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Abstract

This study aimed to characterize the expression status and potentially mechanistic involvement of SNHG?7 in pituitary adenoma.
Relative expression of SNHG7 and miR-449a was analyzed by real-time PCR. Cell viability was measured with Cell Counting
Kit-8 (CCK-8). Cell apoptosis was determined by PI/Annexin V double staining followed by flow cytometry analysis. Cell
invasion and migration were analyzed by wound healing and transwell assays, respectively. The regulatory action of miR-449a
on SNHG7 was interrogated by luciferase reporter assay. We also investigated the pro-tumor activity of SNHG7 with the MMQ
xenograft tumor mouse model. We identified the aberrant up-regulation of SNHG?7 in pituitary adenoma both in vivo and in vitro,
which associated with poor survival outcome. siRNA-mediated SNHG7-knockdown decreased cell viability, increased apoptosis
and compromised migration and invasion. We further predicted and validated that SNHG7 negatively regulated miR-449a via
sponging. Concurrent inhibition of miR-449a restored cell viability, apoptosis, migration and invasion influenced by SNHG7-
deficiency. Most importantly, we demonstrated that SNHG7-silencing delayed xenograft tumor progression, which was accom-
panied with increased miR-449a and decreased Ki67 intensity. Our study highlighted the essential oncogenic properties of the

SNHG7/miR-449a axis in pituitary adenoma.
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Introduction

Pituitary adenoma is a common human malignancy derived
from the pituitary gland, affecting about 16% of the general
population (Ezzat et al. 2004). However, the clinically evident
pituitary adenomas that trigger medical intervention are rela-
tively rare and affecting about 0.1% of the population. Based
on their biological functioning, pituitary adenomas are rough-
ly categorized into three classes including benign adenoma,
invasion adenoma and carcinoma, and most adenomas are
benign where only 35% have invasion potential and 0.1% as
malignant carcinomas.

Multiple risk factors have been documented to be
associated with the morbidity and mortality of pituitary
adenoma. Among which, the multiple endocrine
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neoplasia type 1 (MEN1) is a relatively rare hereditary
genetic aberrance, occurring in 1 out of 30,000 individ-
uals (Newey and Thakker 2011). In addition, the Carney
complex (NAME and LAMB syndrome) predisposes the
development of growth hormone-producing pituitary tu-
mors (McCarthy et al. 1986). Clinical diagnosis of this
disease is frequently base on constellation of related
symptoms and pituitary tuberculoma, which is con-
firmed by hormone level test and radiographic imaging
of the pituitary such as CT scan and MRI (Lin et al. 2018).
Treatment options for pituitary adenomas depend on the type
and size of tumor. Prolactinomas are usually administrated
with quinagolide or cabergoline with the aim to decrease tu-
mor size and alleviate symptoms, and sometimes in combina-
tion with radiation therapy, proton therapy or surgery for large
tumor mass (Chanson et al. 2015). Despite of advances in both
diagnosis and therapeutics of pituitary adenomas, the insight-
ful understanding especially at the molecular level is still crit-
ically important for better clinical management.

Long non-coding RNAs (IncRNAs) are class of oligonu-
cleotide with the average length of more than 200 nt and
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without evident protein-coding potential (Kapranov et al.
2007). Diverse physiological functions of IncRNAs are in-
creasingly acknowledged, including gene transcriptional reg-
ulation, post-transcriptional modulation, epigenetic regulation
and scaffold complexation (Ransohoff et al. 2018).
Assembled evidences have uncovered the fundamental in-
volvements of IncRNAs in human cancers as well. In the
context of pituitary adenomas, for instance, the IncRNA
CLRNI1-AS1 was found to serve as a tumor suppressor by
inhibiting autophagy via de-activating the Wnt/(3-catenin sig-
naling pathway (Wang et al. 2019). LncRNA H19 inhibited
mTORCI by disrupting 4E-BP1/Raptor interaction in pitui-
tary tumors (Wu et al. 2018).

