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Abstract

Both arsenic (As) and obesity are associated with brain disorders. However, long term studies to evaluate their
concomitant adverse effects on the brain functions are lacking. Present study was conducted to evaluate the long
term co-exposure of As and high fat diet (HFD) on memory and brain mitochondrial function in mice. Male mice
were randomly divided into 7 groups fed with HFD or ordinary diet (OD) and instantaneously exposed to As (25
or 50 ppm) in drinking water for, 4, 8, 12, 16 or 20 weeks. Step-down passive avoidance method was used for
memory assessment and post exposure various parameters including mitochondrial damage, level of reactive
oxygen species (ROS), malondialdeid (MDA) and glutathione (GSH) were determined. Results indicated that the
retention latency decreased in As (25 and 50 ppm) and HFD received mice after 12 and 16 weeks respectively.
Same results were observed at significantly shorter duration (8th week) when As was administered along with
HFD as compared to control group. In the HFD alone fed mice increased the mitochondrial membrane damage,
levels of ROS and MDA were observed while GSH contents decreased significantly. Concomitant administration
of HFD and As amplified those mentioned toxic effects (p <0.001). In conclusion, our findings demonstrated that
the simultaneous HFD and As impaired memory at least three times more than exposing each one alone. These
toxic effects could be due to the mitochondria originated oxidative stress along with the depleted antioxidant
capacity of the brain of mice.
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Introduction

It is estimated that over 200 million people worldwide are
chronically exposed to arsenic (AS) at toxic levels just due
to consumption of arsenic-contaminated water (Tolins et al.
2014). Toxic effects of arsenic depends on the dose and the
duration of exposure (Mukherjee et al. 2006). Chronic arsenic
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administration can cause skin pigmentation, cardiovascular,
endocrine, gastrointestinal and respiratory diseases, anemia,
reproductive adverse effects, cancer, immunological effects
and neurological disorders (Ng et al. 2003; Tolins et al.
2014). High levels of As in water have been reported in sev-
eral countries including Argentina, Bangladesh, Chile, China,
Hungary, India, Mexico, Taiwan and the United States (Karim
2000).

Inorganic and methylated arsenic can cross the blood brain
barrier and store in many brain areas (Tyler and Allan 2014).
Numerous studies have revealed toxic effects of arsenic expo-
sure on the nervous system and cognition in children and
adults (Jiménez-Capdeville and Giordano 2003; Luo et al.
2009; Tyler and Allan 2014). It was shown that verbal abilities
and long-term memory impaired in children following arsenic
exposure (Calderon et al. 2001). In animal models, chronic
arsenic administration revealed to induce memory and cogni-
tive impairment (Nagaraja and Desiraju 1994; Rodriguez et al.
2001). Studies have shown that sodium arsenite exposure lead
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to neurobehavioral changes and alterations in learning tasks
(Rodriguez et al. 2002). Also, arsenic exposure exhibited
some damage to spatial memory (Luo et al. 2009). Several
Studies have reported that the arsenic exposure induced neu-
ronal necrosis and apoptosis (Dewji et al. 1995).

Brain mitochondria play important roles in neurotransmis-
sion, neuronal plasticity and behavioral adaptation (Mattson
2008; Mattson et al. 2008). Mitochondria is the main source of
ROS generation via electron transport chain (ETC) (Serrano
etal. 2003). Over production of ROS results in lipids, proteins
or DNA damage and ultimately neuronal cell death (Paradies
etal. 2011). There is strong evidence that Alzheimer’s disease
(AD) and other types of dementia are pathogenetically asso-
ciated with oxidative stress and mitochondrial dysfunction
(Liu et al. 2002). Mitochondrial dysfunction can change neu-
ronal function via the increasing of ROS production, decreas-
ing ATP synthesis and inducing of apoptosis (Markham et al.
2014). Various studies demonstrated that generation of ROS
and oxidative stress play important roles in arsenic induced
neurotoxicity (Jomova et al. 2011; Samuel et al. 2005).
Arsenic increased lipid peroxidation in brain via depletion of
GSH and decreased the activity of superoxide dismutase, cat-
alase and glutathione reductase (Chaudhuri et al. 1999).
Chronic arsenic exposure decreased mitochondrial complexes
activities and increased ROS levels in the brain (Prakash et al.
2015). Further, it is indicated that striatum, cortex and hippo-
campus may be more susceptible than other regions of the
brain to arsenic-induced oxidative stress (Samuel et al. 2005).

