte glutamate transporters,
GLT-1 and GLAST in most brain regions. Besides, astrocytes
play the major role with neurons in synaptic transmission via
regulating release of synaptically active molecules including
glutamate, D-serine, GABA etc. Glutamate released by astro-
cytes activates NMDA receptors in pre-synaptic terminals and
promotes communication between neurons. Release and reup-
take of neurotransmitters is essential for neuronal plasticity
and brain function, and loss of proper communication be-
tween astrocytes and neurons aggravates excitotoxicity after
brain injury (Xing et al. 2012).

Astrocytes not only play key role in passive homeostatic
control of adequate conditions for synaptic function, but also
actively regulate synaptic transmission and neuronal excitabil-
ity in synaptic function, and promote the brain functional out-
put via the coordinated activity of complex neuronal net-
works, containing neurons and glia (Farhy-Tselnicker and
Allen 2018). Hence, astrocytes are emerging as key regulatory
elements involving in the structural plasticity of synaptic con-
nections within the nervous system during both initial estab-
lishment and ongoing remodeling, and have a great ability to
mediate synaptic strength in response to changes in neuronal
activity (Stellwagen and Malenka 2006).

Dendritic spines are quite dynamic, and have a power-
ful ability to respond to many events with rapid alteration as
long-term potentiation (LTP) and long-term depression
(LTD), which are synaptic plasticity and associated with in-
creases and decreases in spine size, respectively. It has been
reported that astrocytes could extend and retract rapidly to
engage and disengage from motile postsynaptic dendritic
spines consistent with changes in spines (Haber et al. 2006),
suggesting the active role of astrocytes in regulating synaptic
plasticity.
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Furthermore, neurotrophic factors such as BDNF play vital
roles in LTP as well as in learning and memory via enhancing
the synaptic plasticity (Akaneya et al. 1997). BDNF is secret-
ed in its precursor form (pro-BDNF) and cleaved to form its
mature form by proteolytic cleavage, then cleared from the
extracellular space via rapid uptake by nearby astrocytes
(Bergami et al. 2008), indicating that astrocytes play the im-
portant role in the neuronal clearance of neurotrophic factors
and subsequent recycling of the endocytic neurotrophin, and
modulating both its spatial and temporal availability. Hereby,
Recycling of neurotrophin by astrocytes may thus contribute
to the mediation of synaptic plasticity by glia.

The ischemic stroke is known to result in generation of glial
scar, which is a general tissue response after central nervous
system (CNS) injury. Glial scar is composed of highly migrat-
ing and proliferating glial cells, many of them are reactive
astrocytes (Burda et al. 2016). The formation of glial scar
decreases the spread of inflammatory responses from the dam-
aged area to other parts. Alongwith the formation of glial scar,
expression of extracellular matrix (ECM) molecules such as
chondroitin sulfate proteoglycans (CSPGs), glycosaminogly-
can proteoglycans (GAG), dermatan sulfate proteoglycans
(DSPGs), heparin sulfate proteoglycans (HSPGs), and keratin
sulfate proteoglycans (KSPGs) also upregulate in injured
brain (Soleman et al. 2013). Glial scar consisted of these pro-
teoglycans forms a thick and protective sheet around the dam-
aged site so as to rapidly seal the disrupted blood-brain barrier.

Furthermore, the proteoglycan derived from astrocytes reg-
ulates the growth and direction of newly generated neurons
and plays a vital role throughout the development of the brain.
CSPGs have been found to be upregulated in brain of embry-
onic rat and given repulsive guidance to the growth of axons.
The CSPGs expression reduces gradually throughout the brain
development phase and increases rapidly only after major
brain injury. Altogether, these findings indicate that proper
balance of CSPGs and other proteoglycans is vital to neuronal
development (Didangelos et al. 2014).

In a few words, astrocytes provide neuroprotective poten-
tial by releasing neurotrophins and limiting lesion extension
via anti-excitotoxicity effects after ischemic stroke.