On the other hand, small nucleolar RNA host gene 7
(SNHG7) has been extensively investigated in a number
of tumors with established oncogenic role through dis-
tinct signaling pathways. For example, Chen et al.
showed that SNHG7-knockdown suppressed cell migra-
tion and proliferation in bladder cancer via activation of
the Wnt/@-catenin pathway (Chen et al. 2019). Zhang
et al. reported that SNHG7 overexpression exacerbated
cell invasion and migration by regulating the miR-34a/
Snail/EMT (epithelial-mesenchymal transition) pathway
in gastric cancer (Zhang et al. 2020). In breast cancer,
Sun et al. suggested that SNHG7 played critical roles in
malignant behaviors and was involved in EMT initiation
and Notch-1 signaling via interacting with miR-34a
(Sun et al. 2019). The study performed by Qi et al.
uncovered the oncogenic role of SNHG7 in prostate
cancer via modulation the miR-503/cyclin D1 axis,
which consequently contributed to cell proliferation
and cell cycle progression (Qi et al. 2018). Han et al.
provided evidences showing that SNHG7-silencing par-
tially suppressed EMT process in prostate cancer by
modulating miR-324-3p/WNT2B signaling (Han et al.
2019). However, the expression pattern and potential
mechanistic involvement of SNHG7 in pituitary adeno-
mas are still elusive.

Here we set out to clarify this issue both in vitro and
in vivo. And we further elucidated the molecular events un-
derlying the oncogenic activities of SNHG7 in this disease.
Our results highlighted the importance of SNHG7/miR-449a
in pituitary adenoma.

Materials and methods

Tissue samples

A total of 30 pituitary tumor tissues with paired adjacent nor-
mal tissues were collected at Hebei General Hospital from

Dec. 2014 to Nov. 2015. The written informed consent was
received from the participants. Tissue samples were flash
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frozen in liquid nitrogen and stored at —80 °C until use. The
protocol was approved by the Institutional Ethics Committee
of Hebei General Hospital.

Cell culture

Rat pituitary, GH1, RC-4B/C, GH3 and MMQ cell lines
were obtained from the American Type Culture
Collection (ATCC, VA, USA). Cells were routinely cul-
tured in F-12 K medium (Invitrogen, CA, USA) supple-
mented with 12.5% FBS (Gibco, MA, USA) and 1%
antibiotics in CO, incubator (5%) at 37 °C. Cell iden-
tities were validated by short tandem repeat profiling
and mycoplasma contamination was tested by regular
PCR. Transfection was conducted with Lipofectamine
2000 (Invitrogen, MA, USA) with ~70% efficiency as
tested using a GFP-positive control.

Real-time PCR

Total RNAs from both cells and tissues were extracted using
the TRIzol Reagent (Invitrogen, MA, USA) following the
manufacturer’s protocol. cDNA was synthesized using the
TIANScript I ¢cDNA kit (Tiangen, Beijing, China). Real-
time PCR was performed on the ABI-7900 PCR System
(Applied Biosystems, CA, USA) with the SYBR Green
Master Mix kit (Invitrogen, CA, USA). The fold-changes
were calculated by the 22*Ct method. The primer sequences
were listed as below:

SNHG7 Forward: 5'-AGGCTGAAGTTACAGGTC-3,
SNHG7 Reverse: 5'-TTGGCTCCCAGTGTCTTA-3/,
U6 Forward: 5'-CCAGTGCAGGGTCCGAGGT-3',

U6 Reverse: 5'-CCAGTGCAGGGTCCGAGGT-3',
miR-449a Forward: 5'-CGGGGTACCGTTTC
AGTGGAGGTGTCT-3',

miR-449a Reverse: 5'-CCGCTCGAGCCTGT
AGCCAAGAACTGC-3,

[3-actin Forward: 5'-CGTGACATTAAGGAGAAGCT
G-3,

[-actin Forward: 5'-CTAGAAGCATTTGCGGTGGA
C-3.