On the other hand, the wrong style of life and diet would
influence cognitive health and memory (Solftizzi et al. 2011).
Various studies have revealed that chronic high fat diet results
in learning, memory and synaptic plasticity impairments as
well as increasing the risk of dementia in elderly (Elias et al.
2005; Kalmijn et al. 1997, Kalmijn et al. 2004; Knopman et al.
2001). Also HFD diminished cognitive performance in school
children (Zhang et al. 2005a). Furthermore, HFD is associated
with cognitive impairment caused by cerebral ischemia/
reperfusion injury, traumatic brain injury and Alzheimer’s dis-
case (Alzoubi et al. 2013). Previous studies have proposed
that HFD increase dementia through elevated ROS and oxi-
dative stress in brain (Chinen et al. 2007; White et al. 2009;
Zhang et al. 2005b)

The effects of arsenic toxicity and high fat diet on the im-
pairments of memory have individually been determined in
the previous studies. So, present study was conducted to eval-
uate the simultaneous effects of As and HFD on the memory
in mice. We hypothesized that the combination of HFD and
arsenic exposure could impair memory more severely than
each condition alone. Also we investigated the role of impair-
ment of mitochondrial functions by arsenic in HFD induced
memory decline. To our knowledge, this is the first study to
evaluate the concomitant long term exposure to As and HFD
on the learning and memory in invivo.
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Experimental
Chemicals

Sodium arsenite, 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic
acid) (HEPES), mannitol, ethylene glycol tetra acetic acid
(EGTA), bovine serum albumin (BSA), 2,7- di chloro fluorescein
diacetate (DCFH-DA), 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT), Rhodamine 123, thiobar-
bituric acid, trichloroacetic acid, 1,1,3,3-tetramethoxypropane, re-
duced glutathione, oxidized glutathione, Coomassie Brilliant
Blue were purchased from Sigma-Aldrich (St Louis, Missouri,
USA). Sucrose 5, 5'-dithiobis-2-nitrobenzoic acid (DTNB), di-
methyl sulfoxide (DMSO), NaCl, KCl, CaCl,, MgCl, and
NaHCO; were obtained from Merck company (Darmstadt,
Germany).

Animals and diets

Male Naval Medical Research Institute (NMRI) mice (30—
35 g) were obtained and qualified by the local animal care
guidelines with an ethics committee No.
(IR.AJUMS.REC.1395.405). After 1 week of adaptation, the
mice were housed six per cage in polycarbonate cages with
corncob bedding in 20 +4 °C temperature with a 12 h light/
12 h dark cycle and 10% humidity. Mice were received an
ordinary diet (OD; 11% of all calorie supply from fat) or a
high-fat diet (HFD; 57% of all calorie supply from fat) for 4, 8,
12, 16 or 20 weeks.

