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Abstract
Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we
investigate the effect of perinatal fluoxetine (FLX), a selective serotonin reuptake inhibitor, administration on the behavioral
expression of adult male Swiss mice. For this purpose, two groups (n = 6 each, and ~ 35 g) of pregnant female Swiss mice were
mated. Their offspring were treated with FLX (10 mg/Kg, s.c.) from postnatal day (PND) 5 to 15. At PND 16, one male puppy of
each litter was euthanized, and the hippocampus was dissected for RNA analysis. At 70 days of life, the male offspring underwent
a behavioral assessment in the open field, object recognition task, light-dark box, tail suspension and rotarod test. According to
our results, the programmed animals had a decrease in TPH2, 5HT1a, SERT, BDNF, and LMX1B expression. Also, it was
observed less time of immobility in tail suspension test and higher grooming time in the open field test. In the light-dark box test,
the FLX-treated offspring had less time in the light side than control. We also observed a low cognitive performance in the object
recognition task and poor motor skill learning in the rotarod test. These findings suggest that programming with FLX during the
neonatal period alters a hippocampal serotonergic system, promoting anxiety and antidepressant behavior in adults, as well as a
low mnemonic capacity.
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Introduction

Serotonin (5-HT) is a neurotransmitter involved in the control
of diverse physiological functions, such as modulating vascu-
lar tone, gastrointestinal motility, and platelet function. Also,

the dysfunction of the 5-HT system is involved in the patho-
physiology of mood disturbance (Mohammad-Zadeh et al.
2008). Depression and anxiety disorders are mental illnesses
that affect a large number of individuals (Nestler and Hyman
2010), and are one of the leading reasons for death and dis-
ability globally (Smith 2014). The causal mechanisms of pa-
tients with both depression and anxiety disorders might be
overlapped (Kessler et al. 1996). However, the clinical treat-
ment of depression and anxiety disorders is limited due to the
gaps in knowledge of the etiology of these diseases (Mahar
et al. 2014). To bridge these gaps, animal models of anxiety
and depression, termed anxiety-like and depression-like be-
haviors, have been widely used to clarify the mechanisms
related to the pathogenesis of these diseases (Nestler and
Hyman 2010).

Exposure to different factors during key periods, such as
the perinatal period, has long-lasting effects and may partici-
pate in the pathogenesis of several mood disorders (Brunton
2015). Because of 5-HT is involved in the formation of brain
networks during ontogenetic development, any changes in
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serotoninergic neurotransmission during this period may pro-
duce harmful effects that persist until adulthood (Lesch and
Waider 2012). Drugs that upregulate 5-HT neurotransmission
are commonly used in the treatment of depression among
these are selective serotonin reuptake inhibitors (SSRIs).
However, the use of these drugs during pregnancy can in-
crease the risk of mood disorders in the offspring of humans
and rodents (Gemmel et al. 2018). Furthermore, exposure to
SSRI through lactation reduces the production of serotonin in
adult mice (Maciag et al. 2006). Other studies showed that
prenatal exposure to fluoxetine (FLX), an antidepressant drug,
can decrease the social play in rat pups, such an effect can
persist to adulthood (Olivier et al. 2011). The administration
of FLX or other antidepressants during early life also can
decrease the social interaction in juvenile male and female rats
(Rodriguez-Porcel et al. 2011).

However, FLX was the first SSRI, with recognized safety,
its side effects may increase the risk of anxiety (Perez-Caballero
et al. 2014). In rats, acute FLX administration increases the
extracellular 5-HT level in the raphe nuclei and frontal cortex
(Bel and Artigas 1996), while chronic administration increases
5-HT in several brain nuclei (Invernizzi et al. 1996; Kreiss and
Lucki 1995; Rutter et al. 1994)Preclinical studies demonstrated
that chronic FLX decreases the depression-like behaviors in the
forced swim test (Detke et al. 1995) and reverses the
depression-like behaviors caused by chronic stress (Grippo
et al. 2006) or olfactory bulb lesion (Machado et al. 2012). In
addition to decreasing depression-like behaviors, the acute ad-
ministration of FLX increases the anxiety-like behavior in rats,
while the effects of its chronic administration were inconclusive
(Perez-Caballero et al. 2014).

