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Abstract

Chronic kidney disease (CKD) has been typically implicated in cardiovascular risk, considering the function the kidney has related to
blood pressure, vitamin D, red blood cell metabolism, and electrolyte and acid-base regulation. However, neurological consequences
are also attributed to this disease. Among these, recent large epidemiological studies have demonstrated an increased risk for
Parkinson’s disease (PD) in patients with CKD. Multiple studies have evaluated individually the association of blood pressure, vitamin
D, and red blood cell dysmetabolism with PD, however, no study has reviewed the potential mechanisms related to these components
in context of CKD and PD. In this review, we explored the association of CKD and PD and linked the components of the former to
propose potential pathways explaining a future increased risk for PD, where renin-angiotensin system, oxidative stress, and inflam-
mation have a main role. Potential preventive and therapeutic interventions based on these associations are also explored. More
preclinical studies are needed to confirm the potential link of CKD conditions and future PD risk, whereas more interventional studies

targeting this association are warranted to confirm their potential benefit in PD.
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Introduction

As the life expectancy increases, and the prevalence of the
elderly population increases, more focus is attributed to chron-
ic degenerative diseases. Parkinson’s disease (PD) is the sec-
ond most common neurodegenerative disease, after
Alzheimer’s (de Lau and Breteler 2006; Lee and Gilbert
2016; Nussbaum and Ellis 2003). Its prevalence increases
with age, affecting 1 to 2% of the population over 60 years
(Tysnes and Storstein 2017; Wirdefeldt et al. 2011). The car-
dinal signs characteristic of PD include resting tremor, rigid-
ity, bradykinesia, which can be exhibited as hypomimia,
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hypophonia and micrographia, and postural and gait impair-
ment, characterized by decreased arm swing, and multiple
small steps. These present with a unilateral onset, respond to
levodopa therapy, and patients can develop dyskinesia
(Williams and Litvan 2013). Besides these motor symptoms,
PD patients experience a range of non-motor symptoms, in-
cluding constipation, sleep disorders, orthostatic hypotension,
depression, among others (Tolosa et al. 2006; Massano and
Bhatia 2012). These cardinal signs have been typically attrib-
uted to the loss of dopaminergic neurons in the substantia
nigra (Shulman et al. 2011). Although great efforts have been
made to fully understand the pathophysiology and cause of
this dopaminergic cell loss, no mechanism that explains the
exact cause of this disease has been described. Several factors
have been associated with an increased risk of developing PD
such as diabetes, vitamin D deficiency, anemia, and hyperten-
sion, among others (Yue et al. 2016; Knekt et al. 2010; Rozani
et al. 2019; Hou et al. 2018).

Chronic kidney disease (CKD) results from chronic kidney
damage, which can be confirmed via renal markers and reduc-
tion of estimated glomerular filtration rate (eGFR) to less than
60 ml/ min/ 1.73m?. The elderly population has an increased
prevalence of CKD, owed primarily to an increase in risk
factors such as diabetes, hypertension, and other
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enzyme responsible for the formation of ROS (Vaziri et al.
2003). Apart from mitochondrial dysfunction, another mech-
anism for elevation of ROS levels in CKD patients are uremic
toxins. These promote inflammation via priming of polymor-
phonuclear leukocytes (Gyuraszova et al. 2020; Tumur et al.
2010), which exacerbate oxidative stress as generation of
myeloperoxidase by these cells promotes nitric oxide (NO)
inactivation and ROS generation, the first necessary for its
antioxidant function at kidney level (Modlinger et al. 2004;
Kisic et al. 2016). Moreover, accumulation of homocysteine
in CKD patients increases oxidative stress levels related to an
inhibition of antioxidant activity of superoxide dismutase
(SOD) (Massy et al. 2001). Regarding antioxidant processes,
hemodialysis contributes greatly to this manner, as studies
have observed that even a single session of hemodialysis in-
creases lipid peroxides and decreases antioxidants (Peuchant
et al. 1994; Jackson et al. 1995), which perpetuates damage
and oxidative stress. In fact, this process increases as CKD
progresses (Dounousi et al. 2006), which may derive from
hemodialysis and its effect on ROS and antioxidants levels.
Hemodialysis increase in oxidative stress levels are attributed
to an activation of polymorphonuclear leukocytes which pro-
mote inflammation and ROS production (Cristol et al. 1994;
Borazan et al. 2004). In this manner, over activation of im-
mune response due to uremic toxins and hemodialysis pro-
motes an inflammatory state, which added to the oxidative
stress environment, contributes to CKD.