According to some studies the grain-based diet contained
19.5-28.6 ppb arsenic (mainly inorganic arsenic: iAs), and it
may be compromised the training design. To evade this issue a
purified diets without grain components has been used (Paul
et al. 2011). The level of As in high fat and ordinary diet was
10 ppb and 15 ppb respectively, that include very lower con-
centration of arsenic compared to the examined concentration
(25 and 50 ppm). Small animals such as mice might be less at
risk than human to arsenic toxicity due to a quicker metabolism
and clearance of this toxic agent (Paul et al. 2011). Moreover, a
recent study has shown that 10 times higher arsenic concentra-
tion in drinking water is needed (50 ppm) to attain arsenic
concentrations similar to those seen in the west Bengal (Shi
et al. 2013). Therefore we used diH,O or diH,O plus As in
doses of 25 or 50 ppm in the present study (Paul et al. 2011).
Water containing arsenic was replaced every 3 days to mini-
mize its oxidation effect. Water and food consumption and
body weight monitoring have been done every week in all
exposure groups. Group assignment: mice were divided into 7
groups, control group (untreated mice, »=28), ODO0 (divided
into 5 groups that received ordinary diet for 4, 8, 12, 16 or
20 weeks, n=28), OD25 (divided into 5 groups that received
ordinary diet concomitant with 25 ppm As in water for 4, 8, 12,
16 or 20 weeks, n=238), OD50 (divided into 5 groups that
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received ordinary diet concomitant with 50 ppm As in water for
4,8, 12,16 or 20 weeks, n = 8), HFO (divided into 5 groups that
received high fat diet for 4, 8, 12, 16 or 20 weeks, n = 8), HF25
(divided into 5 groups that received high fat diet concomitant
with 25 ppm As in water for 4, 8, 12, 16 or 20 weeks, n =8)
and, HF50 (divided into 5 groups that received high fat diet
concomitant with 50 ppm As in water for 4, 8, 12, 16 or
20 weeks, n = 8). Upon the 20 weeks administration of OD or
HFD and arsenic the animals were scarified to evaluate the
mitochondrial functions (Cordner and Tamashiro 2015).

Behavioral training

The step-down passive avoidance task is used to evaluate
state-dependent learning and memory. All groups underwent
a behavioral process examination in 0, 4, 8, 12, 16 and
20 weeks. The apparatus consisted of a box made of
Plexiglas with dimensions of 40 x 30 x 30 cm?® and a floor of
steel bars. Each of the steel bars was 0.3 in. in diameter with a
spacing of 1 cm. A wooden platform with dimensions of 4 x

4 x 4 cm® was provided in the center of floor. Electric shocks
(1 Hz, 15V, 15 s) using a stimulator connected to the floor
bars transmitted to the animals’ hands and feet. When the
animal was placed on the podium, the natural tendency of
the animal was to get down on the floor bars. While upon
the receiving of the shock the animal learns to not go down.
The step-down latency was considered as memory retrieval
during training and testing stages (Nootarki et al. 2015). In the
training phase, animals were slowly placed on the wooden
platform in the middle of the device and the delay of coming
down from the platform was recorded by a chronometer.
When the mouse stepped down from the platform and placed
all its paws on the grid floor, intermittent electric shocks were
delivered continuously for 15 s. Before ending of the shock,
the animal was removed (Guan et al. 2016; Jafari-Sabet 2011).
This training procedure was carried out between 9:00 a.m. and
15:00 p.m. and animals with latencies longer than 30 s were
excluded from the study. The test phase was conducted 24 h
after the training phase same as the training phase with the
difference that the shock did not apply. Thus, each animal was
slowly placed on the wooden platform again and step-down
latency was considered as memory retrieval. In the present
study, maximum time to stop the mouse on the podium was
a 300 s (Nootarki et al. 2015). The retention test was also
carried out between 9:00 a.m. and 3:00 p.m. At the end of
each test, the surface of the apparatus was thoroughly cleaned
to remove of olfactory cues (Guan et al. 2016).

Brain analysis for arsenic absorption
As was measured by atomic absorption spectrophotometer in

the brain samples. For determination of As, an extract of these
samples were prepared by wet ingestion in a mixture of nitric

acid, sulfuric acid, and perchloric acid. For reducing As (V) to
As (1), potassium iodide and hydrochloric acid were added
to the extracts and incubated for 1 h (Bustamante et al. 2005).
As in the mineral extracts was determined by a hydride
generation-atomic absorption spectrophotometer (Perkin-
Elmer4100 Perkin Elmer Norwalk, Connecticut) (Tadanobu
et al. 1990).