The related mechanisms involved in behavioral changes
induced by early-life FLX administration are not well
established. In this study, we assessed the effects of chronic

FLX administration during early development on the expres-
sion of mRNA that encodes proteins related to the serotonin-
ergic system and neurogenesis in the midbrain and hypothal-
amus. Additionally, we followed the impact of this treatment
on memory, anxiety-like, and depression-like behaviors in
adult mice.

Material and methods

Swiss Webster mice of 60 days of age (~35 g) derived from
the Federal Rural University of Rio de Janeiro colony were
used in this study. After an acclimatization period of 15 days,
the mice were housed in plastic cages (30 × 19 × 13 cm) and
mated together with a ratio of one female to one male. Day 1
of pregnancy was determined by the presence of spermatozoa
in a vaginal smear.

After birth, male’s and female’s offspring were equally
divided into two groups with a maximum of 10. Then, the
lactating dams and their offspring were separated into two
groups. The offspring of the treated group was received FLX
(10 mg/Kg, s.c.), whereas the offspring of the control group
was received saline 0.9% only from postnatal day (PND) 5 to
15. FLX dose was chosen per studies of Galindo et al. (2015).
At PND 16, one male offspring of each litter was euthanized,
and its hippocampus region was dissected from the whole
brain under the cold plate and kept at −70 °C for RNA
analysis.

At PND 21, two male puppies of each litter were weaned to
six animals per plastic cage (35 cm × 50 cm × 35 cm). The
remaining offspring and the damswere euthanized. At 70 days
of life, a behavioral assessment in the open field, object rec-
ognition task, light-dark box, tail suspension test, and rotarod
were recorded (Fig. 1). All animals used in this work were

Fig. 1 Schematic representation
of the experimental design. After
birth, male’s and female’s
offspring were equally divided
into two groups with a maximum
of 10. Then, the lactating dams
and their offspring were separated
into two groups. The offspring of
the treated group was received
FLX (10 mg/Kg, s.c.), whereas
the offspring of the control group
was received saline 0.9% only
from postnatal day (PND) 5 to 15.
At PND16, one male offspring of
each litter was euthanized, and the
hippocampus was for RNA anal-
ysis. By 70 days of life, a behav-
ioral assessment in the open field,
object recognition task, light-dark
box, tail suspension test, and
rotarod were recorded
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housed at a controlled temperature (20 ± 2 °C) with daily ex-
posure to a 12 h light-dark cycle and free access to water and
commercial rodent diet. In all cases, the rats were anesthetized
by an injection of thiopental (90 mg/Kg, i.p.) and euthanized
by decapitation.

Ethics committee

This investigation was carried out according to the Guide for
the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication No.85–23, re-
vised 1996) and was approved by the institutional animal wel-
fare committee pertinent Brazilian legislation under Protocols
number: 23083.012282/2017.

Behavioral tests

At PND 70, the offspring underwent a battery of tests, includ-
ing open field, dark-light box, tail suspension, and rotarod
tests. The tests were performed at one-day interval, and the
order of tests within the battery was determined according to
the progressive degree of invasiveness.

Except for the object recognition test, all testing was per-
formed between 7 and 11 a.m. During each test, the experi-
menter remained outside the testing room. Each test was re-
corded, and behavior parameters were analyzed by at least two
observers.

Open field test

Each mouse was placed individually in the center of a white
acrylic cage (30 cm × 30 cm × 15 cm) and allowed to explore
the cage for five minutes. During this time, number of squares
crossed, number of rearing (standing on hind legs with paws
pressed against the wall of the arena), time of grooming, time
in the center zone, center distance (the distance traveled in the
center of the arena) and center ratio (center distance to total
distance ratio) were assessed. At the end of testing, the number
of fecal pellets was also counted, and the arena was cleaned
with a 10% ethanol solution. In this test, locomotor activity is
indicated by the total distance traveled in the apparatus, while
the vertical activity is assigned by the number of rearing.
Concerning defecation, this parameter appeared, under some
circumstances, to represent an emotional behavior. Lastly,
anxiety-like responses were linked to time in the center zone
and center ratio, whereas grooming time indicates higher
stress responsiveness.