Similar to CKD, oxidative stress plays a major role in the
pathophysiology of PD. Moreover, mitochondria dysfunction
contributes primarily to ROS formation in PD (Schapira
2008), considering that the brain tissue is considerably vulner-
able to oxidative stress, as most energy derives from oxidative
phosphorylation and has high unsaturated lipid concentration,
apart from the low density of antioxidant enzymes in this
tissue (Floyd 1999; Hall et al. 2012). Complex I deficiencies
in the respiratory chain origin most of the ROS in PD (Blesa
et al. 2015). Furthermore, toxins used in animal models are
based among other mechanisms on inhibition of this complex
(Blesa and Przedborski 2014; Greenamyre et al. 2010),
explaining the main role mitochondria has in PD genesis.
On the other side, inflammation contributes to PD, as ob-
served and discussed in CKD. Microglia activation and in-
crease pro-inflammatory cytokines’ levels have been observed
in animal models of PD (Cztonkowska et al. 1996), and this
activation enhances NADPH oxidase activity in microglia,
which in turn form ROS and contribute to the neurotoxicity
of this process (Surace and Block 2012). Interestingly, as an-
giotensin II has shown to have inflammatory properties, in-
ducing ROS via NADPH oxidase when binding to AT1 re-
ceptors (Seshiah et al. 2002; Benigni et al. 2010), studies have
analyzed its role in animal models of PD, demonstrating that
inflammatory response to these PD inducing toxins could be
mediated via angiotensin I (Joglar et al. 2009; Rodriguez-

Pallares et al. 2008). In fact, several reviews have discussed
the presence of a renin-angiotensin system (RAS) in brain
(Wright and Harding 2011; Wright and Harding 2013), and
AT]I receptors have been shown to be present in high density
in human striatum and substantia nigra (Rey et al. 2007),
suggesting a role in the disease.

When analyzing the link between PD and CKD regarding
oxidative stress and inflammation, two suggestions for this
appear: RAS and peripheral inflammation via a damaged
blood brain barrier. A recent review analyzed Alzheimer’s
disease and CKD association, and postulated an overactivated
RAS in CKD pathology, mediated by an overactivation of
renin owed among other causes, to sympathetic activation
(Zhang et al. 2020). This then may activate angiotensin I
and, in conditions where blood brain barrier is disrupted as
CKD (Mazumder et al. 2016), may reach brain tissue binding
to AT1 receptors, causing ROS formation and oxidative
stress, damaging neuronal tissue. This has been proposed in
hypertension mechanisms, where the increased permeability
of'the blood brain barrier may allow access of angiotensin II to
brain regulating pressure centers (Biancardi et al. 2014;
Biancardi and Stern 2016). However, as AT1 receptors are
also find in striatum and substantia nigra, this might be a
pathway in which angiotensin II links CKD and PD. A study
in an animal model of CKD showed disruption of SOD and
catalase activities, as well as astrocytosis, in substantia nigra
(Mazumder et al. 2019), indicating how oxidative stress con-
ditions in CKD might reflect in neuronal damage. Moreover,
as inflammation is present in CKD, and as blood brain barrier
disruptions due to the disease may be found, systemic inflam-
mation might contribute to neuroinflammation, a compo-
nent essential in PD. A study evaluated the risk of PD in
patients with serum elevated IL-6, a pro-inflammatory cy-
tokine, and found a significantly increased risk compared
to controls (Chen et al. 2008). In this manner, disruption
of blood brain barrier and increase in RAS might contrib-
ute to link the inflammatory and oxidant conditions in
CKD with PD brain damage.