Mitochondrial isolation

Brain mitochondria isolation was accomplished via different
centrifugation method (Bradford 1976). The animals were
sacrificed by decapitation and their brain were quickly re-
moved, washed with cold buffer and cut into small pieces.
Brain pieces were homogenized in an ice-cold isolation buffer
having sucrose 70 mM, mannitol 200 mM, HEPES 10 mM,
EGTA 1 mM, and BSA 0.1% (pH 7.4) (Rezaei et al. 2014).
Then nuclei, unbroken cells and other non-subcellular tissues
were sedimented by centrifuging at 1500%g for 10 min at 4 °C
and the pellet was discarded. Then, the supernatant centri-
fuged at 10,000xg for 10 min and the superior layer was
carefully discarded. The packed lower layer (heavy mitochon-
drial fraction) was washed by suspending in the isolation buftf-
er and centrifuged again at 10,000xg for 10 min. Finally, the
mitochondria pellet were suspended in Tris buffer (Tris-HCI
0.05 M, sucrose 0.25 M, KCI 20 mM, MgCl, 2.0 mM, and
Na,HPO,4 1.0 mM, pH 7.4) at 4 °C. Protein concentrations
were determined by the Bradford method (Coomassie blue
protein binding method) and BSA used as a standard
(Sadegh 2003). Mitochondria were used within the first 4 h
after isolation. All steps were done on ice to have a high
quality mitochondrial preparation.

Mitochondrial viability assessment

Mitochondrial total dehydrogenase (complex II) activity was
analyzed by determining reduction of MTT (3-[4,5-dimethyl-
thiazol-2-yl]-2,5-diphenyltetrazoliumbromide) to formazan.
The mitochondria tubes that contain 100 pL of mitochondrial
suspensions (0.5 mg protein / mL) were incubated at 37 °C.
Then, 50 uL MTT 0.4% was added to it and incubated at
37 °C for 30 min. The product of purple formazan crystals
were dissolved in 100 uL dimethyl sulfoxide (DMSO), and
the absorbance was measured by spectrophotometer reader at
570 nm (UV-1650PCShimadzu). Finally, Succinate dehydro-
genase (SDH) activity was evaluated as a percentage of con-
trol (Naserzadeh et al. 2015).

Mitochondrial membrane potential assessment
The mitochondrial membrane potential (A¥m; MMP) was

measured by using rhodamine 123 as a cationic fluorescent
probe. Rhodamine 123 would store more in healthier
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mitochondria matrices and the red-to-green fluorescence ratio
is less in healthy mitochondria compared to impaired mito-
chondria. Then 10 uM of rhodamine 123 was added to mito-
chondrial solution (0.5 mg protein/mL). The ability of mito-
chondria for uptake the Rh123 was determined as differences
between control and treated mitochondria by measurement
Fluorescence intensity (LS50B PerkinElmer, Waltham,
Massachusetts, USA; the excitation and emission wavelength
0f 490 nm and 535 nm) (Hassani et al. 2015).

Lipid peroxidation measurement

The level of Malondialdehyde (MDA) was determined in
terms of thiobarbituric acid reactive substances (TBARS) pro-
duction. 1 mL of mitochondrial fractions (0.5 mg protein/mL)
was added to 250 pL trichloroacetic acid (70%) and centri-
fuged at 3000xg for 15 min. The supernatant was mixed with
1 mL TBA (0.8%) and were located in a boiling water bath for
30 min. The absorbance was measured at 412 nm by a spec-
trophotometer. Values were expressed as pg/mg protein.
TBARS concentrations of the samples were calculated from
a standard curve using 1, 1, 3,3-tetramethoxypropane
(Baracca et al. 2003).

Mitochondrial GSH measurement

Reduced glutathione (GSH) was measured by using Ellman’s
reagent or DTNB (30 mM). 1 mL of mitochondrial suspension
(0.5 mg protein/mL) homogenized and treated with 1 mL of
trichloroacetic acid (10%) to remove the proteins (that may
contain -SH group other than GSH) from the sample. The
supernatant was taken following the centrifugation at
5000 rpm and treated with DTNB. Following exposing to
trichloroacetic acid and centrifugation of samples, superna-
tants neutralize using triethanolamine. GSH reacts with
DTNB to produce TNB and the total TNB formed (yellow
product) was measured by reading the absorption at 412 nm
using a spectrophotometer (UV-1601PC, Shimadzu, Japan).
Glutathione levels were determined using a standard curve
of the known concentrations of GSH (Siegers et al. 1988).