Cell counting Kit-8 (CCK-8) assay

Cell viability was determined by CCK-8 (Beyotime,
China) according to the provider’s instructions. Briefly,
the indicated cells were seeded in the 96-well culture
plate (5x10° cells/well) and subjected to consecutive
culture. The absorbance at 450 nm was measured in
triplicate at indicated time on a microplate reader (Bio-
Tek, VT, USA).
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Cell apoptosis analysis

The indicated cells were prepared into single-cell sus-
pension by trypsinization. The cell apoptosis was deter-
mined by Annexin V-FITC/PI Apoptosis Detection kit
(Kaiji Biotechnology, Nanjing, China) following the
manufacturer’s protocol. Flow cytometry was performed
on CytoFlex (Beckman Coulter, CA, USA), where via-
ble cells are negative to both probes, apoptotic cells are
Annexin positive, necrotic cells are PI positive and
Annexin negative.

Wound healing assay

Cells were plated into 6-well plates and a scratch wound was
created by sterile pipette tips. The detached cells were washed
off with PBS and cells were continuously cultured in serum-
free medium. Gap closure was regularly monitored and cap-
tured under a light microscope.

Transwell assay

Cell invasion was evaluated using the transwell chamber
(Coming, NY, USA). The indicated cells were prepared into
single cell solution and poured into the upper inserts which
was precoated with 0.1% Matrigel (BD BioSciences, NJ,
USA). The lower compartment was supplied with complete
culture medium. After 12 h of incubation, the invaded cells
were fixed and stained with crystal violet solution. The images
were taken under an inverted microscope, and cells were
counted from five independent areas.

Dual-luciferase assay

The luciferase assay was performed to investigate the
regulatory potential of miR-449a on SNHG7. Full-
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Fig. 1 SNHG?7 expressed higher in pituitary adenomas tissues and cell
lines. a RT-qPCR was performed to determine the relative expressions of
SNHG7 in pituitary adenomas tissues and adjacent normal tissues. b RT-
qPCR was performed to estimate the relative expressions of SNHG7 in
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length SNHG7 transcript was fused to luciferase report-
er vector pGL4 (Promega, WI, USA). Co-transfection
with miR-449a was achieved by Lipofectamine 2000
(Invitrogen, MA, USA). Luciferase activity was deter-
mined using Bright-Glo Luciferase Assay System
(Promega, WI, USA) on the Multi-Mode microplate
reader (Bio-Tek, VT, USA).

Immunohistochemistry assay (IHC)

The xenograft tissues were first fixed in 10% formalde-
hyde and embedded in paraffin. The blocks were sec-
tioned into 5 pum thickness with a microtome (Leica,
Wetzlar, Germany). The section was probed with prima-
ry anti-Ki67 antibody (Santa Cruz Biotechnology,
1:500, TX, USA) at 4 °C overnight. The HRP-
conjugated secondary antibody was applied next for
2 h at room temperature, and developed using the
DAB substrate (Sigma-Aldrich, MO, USA).

Xenograft mice model

The animal study was approved by the Institutional
Animal Care and Use Committee of Hebei General
Hospital. MMQ cells (1x 10°) with stable SNHG7-
knockdown or control shRNA were subcutaneously
injected into the lower flank of nude mice (Vital
River, Beijing, China). Tumor volumes were measured
with a digital caliper and estimated with the formula:
0.5 x lengthxwidth®.