Apart from the mechanism involving a disrupted brain
blood barrier, a study in an animal model of CKD described
a reno-cerebral reflex involving RAS when exposed to high-
salt intake (Cao et al. 2015), where renal afferent sympathetic
nerves activate brain RAS and this enhances renal RAS activ-
ity via efferent sympathetic activation, perpetuating kidney
damage and fibrosis. As angiotensin II has inflammatory and
ROS inducing properties, this brain RAS activation mediated
by kidney damage might contribute to greater concentrations
of angiotensin II in brain tissue, and activate AT1 receptors,
inducing oxidative stress and inflammation in brain regions
where these receptors are present, such as striatum and
substantia nigra (Rey et al. 2007), thus eliciting a possible link
between PD and CKD (shown in Fig. 1). However, more
studies evaluating oxidative stress in brain regions in CKD
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conditions are needed, particularly to elicit if renal and brain
RAS systems’ activation originated due to CKD mediate any
oxidative stress damage in substantia nigra.

Hypertension in CKD and PD risk

Patients with CKD experience a high prevalence of hyperten-
sion, especially as the disease progresses (Agarwal et al. 2003;
United States Renal Data System 2019), considering that the
kidney has a main role in regulating solute excretion and RAS
activation. The pathophysiology involved in the high blood
pressure is multifactorial, and several reviews have studied
these mechanisms (Tedla et al. 2011; Huan et al. 2015). As
the kidney’s function deteriorates due to tissue damage, sodi-
um excretion decreases (Hall 2003), leading to a higher extra-
cellular volume prompting a volume-dependent pressure in-
crease. Moreover, as mentioned earlier, an overactivated RAS
system is present in patients with CKD (Zhang et al. 2020;
Weidmann et al. 1971; Sim et al. 2011), which together with
an overactivated sympathetic nerve activity (Klein et al. 2003)
contribute to the pathophysiology of hypertension in CKD.
The interrelated mechanisms of these systems are well ex-
plained by the reno-cerebral reflex described due to high salt
intake in an animal model (Cao et al. 2015). Furthermore,
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oxidative stress present in CKD conditions contributes to this
increase in blood pressure related to inactivation of NO, which
lead to endothelial dysfunction (Vaziri et al. 1998). Other
mechanisms related to endothelins and renal prostaglandins
are described in other studies, as elevated levels of endothelins
are present in CKD patients with high levels of blood pressure
(Dhaun et al. 2006; Kohan 2010).

Patients with PD experience blood pressure disorders relat-
ed to an autonomic dysfunction (Asahina et al. 2013), thus
having an impaired regulation of blood pressure, showing
fluctuations in this value (Tsukamoto et al. 2013).
Considering hypertension as risk factor for PD, various
meta-analysis have studied their association and have found
an increased risk of presenting PD in hypertensive population
(Hou et al. 2018; Chen et al. 2019). The pathophysiological
mechanisms for this relation are however speculative. One
idea relies on the ischemic damage generated by chronic hy-
pertensive states on basal ganglia, thalamus, and brain stem
(Qiu et al. 2011; Greenberg et al. 2009), which could affect
dopaminergic neurons. On the other side, oxidative stress and
RAS system are common mechanism shared between these
diseases (Manrique et al. 2009). The latter combined with a
disrupted blood brain barrier due to hypertensive state
(Biancardi et al. 2014; Zhang et al. 2010) could lead to an
increase in circulating angiotensin II in brain regions with
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ATI receptors, and circulating inflammatory cells, causing
oxidative stress and inflammation, affecting neuronal tissue.
Moreover, blockade of AT1 receptors in animal hypertensive
models have shown to protect and improve blood brain barrier
permeability (Kucuk et al. 2002; Pelisch et al. 2011), showing
how RAS system contributes to this barrier disruption.
Another mechanism that may link hypertension and PD is
endothelin-mediated, as CKD patients with high endothelin
levels experience endothelial dysfunction and high blood
pressure levels which may be reduced with its antagonism
(Dhaun et al. 2006; Kohan 2010; Goddard et al. 2004).
Endothelin’s role in PD has been related to induction
of oxidative stress and inflammation (Jain et al. 2014),
and the high levels of this peptide in hypertensive con-
ditions may promote neuronal damage via these mecha-
nisms. In this manner, hypertensive states seen in CKD
could contribute to the future PD risk mainly by RAS
system, disruption of blood brain barrier, and endothelin
and ischemia-induced neuronal damage.