Measurement of the mitochondrial ROS

The mitochondrial ROS was measured using the fluorescent
probe DCFH-DA. Briefly, isolated mitochondria (0.5 mg pro-
tein/mL) were washed with phosphate-buffered saline (PBS)
and then incubated with 1.6 mM DCFH-DA at 37 °C for
10 min. The fluorescence intensity was measured using fluo-
rescence spectrophotometer at Ex =500 nm and Em =
520 nm. The ROS level was presented as the fluorescence
intensity percentage relative to the control group (UV-
1650PC Shimadzu, Kyoto, Japan) (Keshtzar et al. 2016;
LeBel et al. 1992).
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Statistical analysis

Data were presented as means + SE for the different tests. All
results were analyzed using Graph Pad Prism (version 5.04,
Graph Pad Software Inc., San Diego, CA, USA). Statistical
significance was determined using the one-way or two-way
analysis of variance with the Tukey post hoc test. Statistical
significance was set at p < 0.05.

Results
Effect of diet and as exposure on the body weight

Control mice that were fed with HFD for 20 weeks weighted
more than OD control group (p < 0.01). Further, co-exposure
to As and HFD revealed a significant weight loss in compar-
ison to HFD control group (p <0.01). However, weight loss
was not significant in OD fed mice following the mentioned
period (Table 1).

Effect of diet and as exposure on the average of daily
water and as intakes

HFD control mice drank less water than OD control group
(p <0.01). Moreover, consumption of both doses of As (25
and 50) in OD and HFD groups decreased animals’ water
intake compared to their control (p < 0.01). Daily water intake
increased in OD + As 50 ppm versus OD + As 25 ppm groups.
Significantly the same results were observed in HFD + As
50 ppm when compared to HFD + As 25 ppm (p <0.05)
(Table 1).

Effect of diet and as exposure on brain to body weight
ratio

The average total brain to body weight ratio after 20 weeks
training was significantly lower in control HFD mice com-
pared to OD controls (p < 0.05, 13%). As exposure increased
the brain to body weight ratio in both OD and HFD mice at 25
(20% and 31% respectively) and 50 ppm (21% and 59% re-
spectively) compared to their control (p <0.01) (Fig. 1).

Brain distribution of as

Exposure to As at 25 and 50 ppm concentration for 20 weeks
resulted in accumulation of it in the brain of OD and HFD
treated mice (p < 0.001). Also, there was a significant increase
of brain As accumulation in OD or HFD + As 50 ppm com-
pared to OD or HFD + As 25 ppm (p < 0.05, 119% and 50%
respectively). Also, brain As accumulation in HFD groups
was higher than OD groups significantly (p <0.05, 120%
and 51% respectively) (Fig. 2).
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Table 1 Effect of diet and As exposure on the average of daily water drink, As intake and body weight
Groups Variables Ordinary diet High fat diet

Control As 25 ppm As 50 ppm Control As 25 ppm As 50 ppm
body weight(g) 39+3 37+5 36+3 46+ 9" 35+4% 2942
water drink(mL/day) 11+1 g+1%" 513 91" 6+1° 441
As intake(pg/day) 0 188+17 228 £25° 0 155432 215+38°

Each value was presented as means + SEM (n = 8). Letter a: Significantly different from control OD group (p < 0.05), Letter b: Significantly different
from control HFD group(p < 0.05), Letter c: Significantly different from OD + As 25 ppm group, Letter d: Significantly different from OD + As50 ppm
group (p <0.05), Letter e: Significantly different from HFD + As 25 ppm group (p <0.05). a* and b*: p <0.01, a**: p < 0.001. p values were from one-

way ANOVA, followed by Tukey’s test for multiple comparisons

Effects of as and diet on state-dependent memory

The mean initial latency did not differ significantly amongst
the different groups whereas the retention latency was signif-
icantly different among the groups. Figures 3a-e¢ show com-
parisons of step-down latency in OD and HFD mice, received
diH,0 or diH,O plus arsenic in doses of 25 or 50 ppm for 4, 8,
12, 16 and 20 weeks. The results revealed that the HFD alone
did not cause any significant change in the retention latency in
the passive avoidance test before 12 weeks, but retention la-
tency decreased in the control HFD mice compare to control
group (p <0.05) after 16 weeks. As 25 and 50 ppm signifi-
cantly (P < 0.05 and P < 0.01) decreased step-down latency on
test day in OD groups after 12 weeks, but when As 25 and
50 ppm was administered along with HFD, it produced sig-
nificant dose-dependent decrease in retention latency as com-
pared to control group after 8 weeks (P <0.01 and P <0.001).