Object recognition task

We used the open-field apparatus as the context to perform
this experimental protocol. That way, each animal was intro-
duced in the apparatus in the absence of objects or another

behavioral stimulus for 5 min, for just 1 day. On the day after
the end of the habituation period, the animals were subjected
to a training session for memory acquisition. Two cell culture
flasks filled with sand (A1 and A2) were placed at opposite
corners of the apparatus used for the test. Thus, each animal
was positioned individually in the arena center, and the famil-
iarization session was stopped when there has been a 20 s
exploration of both objects and when a 10 min period is over.
After 6 h, the animals were exposed again to the test context
for object recognition. In this step used to assess the ability of
them to retain information, it was used as a familiar object
(A3) and a new object (B), a tower of Lego bricks. As in the
training session, the retention test also lasted 5 min (Leger
et al. 2013).

It is noteworthy that between each animal tested, the appa-
ratus and the objects were properly sanitized with alcohol 70%
to counteract any olfactory clue. Moreover, the exploration
was only considered when the animals put the nose at up to
2 cm towards objects. Any other kind of physical contact, such
as to lean, or climb over objects, was not considered as explo-
ration. The basic measurements were the time spent by rats in
exploring each object during the retention test. From this basic
value, several variables could be calculated (see Table 1). The
variable e is the total time spent investigating both objects
during the retention test. The d1 index depicts the absolute
difference in exploitation between the new and the familiar
objects. The d2 index is a relative measure of discrimination
corrected by the level of exploration in the retention test (e),
and the d3 index shows the proportion of e devoted to the
novel object (Akkerman et al. 2012).

Light-dark box test

The animals were individually placed in an acrylic cage
(45 cm × 27 cm × 27 cm) unequally divided into two cham-
bers by a black partition containing a small opening. Two-
thirds of this chamber was illuminated (400 lx), and the re-
maining section was closed and dark. Mice were placed inside
the dark side and allowed to freely move between the two
chambers for 5 min. During this time, the time spent on the
light side, number of transitions and latency to first entry into
the light side was recorded. In this test, these parameters are
associated with anxiety-like behavior.

Table 1 Measurement of
the object recognition
task

Exploration Discrimination

d1 = B −A3
e =A3 + B d2 = d1/e

d3 = B/e
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Tail suspension test

In this protocol, the mice were suspended 100 cm above the
stand by adhesive tape placed approximately 1 cm from the tip
of the tail. The test was videotaped for five minutes. During this
period, the time of immobility and latency to the first immobility
episode were evaluated. The immobility assumes a low resil-
ience, and consequently, a high level of depression-like behavior.

Rotarod test

The rotarod test was performed by placing a mouse on a rotating
drum and measuring the time each animal was able to maintain
its balance while walking on top of the rod. Mice underwent 4
trials of up to five minutes, and the inter-trial interval was 30–
40 min. The speed of the rotarod was 10 rpm, and the height
from the ground was 50 cm. Some animals were attached to the
rotarod axis. The latency to the first fall was recorded for each
trial, and the animals could fall three times. Some mice were
attached to the rotating axis as they began to fall and rode
completely around the rod. For these animals, the latency to
the first fall was still considered. In this protocol, coordination
and motor skill learning were evaluated (Shiotsuki et al. 2010).

RNA analysis

Total RNA was extracted using a standard method (TRIzol
reagent; Invitrogen, Carlsbad, CA, USA). The RT-PCR analy-
ses were carried out using 1 μg of total RNA extracted from the

hippocampi of PND 16 male pups using a Superscript III kit
(Invitrogen).

Real-time RT-PCR analyses were performed in a fluores-
cent temperature cycler (Applied Biosystems 7500; Life
Technologies Co., Carlsbad, CA, USA) according to the rec-
ommendations of the manufacturer. Briefly, after initial incu-
bation at 50 °C for 2 min and 95 °C for 10 min, reactions were
cycled 40 times using the following parameters for all genes
studied: 95 °C for 15 s, 60 °C for 30 s and 72 °C for 45 s.
SYBR Green (Applied BioSystems, Foster City, CA, USA)
fluorescence was detected at the end of each cycle to monitor
the amount of PCR product formed during that cycle.We used
genes that coded proteins related to the serotonergic system
(Tph2, Sert, 5HT1a receptor, Lmx1b) and neuroplasticity
(BDNF, brain-derived neurotrophic factor). Primers used for
the amplification of cDNAs of interest were synthesized by
Extend Biotecnologia Ltda. The forward and reverse primers’
sequences are listed in Table 2.

We determined relative mRNA levels (2-ΔΔCt) by compar-
ing the PCR cycle threshold (Ct) between groups, after
correcting for the internal control β-actin (Schmittgen and
Livak 2008). Assays were repeated two times, and the data
were merged after normalization.