Vitamin D serum levels in CKD
and association with PD

A great proportion of patients with CKD experience vitamin
D deficiency (Gonzélez et al. 2004; Bhan et al. 2010), and this
proportion increases as the disease progresses (Pitts et al.
1998). Besides the classical idea that a reduced renal mass
decreases 1-alpha-hydroxylase and thus decreases 1,25-
dihydroxivitamin D, different mechanisms have been pro-
posed for this deficiency. These involve a decrease in 25-
hydroxivitamin D, substrate necessary for production of
1,25-dihydroxivitamin D in kidneys. This decrease in sub-
strate has been associated to a reduction in its diet uptake
(Krassilnikova et al. 2014), an impaired synthesis related to
uremic toxins (Michaud et al. 2010), and loss of its serum
binding protein due to proteinuria (Caravaca-Fontan et al.
2016). Moreover, a reduction in glomerular filtration and renal
megalin expression in CKD impedes 25-hydroxivitamin to
reach renal tubular cells and be converted to its active form
(Takemoto et al. 2003; Dusso 2011). However, apart from the
classical actions related to calcium and phosphorus metabo-
lism attributed to vitamin D, increase evidence points for a
non-classical pathway, where extra-renal 1-alpha hydroxylase
is found to be involved and regulates inflammation, cellular
differentiation and proliferation (Jones 2007; Townsend et al.
2005). The importance of this non-classical pathway relies on
its effect on CKD progression. Among these pathways, vita-
min D deficiency has been related to an overactivation of RAS
system (Li 2010; Zhang et al. 2008), which as discussed pre-
viously, interacts, and contributes to progression of CKD via
inflammation and oxidative stress. Furthermore, the supple-
mentation of this vitamin is then related to a suppression of

this system (Li 2010; Zhang et al. 2008; Li et al. 2002),
supporting the inverse relation of these mechanism. Another
important mechanism relies on vitamin D role in the immune
system, as studies have shown that 1,25-dihydroxivitamin D3
suppresses activation of NF-kappa B protein (Zhang et al.
2007; Yu et al. 1995), which play a role in modulating im-
mune response, demonstrating an anti-inflammatory mecha-
nism, where its deficit as in CKD conditions could exacerbate
and lead to its progression.

In PD patients, similar to CKD conditions, low vitamin D
levels have been proven to prevail (Soliman et al. 2019;
Sleeman et al. 2017) compared to controls. Moreover, system-
atic reviews have assessed the association between low vita-
min D levels and PD and have found an increased future risk
for PD and an inverse association with disease severity via
Hoehn and Yahr (HY) and Unified Parkinson Disease
Rating Scale (UPDRS) Part IIl measurements
(Rimmelzwaan et al. 2016; Luo et al. 2018). Among possible
explanations in these studies, the limited outdoor activity has
been proposed, however, patients in early PD, where ambula-
tion is not severely affected, also present with low vitamin D
levels (Soliman et al. 2019; Evatt et al. 2011). The possible
explanation for the increased risk for PD in these patients may
lie on the neuroprotective effects that have been attributed to
vitamin D, as animal models of PD have shown attenuation of
inflammation and dopamine degeneration when treated with
vitamin D (Calvello et al. 2017), and increase production of
neurotrophic factors in glial cells (Sanchez et al. 2009).
Moreover, high levels of vitamin D receptor and 1-alpha hy-
droxylase have been found in the substantia nigra (Eyles et al.
2005), supporting the idea of a neuroprotective effect in this
brain region. In fact, considering that vitamin D is a
liposoluble substance, this can travel through the blood brain
barrier and bind to receptors in substantia nigra, exerting its
neuroprotective effects. Taken these mechanisms into consid-
eration, low levels of vitamin D commonly seen in CKD con-
ditions could exacerbate inflammatory conditions and pro-
mote neuronal damage due to decrease neurotrophic factors.
Moreover, an important link between low vitamin D levels
in CKD and PD may rely on RAS system. As discussed
previously, vitamin D deficiency contributes to an increase
in renin and angiotensin II (Li 2010; Zhang et al. 2008),
which promote oxidant and inflammatory conditions, and
together with the presence of disrupted blood brain barrier
like CKD could reach brain regions and bind AT receptors,
leading to neuronal damage.