Statistics analysis
Statistical analysis was performed with SPSS 23.0 (SPSS, IL,

USA) and processed with GraphPad PRISM 7 (GraphPad,
CA, USA). Every experiment was repeated at least three times
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pituitary adenomas cell lines and normal cells. ¢ Survival curves was

analyzed by Kaplan—Meier survival analysis, p = 0.0342 by log-rank test.
The results are displayed as the mean + SD, **P < 0.01
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Fig. 2 SNHG7 knockdown suppressed pituitary adenomas cell
proliferation, migration and invasion. a Knockdown efficiency of si-
SNHG7 was confirmed by qPCR. After transfection of si-SNHG7, b
the cell viability was detected by CCK-8 assay; ¢ apoptosis was detected
by cytometry using the Annexin V-FITC/PI Apoptosis Detection kit

as biological replicates. The intra-group comparison was ana-
lyzed with Student’s unpaired t-test. Correlation was
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(viable cells are negative to both probes; apoptotic cells are Annexin
positive; necrotic cells are PI positive and Annexin negative); d cell
migration was measured by wound healing assay; e cell invasion was
estimated by transwell assay. The results are displayed as the mean +
SD, *#P <0.01

examined using Pearson’s x2 analysis. P value was set as
<0.05 to be statistical difference.
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Results

SNHG?7 expressed higher in pituitary adenoma tissues
and cell lines

We first set out to determine the relative expression of
SNHG?7 in pituitary adenoma both in vivo and in vitro.
Quantitation of transcript levels by real-time PCR
showed significant up-regulation of SNHG7 in pitui-
tary adenoma tissue samples in comparison with adja-
cent normal tissue controls (Fig. la). This was further
consolidated in cell culture, and remarkably higher
SNHG7 was noticed in GH1, RC-4B/C, GH3 and
MMQ cells in comparison with rat pituitary cells
(Fig. 1b). More importantly, the high abundance of
SNHG7 was associated with evidently unfavorable
prognosis in comparison with low-SNHG7 group in
pituitary adenomas patients (Fig. 1c). Expression levels
of SNHG?7 in all samples were ordered and the median
expression level was used to differentiate between
high/low expression of SNHG7. Therefore, we charac-
terized the aberrant over-expression of SNHG7 in pitu-
itary adenoma, which indicated potential oncogenic
properties in this disease.

Fig. 3 SNHG7 sponged miR-
449a. a Schematic presentation of
the wildtype and mutant SNHG7
binding sites with miR-449a by
Starbase 2.0. b Luciferase activity
was performed with SNHG7-wt
or SNHG7-mut reporter co-
transfection with miR-449a
mimics. ¢ miR-449a expression b
was measured when si-SNHG7
was transfected. d SNHG7 ex-
pression was measured when
miR-449a mimics were
transfected. e Expression patterns
of miR-449a in pituitary adeno-
mas tissues and adjacent normal
tissues. wt, wild type; mut, mu-
tant. The results are displayed as

SNHG7 (wt)
miR-449a

SNHG7 (mut)
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SNHG7 knockdown suppressed pituitary adenoma
cell proliferation, migration and invasion

Next, we sought to investigate the potential oncogenic contri-
butions of SNHG?7 in pituitary adenoma cells. To this end, we
first established SNHG7-knockdown cell lines derived from
both GH3 and MMQ cells with specific siRNA. The knock-
down efficiency was evaluated by real-time PCR, and approx-
imately 50% of reduction was achieved in both cell lines as
shown in Fig. 2a. We noticed that cell viability measured up to
4 days was greatly compromised by SNHG3-deficiency (Fig.
2b). The PI/Annexin V double staining results demonstrated
notable induction of cell apoptosis by SNHG7-knockdown
(Fig. 2c). We further assessed the possible impacts of
SNHG?7 on metastasis-related behaviors including migration
and invasion in pituitary adenoma cells. As shown in Fig. 2d,
the gap closure was delayed by SNHG7-silencing in both
GH3 and MMQ cells, which suggested suppressed migration
elicited by down-regulation of SNHG7. Consistently, the in-
vasive capacity as measured by transwell assay displayed sig-
nificant reduction in both SNHG7-depleted GH3 and MMQ
cells (Fig. 2¢). For convenient comparison, we provided the
statistical results alongside the representative images acquired
from both wound healing and transwell assays. Therefore, our
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4 Fig. 4 miR-449a mediated the regulation in pituitary adenomas cell
proliferation and metastasis induced by SNHG7. a Knockdown
efficiency of miR-449a inhibitor was confirmed by qPCR. After transfec-
tion of si-SNHG7 with miR-449a or miR-NC, b the cell viability was
detected by CCK-8 assay; ¢ apoptosis was detected by cytometry using
the Annexin V-FITC/PI Apoptosis Detection kit (viable cells are negative
to both probes; apoptotic cells are Annexin positive; necrotic cells are PI
positive and Annexin negative); d cell migration was measured by wound
healing assay; e cell invasion was estimated by transwell assay; f
Quantitative analysis were presented. The results are displayed as the
mean £ SD, **P<0.01 vs. si-NC+ miR-NC group; ##P<0.01 vs. si-
SNHG7 + miR-NC group