Statistical analysis

All results are presented as the means ± SE. The assumption of
normal data distribution was assessed with the Shapiro-Wilk
test. If the data did pass the normality test, parametric com-
parisons were performed. In this case, between-group

Table 2 List of primers used for qRT-PCR

Gen Bank Coded Protein Function Primers

TPH2
(NM_173391.3)

Tryptophan hydroxylase
(TPH2)

Serotonin synthesis F: 5’-AGTCTACATCCATCCCAACT
GCTG-3′

R: 5’-CATTCCTCGCACAATTCCAG
TCG-3’

HT1RA
(NM_008308.4)

5HT1a receptor Serotonin Gi protein-coupled re-
ceptor

F: 5’-GTGAGAGGAAGACAGTGAAG
AC-3′

R: 5’-CCGTGAGAGGAAGACAGTGA
AGAC-3’

SLC6A4
(NM_010484.2)

Serotonin transporter
(SERT)

Serotonin
Reuptake

F: 5’-CTCACCAGCAGG ACAGAAAG −3′
R: 5’-CTCATCTTCACCATTATCTA

CTTCAG-3’

BDNF
(NM_

001048139.1)

Brain-derived neurotrophic factor (BDNF) Neuroplasticiy F: 5’-AGCAGAGTCCATTCAGCACC-3′
R: 5’-TGGCTTGACAGCGAGGAAAA-3’

LMX1B
(NM_010725.2)

LIM homeobox transcription factor 1 beta
(Lmx1b)

Transcription factor F: 5’- CTGCCAGTGTCTCTCGGACCTT
−3′

R: 5′- TCCTGATGCGAGTCAACGAGTC
-3’

ACTB
(NM_007393.5)

β-actin Housekeeping
(Internal Control)

F: 5’-CTGTCCCTGTATGCCTCTG −3′
R: 5’-ATGTCACGCACGATTTCC-3’
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comparisons were analyzed with the Student’s unpaired T-
test. on the other hand, the Mann-Whitney test was used to
compare data without normal distribution. Grubbs’ test was
used for detecting outliers. Cohen’s d analysis was used to
evaluate the effect sizes between the groups, which is the
difference between means divided by the standard deviation.
In this measure, effect sizes were interpreted as small (0.2 < d
< 0.5), moderate (0.5 < d < 0.8) and large (d > 0.8).
Differences were considered statistically significant when
p < 0.05. GraphPad Prism 5 statistical software (La Jolla,
CA, USA) was used for all statistical analyses.

Results

RNA analysis

In the hippocampus, animals programmed with FLX 10 mg/kg
had infra-regulation of TPH2 (0.07 ± 0.007 vs. 1.07 ± 0.19,
p < 0.001), 5HT1a (0.08 ± 0.007 vs. 1.02 ± 0.17, p < 0.001),
SERT (0.35 ± 0.08 vs. 1.09 ± 0.18, p = 0.004), BDNF (0.19 ±
0.02 vs. 1, 07 ± 0.19, p = 0.001) and Lmx1b (0.03 ± 0.01 vs.
1.12 ± 0.25, p = 0.001) compared to controls (Fig. 2). In
Table 3, according to Cohen’s d analysis, prenatal treatment
with FLX induced a strong effect in all genes studied.

Behavioral analysis

In the open field test, it was shown that the FLX group had an
increase in the total time of grooming (7.62 ± 1.47 s vs. 3.0 ±
0.97 s, p = 0.01). In anxiety-related parameters, there was a

tendency to reduce center zone time (p = 0.07), and center
ratio (p = 0.07). The total number of squares crossed, rearing,
and fecal pellets were not significantly different (Fig. 3).

In the object recognition task, we found that neonatal FLX
treatment did not alter the total time of exploration (p = 0.24).
However, this treatment decreased d1 (3.22 ± 2.52 s vs. 13.44
± 2.83 s, p = 0.01), d2 (0.149 ± 0.04 s vs. 0.32 ± 0.04 s, p =
0.01), and d3 (54.2 ± 3.76% vs. 66.6 ± 2.02%, p = 0.01) in-
dexes (Fig. 4).