Anemia in CKD and PD risk

A high proportion of patients with CKD experience anemia and
this proportion increases as CKD progresses (Stauffer and Fan
2014; Voormolen et al. 2010). The main mechanism involved in
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its presence relies on a relative deficiency of erythropoietin
(EPO) due to impaired kidney function (McGonigle et al.
1984; Babitt and Lin 2012), as EPO is produced via a hypoxia
inducible manner mainly by renal cells (Suzuki and Yamamoto
2016). Moreover, other mechanisms play a role in anemia in
CKD, one important being iron deficiency. In fact, a high per-
centage of patients with CKD have been found to be iron defi-
cient (Ashby et al. 2009). Explanations to this deficiency have
been attributed to an absolute and a functional deficiency (Babitt
and Lin 2012). The latter is explained by increased levels of
hepcidin in CKD patients (Zaritsky et al. 2009; Nemeth et al.
2004), which is in charge of regulating iron metabolism and in
high levels inducing a reduction in its absorption and mobiliza-
tion (Fishbane et al. 2009). Reduction of eGFR and inflammato-
ry conditions in CKD contribute to this increase in hepcidin
levels (Babitt and Lin 2012), leading to decreased iron levels,
which are necessary for erythropoiesis.

In PD, discrepancy exists whether hemoglobin levels are
low or normal in patients compared to controls (Kasten et al.
2010; Deng et al. 2017). Moreover, this discrepancy also per-
sists when assessing iron serum levels in these patients, as
some studies have found low serum iron, while other have
found no differences compared to controls (Medeiros et al.
2016; Mariani et al. 2013). A retrospective cohort study
assessing PD risk in iron deficiency anemic patients found
an increased risk compared to controls (Hong et al. 2016).
Considering that iron deposition in substantia nigra has been
found in PD patients (Martin et al. 2008), and iron is respon-
sible for oxidative stress processes (Nuiiez et al. 2012), the
question arises as why low iron serum levels may predispose
to an increased PD risk. The answer may rely on an iron
maldistribution process (Cabantchik et al. 2013), as iron over-
load in brain tissue and abnormal low serum levels may coex-
ist. This maldistribution may be linked to hepcidin, as this has
been shown to be widely distributed in the murine brain
(Zechel et al. 2006). Furthermore, studies assessing hepcidin
in cell culture and animal models of PD have shown contra-
dictory results (Liang et al. 2020; Xu et al. 2016). A review
proposed a dual role model of hepcidin, as pre-treatment with
hepcidin can ameliorate iron accumulation, but its increased
due to inflammatory conditions may contribute to oxidative
stress and neuronal damage (Vela 2018). Considering that
CKD involves an inflammatory state, this may lead to
hepcidin detrimental role in neuronal damage, inducing iron
overload and oxidative stress conditions. On the other side,
EPO has been shown to exert neuroprotective effects in ani-
mal models of PD (Erbas et al. 2015), resulting from its effect
as antioxidant, anti-apoptotic, and anti-inflammatory
agent (Ehrenreich et al. 2004). Thus, iron
dysmetabolism and hepcidin, and EPO levels in CKD
may be a possible link between PD and this disease.
The association of CKD components and its pathophys-
iology and PD are displayed in Fig. 2.
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Therapeutic considerations of these
associations