data supported the oncogenic potential of SNHG?7 in pituitary
adenoma, and SNHG7-knockdown significantly suppressed
cell proliferation, migration and invasion in pituitary adenoma
in vitro.

SNHG7 sponged miR-449a

Next, we decided to elucidate the molecular mechanism un-
derlying the oncogenic property of SNHG in pituitary adeno-
ma. Here we employed the online algorithm Starbase 2.0
(starbase.sysu.edu.cn/starbase2/index.php) to predict the
target microRNAs (miRNAs, miRs) of SNHG7. There were
atotal of 25 miRNAs predicted as potential targets of SNHG7.
We were interested in miR-449a for the following three

reasons: 1) we verified the predicted top 20 miRNAs by lu-
ciferase reporter activity assay, and found 7 miRNAs includ-
ing miR-449a were significantly regulated by SNHG7; 2)
miR-449a has been identified as a tumor suppressor in a series
of cancer types, such as endometrial cancer, breast cancer and
gastric cancer; 3) there existed reports showing that the
SNHG7/miR-449a axis was involved in thyroid cancer.
Based on the above reasons, we focused our limited research
resource into miR-449a, while leaving the other candidates for
future studies. Alignment between miR-449a and putative
binding site of SNHG7 was shown in Fig. 3a. The regulatory
effect of miR-449a on SNHG7 was interrogated with lucifer-
ase reporter assay. Exogenous miR-449a tremendously
inhibited SNHG-7-fused luciferase activities in both GH3
and MMQ cells (Fig. 3b). In line with this observation,
siRNA-mediated specific knockdown of SNHG7 markedly
induced up-regulation of endogenous miR-449a (Fig. 3c).
Conversely, ectopic introduction of miR-449a mimics
inhibited expression of SNHG?7 in both GH3 and MMQ cells
(Fig. 3d). Contrary to the up-regulated SNHG7, we observed
marked down-regulation of miR-449a in pituitary adenoma
tissues in comparison with adjacent normal tissues (Fig. 3e).
Our data uncovered the sponging action of SNHG7 on miR-
449a and suggested the mutually negative regulation between
SNHG?7 and miR-449a in pituitary adenoma.
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Fig. 5 SNHG7 knockdown inhibited tumor genesis in vivo. MMQ cells
expressing sh-SNHG7 or sh-NC stably were injected into mice, a tumor
size was analyzed weekly. b Tumor weight was measured 5 weeks. ¢

miR-449a expression was detected. (D) Ki67 expression was determined
by ICH. The results are displayed as the mean = SD, **P <0.01
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MiR-449a mediated the regulation in pituitary
adenoma cell proliferation and metastasis induced
by SNHG7