We also recorded interesting data in the light-dark box para-
digm (Fig. 5). In this test, we observed that neonatal treatment
with FLX promoted a significant increase in latency to light
(147.5 ± 36.7 s vs. 17.5 ± 1.83 s, p = 0.006). Moreover, the pro-
grammed group had shorter time in the light side (36.6 ± 10.40 s
vs. 75.7 ± 6.57 s, p = 0.008) and a decrease in number of transi-
tions (8.01 ± 2.31 vs. 17.5 ± 1.41, p = 0.004). However, there
was no statistical difference in the number of SAP (p = 0.21).

Regarding tail suspension test (Fig. 6), we observed that
neonatal FLX-induced a reduction in depression-like behavior
characterized by shorter immobility time (77.6 ± 7.25 s vs.

Fig. 2 Graphical representation of hippocampal gene expression in 16 PNDmice treated with 0.9% saline or FLX 10 mg / kg. □ represent control group
and ■, FLX-treated group (10 mg/kg); **P < .01 and ***P < .001, n = 10

Table 3 Calculation of
Cohen’s d effect size
between groups for RNA
analysis

Coded Protein Cohen’s d

TPH2 2.97

SERT 2.13

5HT1a receptor 5.03

BDNF 2.56

LMX1B 2.48

Bold numbers represent large magnitude
of the effect
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112.1 ± 12.24 s, p = 0.02). In rotarod test, we noticed a signif-
icant effect of treatment [F (1, 68) = 5.45; p = 0.02] and trials
[F (3, 68) = 11.58; p < 0.001] (Fig. 7). However, no statistical
differences were reported in the interaction between these var-
iables [F (3, 68) = 1.01; p = 0.39].

Concerning Cohen’s d analysis, FLX neonatal treatment
induced a strong effect on some behavioral parameters
(Table 4), such as time in center zone (d = 0.88), center ratio
(d = 0.86), and grooming time (d = 1.28) in the open field test.

In object recognition task, a strong effect was observed in d1
(d = 1.27), d2 (d = 1.43), and d3 (d = 1.30) indexes. Regarding
light-dark box paradigm, strong effect was observed in latency
to light (d = 1.58), transitions (d = 1.60), and time in light side
(d = 1.46). In tail suspension test, a strong effect was also
demonstrated in immobility time (d = 1.21). In the other pa-
rameters not mentioned, medium or weak effects were
observed.

Fig. 3 The behavioral parameters of the open field test box test in 70
PND offspring treated with T4 200μg/kg during perinatal period. In this
protocol, it was demonstrated difference in grooming time, which is

related to stress response. □ represent control group and ■, FLX-treated
group (10 mg/kg); *P < .05, n = 10

Fig. 4 The mnemonic parameters of object recognition task in 71 PND
offspring treated with saline or FLX 10 mg/kg during perinatal period. In
this protocol, it was observed low cognitive performance in FLX-treated

group. □ represent control group and ■, FLX-treated group (10 mg/kg);
*P < .05, n = 10
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Discussion

In the current study, we found that FLX treatment initiates
significant alterations in several genes associated with the hip-
pocampal serotonergic system. Moreover, this treatment in-
duces psychobiological programming in the adult offspring
characterized by anxyogenesis, low mnemonic performance,
poor motor learning and antidepressant behavior.

To explain the recorded transcriptional impacts in our
work, we should highlight the role of the LMX1b. This
transcriptional factor is essential for the development and
maturation of dopaminergic and serotonergic systems.
Besides, it is also involved in the embryogenesis of the
kidney and skeletal system (Ding et al. 2003). Deletions or
mutations of this gene are associated with hereditary osteo-
onychodysplasia, open-angle glaucoma, and renal dysplasia
(Dai et al. 2009). In mice, the deletion of this gene affects all
serotonergic neurons and other cell types. In general, these
animals deceased during the perinatal period (Zhao et al.
2006).

Based on such assumptions, an elegant study was per-
formed by Song and colleagues (Song et al. 2011), who used
an animal model with conditional deletion of LMX1b only in
neurons that express Pet1a, which is a gene exclusively

expressed in neurons of the central serotonin (5-HT) system.
When these animals are treated with tamoxifen in adulthood,
the expression of LMX1b is silenced. In this condition, there
is a reduction in 5-HT levels when compared to the control
group. There is also a downregulation in the TPH2 and SERT
of the dorsal raphe nucleus. However, no changes in the levels
of dopamine and norepinephrine, or the expression of aromat-
ic L-amino acid decarboxylase and Pet1a were observed dur-
ing the experimental period (Song et al. 2011). From a behav-
ioral point of view, the conditional inactivation of the Lmx1b
factor, specifically in serotonergic neurons, results in in-
creased aversive memory in the context-conditioned fear test
(Dai et al. 2008).