Considering the components that were discussed in the pres-
ent review, different therapeutic modalities can be used for PD
patients targeting the pathways previously mentioned, such as
antioxidants for oxidative stress, anti-hypertensive medica-
tions, vitamin D supplementation, and iron chelators and
erythropoietin. We reviewed any observational or interven-
tional studies assessing these potential therapeutics.
Considering antioxidant therapies and future PD risk, a
meta-analysis showed patients with a dietary intake of vitamin
E had a reduced risk for PD compared to controls (Etminan
et al. 2005), but no association was found with other antioxi-
dants such as vitamin C or beta-carotenes. However, more
recent studies have shown inconsistent results (Hughes et al.
2016; Yang et al. 2017; Takeda et al. 2014). Two meta-
analysis evaluating randomized clinical trials on the effect of
antioxidant agents in PD showed no effect on disease progres-
sion (Negida et al. 2016; Attia et al. 2017).

On the other side, a meta-analysis evaluating anti-
hypertensive medications and future PD risk observed an in-
significant risk ratio for PD in overall anti-hypertensive agents
use (Mullapudi et al. 2016), showing in subgroup analysis a
significant risk reduction only in calcium channel blockers.
Despite this reduction, a recent phase Il randomized clinical
trial assessing isradipine, a dihydropyridine calcium channel
blocker, in PD patients showed isradipine failed to affect clin-
ical progression of the disease (Parkinson Study Group
STEADY-PD III Investigators 2020). Nonetheless, a pilot
study evaluating an angiotensin converting enzyme (ACE)
inhibitor in PD patients showed this may serve in management
of motor fluctuations (Reardon et al. 2000), but a great limi-
tation was its small sample size (n = 7 patients). Another study
demonstrated ACE inhibitor use and a reduced number of falls
in PD patients (Laudisio et al. 2017). These results exhibit the
need of more clinical studies to elucidate the role of RAS
modulating agents and other anti-hypertensive agents in PD.

A study evaluating EPO treatment in PD patients demon-
strated its safety and tolerability in this population, showing in
addition an improvement in motor function (Pedroso et al.
2012). However, its small sample size and the lack of a pla-
cebo control group limit the interpretation of these results
regarding motor function. The same group of authors assessed
EPO treatment in cognitive function in another sample of PD
patients compared to placebo and observed a discrete im-
provement in this parameter, not different however, to the
placebo group (Pedroso et al. 2018). Another study showed
EPO treatment significantly improved non-motor, but not mo-
tor, symptoms compared to control (Jang et al. 2014).
Considering iron depositions in substantia nigra, a study eval-
uated deferiprone, an iron chelator agent, in PD patients and
observed a reduction in iron accumulation in substantia nigra
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Fig. 2 Association of elements that compose CKD and PD. The main
pathways in which most components of CKD may be indirectly linked to
PD involve increased oxidative stress, inflammation, and RAS. However,
anemic conditions due to EPO deficiency and iron dysmetabolism

and in UPDRS motor scores, relating this reduction to cerulo-
plasmin, an iron modulator, activity (Grolez et al. 2015).
Another study assessing this agent showed a decrease in iron
accumulation in dentate and caudate nucleus, but only few
patients had a reduction in substantia nigra. Moreover, no
significant improvement was observed in UPDRS motor
scores compared to control (Martin-Bastida et al. 2017).

Lastly, vitamin D supplementation in PD patients has been
evaluated in two studies. One showed that patients with
Vitamin D supplementation had less worsening of HY and
UPDRS part I compared to control (Suzuki et al. 2013), while
the other showed no differences in PD severity, quality of life,
balance or cognition compared to control, demonstrating how-
ever a difference in balance only when grouping patients
based on age, having younger patients a greater benefit of
vitamin D (Hiller et al. 2018).