Despite of regulation of miR-449a by SNHG?7, the potential
involvement and contribution of miR-449a in the oncogenic
activity of SNHG?7 in pituitary adenoma were still to be de-
fined. Here we specifically inhibited miR-449a in the context
of SNHG7-knockdown via employment of miR-449a specific
inhibitor. The inhibitory effects were first evaluated by real-
time PCR, which demonstrated that more than 50% of reduc-
tion was achieved in both GH3 and MMQ cells (Fig. 4a).
Concurrent treatment with miR-449a inhibitor greatly restored
the compromised cell viability by SNHG7-knockdown in
both GH3 and MMQ cells (Fig. 4b). Similarly, cell apoptosis
induced by SNHG7 depletion in both GH3 and MMQ cells
was partially relieved by miR449a inhibition (Fig. 4c).
Furthermore, both cell migration (Fig. 4d) and invasion (Fig.
4e) were significantly accelerated by miR-449a inhibition in
SNHG?7-deficient GH3 and MMQ cells. For convenient com-
parison, we provided the statistical results acquired from cell
apoptosis, wound healing and transwell assays in Fig. 4f. Our
results suggested that miR-449a predominantly mediated on-
cogenic signaling of SNHG?7 in pituitary adenoma.

SNHG7 knockdown inhibited tumorigenesis in vivo

All previous evidences in support of oncogenic activity of
SNHG?7 were acquired from in vitro cell culture, conclusion
based on which was potentially compromised by artifacts in-
volved in experiment procedure. To consolidate our observa-
tions, we further investigated the impact of SNHG7-
deficiency on tumor progression in vivo by employing a xe-
nograft mouse model. Growth of SNHG7-silenced MMQ
cell-derived xenograft tumor was significantly delayed in
comparison with control tumor (Fig. 5a). Xenograft tumors
resected from SNHG7-deficient group were much smaller
than the ones from the control group (Fig. 5b). We confirmed
the up-regulation of miR-449a in SNHG7-deficient MMQ
xenograft tumors at the endpoint, and around 3-fold up-regu-
lation of endogenous miR-449a was noticed (Fig. 5c). In line
with the tumor-suppressive effect of SNHG7-deficiency, our
IHC result demonstrated tremendous reduction of cell prolif-
erative marker Ki67 in SNHG7-depleted xenograft tumors
(Fig. 5d). In summary, we provided both in vitro and in vivo
evidences supporting the oncogenic activity of SNHG7 in
pituitary adenoma.

Discussion

Despite of accumulative evidences pointing to its oncogenic
properties in diverse human cancers, the expression pattern
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and mechanistic involvement of SNHG?7 in pituitary adenoma
were still largely unknown currently. Here we analyzed the
abundance of SNHG?7 transcript in pituitary adenoma both
in vivo and in vitro. We characterized the aberrant over-
expression of SNHG7, which was closely associated with un-
favorable clinical prognosis and hinted oncogenic its activity.
We further experimentally demonstrated that siRNA-
mediated SNHG7-knockdown significantly inhibited cell vi-
ability, induced cell apoptosis and compromised cell
migrative and invasive capacities in two different pituitary
adenoma cell lines. We further took advantage of an online
bioinformatic tool to discover the potential target of SNHG7
and identified miR-449a as the top candidate. We uncovered
the sponging effect of SNHG7 on miR-449a. Both endoge-
nous SNHG7 and luciferase reporter activity were inhibited
by ectopic miR-449a, and conversely, siRNA-mediated
SNHG7-depletion led to increased miR-449a. Notably, co-
administration with miR-449a specific inhibitor greatly re-
stored cell viability, migration and invasion, which were sup-
pressed by SNHG7-depletion in pituitary adenomas cells,
while attenuated cell apoptosis. These individual effects col-
lectively contributed to the anti-tumor activity of miR-449a
inhibitor. Most importantly, we provided in vivo evidences in
support of the oncogene role of SNHG7 with MMQ xenograft
tumor mouse model.