BDNF is known to modulate neuronal plasticity and plays
a vital role in the regulation of neurotransmission, neuronal
regeneration and survival. Although BDNF and 5-HT seem to
be part of distinct signaling systems, these two substances
interact with each other to regulate neurogenesis and synaptic
plasticity, especially in the neural circuits involved in depres-
sion and anxiety (Martinowich and Lu 2008). In animal
models and human polymorphisms, which are associated with
increased central 5-HT bioavailability, there is a reduction in
the expression of the mRNA encoding BDNF precursor
(Homberg et al. 2014). In our study, we found a reduction in

Fig. 6 The behavioral parameters of the tail suspension test in 73 PND
offspring treated with saline or FLX 10 mg/kg during perinatal period. In
this protocol, it was observed antidepressant behavior in FLX-treated

group. □ represent control group and ■, FLX-treated group (10 mg/kg);
**P < .05, n = 10

Fig. 5 The behavioral parameters of the light-dark box test in 72 PND offspring treated with saline or FLX 10 mg/kg during perinatal period. In this
protocol, it was verified anxiety-like behavior in FLX-treated group. □ represent control group and ■, FLX-treated group (10 mg/kg); **P < .01, n = 10
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BDNF expression in the hippocampus of FLX treated off-
spring. Although these data are opposed to the results obtained
with chronic SSRI treatment in adulthood, we observed that
the reciprocal modulation between these two molecules in-
volves different transcription factors during the development
phase, such as Arnt2, CaRF, CREB, NFkB, and Npas4
(Guidotti et al. 2012; Luoni et al. 2013). The elevation in 5-
HT levels-induced deficient BDNF transcription could be at-
tributed to the reduction in the expression of Npas4 in SERT
knockout mice (Guidotti et al. 2012).

5-HT1a knockout mice also showed a reduction in the ex-
pression of BDNF and the TrKB receptor phosphorylation of
the ventral hippocampus (Wu et al. 2012). Moreover, in the
cell culture of mesencephalic raphe serotonergic neurons,
adding 5-HT to the medium can increase the BDNF gene
expression and the number of cells that express serotonergic
markers. This variation was dose-dependent. Also, this effect
has been pharmacologically proven to be initiated by the 5-
HT1a receptor and by the activation of the TrKB receptor
(Galter and Unsicker 2000). Also, in another in vitro study,
it was found that 18 h of exposure to BDNF was enough to
almost double the number of serotonergic neurons and axonal
growth. This marked effect was associated with the elevation
in the expression of the genes encoding TPH2, SERT, and 5-
HT1a receptors (Rumajogee et al. 2002). Thus, we can sug-
gest the existence of an autocrine or paracrine loop may be
mediated by BDNF to regulate the serotonergic phenotype.
This hypothesis, together with the Lmx1b infra-regulation,
could help to understand the recorded transcriptional differ-
ences in our study. Also, the present data raises some relevant
questions regarding the mechanisms by which the fluctuation
in 5-HT levels can modulate per se the expression of genes
related to its neurotransmission.

Few studies addressed the effects of FLX on the seroto-
nergic system during the postnatal period. Due to clinical
and translational relevance, most of the previous data is
related to the prenatal period through maternal treatment.
Although this phase is morphologically important, we be-
lieve that the postnatal treatment window has greater phys-
iological relevance, especially from a neurobehavioral as-
pect. During the first two weeks after delivery, the brain has
high plasticity. Based on this premise, changes in the bio-
availability of neurotransmitters can promote the impair-
ment in CNS development and, therefore, predispose be-
havioral changes in adulthood (Kepser and Homberg
2015). The period between 7 and 20 PND in rodents corre-
sponds approximately to the late stages of fetal develop-
ment and the first two to three years of life in humans
(Semple et al. 2013). In this phase, there is an increase in
brain mass, as well as in the maturation of monoaminergic
neurotransmission (Hansson et al. 1998).