Remarks on these associations: Correlations
do not imply causation

It is important to consider that some mechanisms discussed in this
review do not imply a direct causal effect on PD incidence. As
described above, patients with CKD have high markers of oxida-
tive stress, and reduction of antioxidant capacity, however, this
mechanism is not unique for CKD, as these patients may have

whereas vascular damage and high endothelin levels in hypertensive
state may be directly linked to PD. CKD = chronic kidney disease,
PD = Parkinson’s disease, RAS =renin-angiotensin system, EPO =
erythropoietin

multiple comorbidities that may predispose to an oxidant environ-
ment, and the relation between these two conditions is to be
viewed with caution. Nonetheless, in this review, we presented
speculative pathways related to kidney function that may contrib-
ute to PD based on oxidant properties, as RAS and sympathetic
mechanisms. Another mechanism that must be considered with
caution is hypertension. On the one side, as hypertensive patients
have been observed to have an increased risk for PD, the link
between CKD related hypertension and PD might not be direct
and specific. This is supported by hypertension contributing itself
to future incidence of CKD. On the other side, the altered kidney’s
contribution in function of RAS and overactivation of sympathetic
system to hypertensive state is not to be neglected and might
indirectly contribute to this association.

Anemia and vitamin D deficiency seen in CKD might be
directly related to PD, considering the role the kidney has in
vitamin D and red blood metabolism. This is supported by the
increased prevalence of these conditions as CKD progresses.
As vitamin D and EPO have a neuroprotective function, and
iron dysmetabolism is observed in PD patients, the abnormal-
ities present in CKD related to these elements might have a
direct association to the later onset of PD. Nonetheless, this
review considers that, although the mechanisms of hyperten-
sion and oxidative stress might not be specific for CKD and
directly relate to PD, the pathways proposed in this study are
interconnected and based primarily on RAS and its oxidant
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Table 2 Other mechanisms in the
potential CKD-PD relation

Acid-base balance abnormalities

Electrolyte balance abnormalities

Acidotic state in severely impaired renal function:
* Anti-inflammatory cytokines reduced and
pro-inflammatory state increased in metabolic aci-

dosis of CKD (Zahed and Chehrazi 2017; Ori et al.

2013).

* Increased levels of angiotensin I, aldosterone, and
endothelin 1, and their inflammatory properties
(Wesson et al. 2020).

* Induced ammoniagenesis and ammonia related
neurotoxicity via astrocyte dysfunction (Wesson
et al. 2020; Rama Rao et al. 2003).

* Disrupted kalium, sodium, magnesium (Mg), and
calcium metabolism in CKD, tendency towards
hyperkalemia, dysnatremia and dysmagnesemia
(Dhondup and Qian 2017).

» Mg necessary in brain regions for
neurotransmission, and disrupted levels in PD (Jin
etal. 2018).

» Hyperkalemia diuretic treatment with potential
interactions with levodopa treatment (Bitner et al.
2015).

» Lower sodium levels inversely associated with
dyskinesia in PD patients (Mao et al. 2017).

CKD = Chronic kidney disease; PD = Parkinson’s disease

and inflammatory properties, thus, vitamin D deficiency and
anemia, which are more specific for CKD, and hypertension,
which is common but unspecific for CKD, might synergisti-
cally contribute to PD. It is important to mention, however,
that the pathways proposed, linking CKD elements reviewed,
are speculative and might lead to further research to confirm
these potential associations.

Other mechanisms linking CKD and PD

In this review, we focused on analyzing the association of
CKD and PD based on oxidative stress caused by CKD con-
ditions, hypertension, vitamin D deficiency, and anemia.
Furthermore, we integrated sympathetic nervous system role
in RAS activity, oxidative stress, and inflammation in CKD
(as shown in Fig. 1). However, there are other elements pres-
ent in CKD that could be associated with PD, and these are
shown in Table 2.

Conclusion

CKD and PD share common mechanisms regarding their
pathophysiology. When breaking down CKD components
and analyzing their association with PD, this review links
evidence showing different potential pathways that may lead
to an increased future risk for PD in patients with CKD, as
retrospective cohort studies have shown. One potential path-
way discussed is RAS system, as this is increased in CKD
conditions, and this has been involved in preclinical studies
of PD. Furthermore, studies evaluating therapies that target
CKD components in PD have shown variable results.
Further studies are needed to confirm the therapeutic potential
of these interventions.
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