Astrocytes‐mediated the exacerbation
of cerebral ischemic injury

In the cerebral ischemic tissues, cytokines produced by glial
cells in the core and by injured neurons in the penumbra and
core of the lesion increase within minutes after injury, and
then, cytokines trigger astrocyte activation, which is known
as reactive astrogliosis (Sofroniew 2009). As all we know, the
exhibition of reactive astrogliosis mainly contains cellular hy-
pertrophy and hyperplasia, enhanced expression of the inter-
mediate filament proteins such as CSPGs, vimentin, glial fi-
brillary acidic protein (GFAP) and nestin. In addition, reactive

Fig. 1 RhoA/ROCK signaling pathway and astrocytes in ischemic stroke
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astrogliosis is considered to alter the expression of many other
molecules, their functions are involved in cell structure, ener-
gy metabolism, gene transcription, membrane transporters
and intracellular signaling, etc. (Osborn et al. 2016).

Activated astrocytes in the area around the ischemic infarc-
tion exhibit elongated processes (Kajihara et al. 2001). Within
a few days after the ischemia, glial scar mainly generated by
reactive astrocytes is forming around the necrotic brain tissues
of the infarct (Bidmon et al. 1998; Silver and Miller 2004).
Depending on the severity of injury, several forms of reactive
astrogliosis exist permanent, while in minor cases, reactive
astrogliosis can resolve over time. Reactive astrocytes in the
scar express a large number of inhibitory molecules against
axonal regeneration, such as CSPGs, which is major barrier to
axon extension and thus lead regeneration failure in the CNS
of mammals. Accumulating studies have found that CSPGs
could inhibit neurite outgrowth of various neuronal cell types
(Bradbury et al. 2002), these findings have been reinforced by
the study of Bradbury and colleagues that chondroitinase
treatment supports neuron regeneration (Mukherjee et al.
2020).

CSPGs, the key inhibitory to block axonal regeneration
following injury, is secreted by reactive astrocytes instanta-
neously after injury in the adult mammalian CNS and lasts for
a long time (Tang et al. 2003). A transmembrane protein ty-
rosine phosphatase (PTPσ), Nogo receptor (NgR) and
Leukocyte common antigen-related phosphatase (LAR) me-
diate CSPGs-induced inhibition of axon growth. CSPGs in-
teract with the PTPσ, NgR or PTPσ, and then activate the
RhoA/ROCK pathway and block the neurite growth
(Mukherjee et al. 2020). Inactivation of the RhoA/ROCK
pathway by using specific inhibitor C3 transferase or ROCK
inhibitor blocks the inhibitory effects of CSPGs on neurite
outgrowth (Monnier et al. 2003). These findings confirmed
that RhoA/ROCK pathway mediates the inhibition of
CSPGs secreted by reactive astrocytes on neurite outgrowth.

In conclusion, astrocytic inflammatory response to stroke
may exacerbate the ischemic injury by up-regulation of
CSPGs that activates the RhoA/ROCK pathway.

Conclusions

The increased CSPGs is expressed rapidly by reactive astro-
cytes after injury, and is highest at the center of the necrotic
area and reduces gradually into the penumbra. Although the
glial scar can undoubtedly limit axon regeneration by
inhibiting axonal sprouting in the adult mammal, the glial scar
also plays an important role in isolating the injury site and
inhibiting its extension, then protecting cells against harmful
factors released from the necrotic area. Thereby, the functional
role of glial scar in stroke remain controversial, treatment of

cerebral injury becomes complicated for these two contrasting
factors (Fig. 1).

RhoA/ROCK pathway affects numerous cellular processes
such as cell motility and contraction in brain, many of them in
endothelial cells, neurons, glia, vascular smooth muscle etc.,
which makes RhoA/ROCK pathway a unique multifaceted
objective of ischemic research. In addition, ROCK signaling
is important in astrocyte secreted shh in neurogenesis and
angiogenesis after cerebral ischemia. However, the mecha-
nism of astrocytes changes mediated by RhoA/ROCK signal-
ing pathway need further study.
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