FLX treatment from PND 2 to PND 21 stimulates anxiety-
like behavior in the open field test, and the elevation in plus-
maze, as well as increased depression-like behavior, was ob-
served in the forced swim test. Such changes have been
completely reversed by ketanserin, a selective 5-HT2a recep-
tor antagonist (Sarkar et al. 2016). Similarly, treated mice
offspring with citalopram, clomipramine, and FLX from
PND 4 to PND 21 increases the anxiety-like behavior in dif-
ferent experimental paradigms in adulthood (Ansorge et al.
2008). More recently, the perinatal FLX also decreased the
social behavior in mice. In this study, it is suggested that
reduced monoamine oxidase A expression might be

Table 4 Calculation of Cohen’s d effect size between groups for all
behavioral parameters

Behavioral Parameters Cohen’s d

Open Field Test Total squares crossed 0.25

Rearing 0.35

Time in center zone 0.86

Center ratio 0.88

Time of grooming 1.28

Fecal pellets 0.66

Object Recognition Task Total exploration time
d1
d2
d3

0.57
1.27
1.43
1.30

Light-Dark Box Test Latency 1.58

Transitions 1.60

Time in light side
SAP

1.46
0.65

Tail Suspension Test Latency to immobility 0.11

Immobility time 1.21

Rotarod Time spent walking on rotarod 0.53

Numbers in italic representmediummagnitude of the effect, whereas bold
numbers represent large magnitude of the effect

Fig. 7 Induction of locomotor activity in rotarod test in 74 PND offspring
treated with saline or FLX 10 mg/kg during perinatal period. In this
protocol, it was observed a poor motor learning skill FLX-treated group.
White circles represent control group and black circles, FLX-treated
group (10 mg/kg); **P < .05, n = 1
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associated with SSRI exposure and behavioral deficits symp-
tomatic of autism (Bond et al. 2020). To explain behavioral
changes in our study, we should emphasize that SERT knock-
out mice have infra-regulation for BDNF and the transcription
factor Npas (Guidotti et al. 2012). Both molecules are elabo-
rated in the development and maturation of the GABAergic
system in hippocampal regions and the prefrontal cortex (Lin
et al. 2008; Sakata et al. 2009). SERT knockout mice also
present important changes in the GABAergic system, charac-
terized by a reduction in the expression of Vgat, Gad 67, γ2
subunit of the GABAA receptor, and proteins of calcium-
binding specific to subgroups of GABAergic neurons
(Guidotti et al. 2012). Thus, the neonatal FLX could alter
the GABAergic system in limbic and cortical regions of mice
offspring and, consequently, increased the anxiety-like behav-
ior. Changes in the GABAergic system could also explain the
reduction in the cognitive performance in these animals.

In our study, we also observed low mnemonic perfor-
mance and antidepressant behavior. Karpova and her group
verified that neonatal treatment with FLX caused an anti-
depressant effect in adult mice, and this behavioral pattern
was reversed by the treatment with FLX in adulthood
(Karpova et al. 2009). Regarding cognitive status,
Sprowles and coauthors showed that perinatal exposure to
SSRI impaired the learning and memory in the water maze
and passive avoidance tests (Sprowles et al. 2017). This
behavioral impairment could be explained by the work of
Donovan et al. (2019), who reported that the Lmx1b/Pet1
regulatory cascade is mandatory for the 5-HT axon arbori-
zation gene and protocadherin-alphac2 during postnatal de-
velopment of forebrain axons. As protocadherin proteins
are important in the late-stage maturation of serotonergic
projections (Katori et al. 2009), we infer that perinatal FLX
may compromise hippocampal circuits, that related to
memory and antidepressant behavior. We cannot forget that
the FLX treatment also seems to disrupt BDNF pathways in
the present study, which could also be related to such be-
havioral responses. Further studies will be necessary to ex-
plain the impacts of SSRI treatment, especially in mnemon-
ic performance.

Regarding the induction of locomotor activity in rotarod,
we showed that the FLX-treated offspring also had low motor
skill learning. Similar results were obtained by Lee and Lee
(2012), who verified a low motor performance in adolescent
rats exposed to FLX during the neonatal period. This variation
could be attributed to the impairment in the dendritic structure
of striatal and cortical neurons due to FLX treatment.

Overall, although many questions remain about the mech-
anisms through which perinatal SSRI treatment produces be-
havioral changes during adulthood, our results provide new
information concerning a little moremolecular mechanisms of
the early-life SSRI exposure-induced affective disorders and
cognitive impairment.
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