SNHG?7-depletion significantly inhibited tumor progres-
sion with accompanied persistent up-regulation of endoge-
nous miR-449a and decreased cell proliferative index. Our
data firstly unraveled the oncogenic property of SNHG7 in
pituitary adenoma through modulation of cell viability,
apoptosis, migration and invasion. We proposed the
mechanistic involvement of miR-449a in this scenario
and highlighted the anti-tumor activity of miR-449a in-
hibitor in this disease. Our data supported further inves-
tigations into the therapeutic values of miR-449a antag-
onists in pituitary adenoma both in vitro and in clinic.
In this regard, the elucidation of the SNHG7/miR-499a
signaling in pituitary adenoma expanded both of the
current diagnostic and therapeutic avenues.

So far, accumulative studies pointed to the anti-tumor prop-
erties of miR-449a in a number of human cancers. For in-
stance, Huang et al. proposed miR-499 and its target Flot2
as prognostic biomarkers for glioma (Huang et al. 2019). Li
et al. showed that forced overexpression of miR-449 sup-
pressed papillary thyroid carcinoma cell proliferation through
targeting the RET-3-catenin signaling axis (Li et al. 2016).
Jang et al. identified the low abundance and its causal linkage
of miR-449 in gynecologic clear cell carcinoma (Jang et al.
2014). In gastric cancer, the study performed by Bou et al.
demonstrated that miR-449 compromised cell proliferation
and was down-regulated (Bou Kheir et al. 2011). Zhang
et al. suggested that miR-499-silencing stimulated cell migra-
tion and invasion in breast cancer via targeting TPD52 (Zhang
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etal. 2017). This phenomenon was consolidated by the inves-
tigation conducted by Jiang et al., which uncovered the in-
volvement of CREPT-mediated Wnt/3-catenin inhibition
(Jiang et al. 2019). In hepatocellular cell lines, Zhang et al.
reported that miR-449 exerted proliferation inhibitory roles
via blocking the lipid metabolic pathway related to SIRT1
(Zhang et al. 2014), while Buurman et al. indicated that his-
tone deacetylases stimulated hepatocellular growth factor
pathway through negative suppression of miR-449
(Buurman et al. 2012). The novel finding presented by Qu
et al. exhibited that IncARSR was selectively packaged in
exosome and transferred to render sunitinib resistance to renal
cancer as a competing endogenous RNA (Qu et al. 2016). In
colon cancer, Fang et al. uncovered that miR-449 suppressed
cell proliferation of stem cells via negatively regulating
CCNDI1 and E2F3 expression (Fang et al. 2013). In
agreement with the well-established tumor suppressor
role, here we provided evidences in support of the con-
sistent function of miR-449 in pituitary adenoma, and
proposed inhibition of miR-449a as a promising thera-
peutic intervention for this disease.

Noteworthily, here we only predicted and experimentally
validated that miR-449a exert anti-tumor function at the
downstream of aberrantly up-regulated SNHG7 in pituitary
adenoma, whereas the target gene of miR-449a in this scenar-
io was out of the range of our current investigation. However,
identification of potential target genes which were closely
regulated by miR-449a in pituitary adenoma was funda-
mentally essential to a complete understanding of the
SNHG7/miR-449a signaling. This would definitely be
our priority in the following study and achievable with
both bioinformatics prediction and experimental validation.
We also would not exclude any previously recognized miR-
449a target such as c-Met in lung cancer (Luo et al. 2013),
CDKG6 in gastric cancer (Li et al. 2014) and TPD52 in breast
cancer (Zhang et al. 2017).

In summary, here we for the first time uncovered the onco-
genic potential of SNHG?7 in pituitary adenoma. The aberrant
overexpression of SNHG7 promoted cell proliferation, sup-
pressed apoptosis and stimulated migrative and invasive cell
behaviors. In addition to mechanistic elucidation, we exem-
plified the therapeutic application of miR-449a inhibitor in
cell culture, which suggested further investigations in vivo
and in clinic.
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