Effects of diet and as exposure on brain mitochondrial
dehydrogenase activity and membrane potential
collapse

The results showed a significant decrease in the mitochondrial
reduction of MTT to formazan in HFD versus OD fed groups

(p<0.01). As 50 ppm exposure decreased mitochondrial de-
hydrogenase activity in OD (p <0.001) and HFD (p<0.01)
fed groups in comparison to their controls (Fig. 4a). As shown
in Fig. 4b, HFD had no statistically significant effects on
MMP collapse in HFD control compared to OD control group,
but As exposure significantly induced this variable in OD
(p<0.01, 56%) and HFD (p < 0.05, 59%) fed mice compared
to their controls.

Effects of diet and as exposure on brain mitochondrial
oxidative stress

Increased ROS formation is expressed as DCF fluorescence
intensity unit. As shown in Fig. 4c, HFD induced a significant
rise at ROS formation in brain’s mitochondria (p <0.001,
58%). Exposure to As 50 ppm increased this variable in OD
fed mice (p <0.05, 32%) comparing to its control.

The results of lipid peroxidation revealed that mitochondrial
MDA level was significantly higher in control HFD mice com-
pared to OD group (p < 0.05). Also, As exposure significantly
increased mitochondrial MDA level in OD (p < 0.05) and HFD
(p<0.01) fed mice compared to OD control (Fig. 4d).

Glutathione decreased significantly in the control HFD group
compared to the control OD fed mice (p <0.01, 47%). Further,
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Fig. 1 Effects of arsenic and diet on the brain to body weight ratio in
control OD or HFD fed and As 25 or 50 ppm treated OD or HFD mice
(Mean + SE; n = 8). a: significant difference compared to the control OD

(p <0.05), b: significant difference compared to the control HFD (p <
0.05), a* and b* p < 0.01. p values were from one-way ANOVA, followed
by Tukey’s test for multiple comparisons

@ Springer



1600

Metab Brain Dis (2019) 34:1595-1606

10' *%*
b’*de M Control
84 *ok D As 25ppm
*k b**c pp
= o T B As 50ppm
B3
2
2 44 a*
< T
2-
0
oD HFD

Fig. 2 Effects ofarsenic and diet on the brain distribution of As in control
OD or HFD fed and As 25 or 50 ppm treated OD or HFD mice (Mean +
SE; n =8). a: significant difference from control OD (p <0.05), b:
significant difference from control HFD (p <0.05), c: significant
difference from OD + As 25 ppm (p <0.05), d: significant difference

both doses of As administration further decreased this antioxidant
parameter in OD (p <0.01, 47%) and HFD (p <0.001, 60%)
received animals compared to OD control group (Fig. 4e).

Discussion

Inappropriate life style including unhealthy eating habits along
with environmental pollutions play an important role in many
human diseases (Paul et al. 2011). The effects of As adminis-
tration on learning and memory impairments have been deter-
mined in the previous studies. Hence, present study examined
the effects of simultaneous As and HFD exposure on this pat-
tern. To our knowledge, this is the first study indicates that
chronic exposure to As acts additively with HFD to impair
the learning and memory in mice. The results showed that
HFD reduced water intake. Although water intake was less in
animals exposed to As 50 ppm, they showed a significant
higher As intake compare to control groups or mice that ex-
posed to As 25 ppm. Also, co-exposure to As and HFD accom-
panied with weight loss and increasing brain to body weight
ratio especially in mice exposed to 50 ppm of As. These find-
ings were in agreement with the results of a study by Paul et al
showed that chronic exposure to As and HFD lead to reduction
of water drinking and weight (Paul et al. 2011). Weight loss
could be due to enhanced repair and metabolic actions of cells
(Bechara et al. 2014; Petres et al. 1977). It has been shown that
As is stored in several tissues and organs and could cross
through the blood-brain barrier and invade the brain parenchy-
ma (Jiang et al. 2014; Jing et al. 2012). In our study, the con-
centrations of As in the brain of mice were higher for As ex-
posed mice than those in controls and this concentration in-
creased in a dose-dependent manner. Interestingly, HFD group
showed a higher As content in the brain as compared to OD

@ Springer

from HFD + As 25 ppm (p <0.05), e: significant difference from OD +
As 50 ppm (p <0.05). A* p <0.01, a** and b** p <0.001. p values were
from one-way ANOVA, followed by Tukey’s test for multiple
comparisons

received mice, although As concentrations were equal in their
drinking water. These findings indicated that by chronically
increasing the amount of arsenic in drinking water or giving a
high fat diet, the level of As in the brain of mice rises which
confirms the increasing neurobehavioral toxicity upon the ex-
posure to both As and HFD (Luo et al. 2009; Wasserman et al.
2004). Some studies have reported that consumption of HFD
may result in blood-brain barrier (BBB) dysfunction via the
increasing of its permeability (Davidson et al. 2013; Davidson
et al. 2012). It was suggested that BBB impairment may serves
as a critical connection between HFD consumption and
Alzheimer’s disease pathogenesis (Hsu and Kanoski 2014).
According to the investigations, HFD ingestion is associated
with increased inflammation and subsequently increased BBB
permeability (Abbott et al. 2006; Ek et al. 2001). Therefore
HFD can increase permeability and dysfunction of BBB and
result in extra As accumulation in the brain.

Mechanism of the toxic effects of As on the nervous system
remains to be elucidated. Alteration in basal ganglia has been
suggested by some investigators (Morris et al. 1982), but be-
havioral changes related to As were not well characterized
(Morris 1984). It is ascertained that exposure to arsenic could
induce changes in memory and attention (Rosado et al. 2007;
Sun et al. 2015; Yang et al.). Chronic exposure to arsenic
considerably affected memory pattern and attention in stu-
dents (Tsai et al. 2003). The arsenic concentration in urine
displayed an inverse relationship with cognitive performance
in children, demonstrating that arsenic adversely affects learn-
ing and memory functions (Xi et al. 2009). In animal, expo-
sure to As led to delay in the learning attainment (Yadav et al.
2011), changes in locomotors behavior and deficits in spatial
learning patterns (Gora et al. 2014; Huo et al. 2015). In the
present study, mice exposed to As showed shorter latency than
the control in the step-down passive (Morris 1984) avoidance
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Fig. 3 Effects of arsenic and diet on memory retention in control, OD or
HFD fed and As 25 or 50 ppm treated OD or HFD mice. Each value was
presented as means = SEM (n = 8). a: Significantly different from control
group (p <0.05), b: Significantly different from control OD group (p <

task after 12 weeks, which is consistent with the above men-
tioned studies. These results suggest that As exposure im-
paired state-dependent learning and memory abilities in mice
(Chin-Chan et al. 2015). However, the behind mechanism for
the neurotoxicity is unclear. As neurotoxic effects could be
due to its interaction with GSH contents and related enzymes.
Some studies have connected changes in the GSH contents
with neurodegenerative conditions such as Alzheimer’s dis-
ease, amyotrophic lateral sclerosis, schizophrenia, and
Parkinson’s disease (Bharath et al. 2002; Rodriguez et al.
2002).

Brain cells may be at particular risk for oxidative stress. The
brain derives its energy almost exclusively from oxidative
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0.05), c: Significantly different from HFD group, a* and b*: p <0.01,
a**: p<0.001. p values were from one-way ANOVA, followed by
Tukey’s test for multiple comparisons

metabolism throughout the mitochondrial respiratory chain,
and is relatively deficient in protective mechanisms compared
to other tissues, such as liver and kidney. It contains reduced
quantities of catalase, glutathione peroxidase, GSH and
Vitamin E than liver or kidney. In our study, GSH contents were
measured in the mitochondria isolated from rat’s brain based on
Ellman’s method. During the processing or handling of sam-
ples, oxidation of thiols may occur. Given that all steps of the
experiment were also performed in the control mitochondria,
the same way as in the tests, it can be assumed that the oxidation
of GSH during the procedure and stress caused by the method
were of equal extent in all experiments. However, with the
above explanation, this may result in underestimation of the
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Fig. 4 Effects of arsenic and diet on the mitochondrial oxidative stress
and damage in control OD or HFD fed and As 25 or 50 ppm treated OD or
HFD mice. a Mitochondrial viability; (b) Mitochondrial membrane
damage; (¢) Mitochondrial ROS formation; (d) Mitochondrial MDA
level; (e) Mitochondrial GSH level. Each value was presented as means

real amount of GSH in our work. Thereby to provide a better
presentation for GSH contents, the values were expressed as
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+ SEM (n =8). a: significant difference from control OD (p <0.05), b:
significant difference from control HFD (p <0.05). a* and b* p<0.01,
a** and b** p<0.001. p values were from one-way ANOVA, followed
by Tukey’s test for multiple comparisons

percentage relative to the control (Fig. 3). In cellular researches
where all enzymes for de novo synthesis of GSH and recycling
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of oxidized form are present, GSH/GSSG ratio is used to eval-
uate the oxidative/reductive states, however de novo synthesis
of GSH in mitochondria is not possible due to the absence of
relevant enzymes, so that their GSH contents originate from
cytosol transferring by specific mitochondrial carriers (Mari
et al. 2013). On the other hand, the formed GSSG in mitochon-
dria would not easily transported out of mitochondria (Ribas
et al. 2014). Therefore, it seems that the GSH measurement
gives good estimation for mitochondrial oxidative stress al-
though determination of the ratio would also be helpful.
Polyunsaturated fatty acids are a major constituent of neural
cell membranes and are substrates for free radicals and lipid
peroxidation (Coyle and Puttfarcken 1993). It has been reported
that chronically administered arsenic via drinking water in-
duced oxidative stress in the brain of rats (Chaudhuri et al.
1999; Lynn et al. 1998). (Kalyanaraman et al. 2012) concluded
that intracellular H,O, cannot be reliably measured using
DCFH-DA because of the intricate redox chemistry of DCFH
and for that the yielding oxidized product (DCF) is not directly
related to the actual level of H,O,. Some of the most important
interfering factors are certainly present when the assay runs on
the whole cell (e.g. cytochrome ¢ which releases in the cytosol
upon the exposure to an apoptotic inducer) not on the isolated
mitochondria as we conducted the assay. Moreover, many stud-
ies have shown that arsenic disturbed mitochondrial function
and produced extra levels of reactive oxygen species (Hei et al.
1998; Rezaei et al. 2018; Sumedha and Miltonprabu 2015;
Valko et al.; Yen et al. 2012). In fact, the aim of the present
study was not to mechanistically identify the exact levels of
H,0, in rat’s brain mitochondria, instead it is intended to inves-
tigate the redox changing upon the long duration co exposure to
arsenic and high fat diet. The obtained results via the total ROS
experiment confirmed by other assays performed including
MDA and GSH contents. Furthermore it was reported that ar-
senic exposure increased oxidized DNA and diminished anti-
oxidant capacity of rodents’ brains, induced lipid peroxidation
in the rat brains and decreased brain levels of enzymes involved
in the protection against oxidative states (Gong and O'Bryant
2010). Consistent with these results, we found that As at
50 ppm impaired state-dependent learning and memory abilities
by induction of oxidative stress, increased lipid peroxidation
and GSH depletion that resulted in decreased brain mitochon-
drial dehydrogenase activity and membrane potential.
Appropriate nutrition is a major factor in preserving neural
and cognitive function during the lifetime of individuals. HFD
contributed to cognitive failure in aging and accelerated the
development of dementia (Thirumangalakudi et al. 2008).
HFD also aggravates the impairment of cognitive functions
resulting from traumatic brain damage (Wu et al. 2003), cere-
bral ischemia/reperfusion injury (Li et al. 2007) and intermittent
hypoxia (Goldbart et al. 2006). Even in the healthy animals,
HFD debilitated learning and memory (Pathan et al. 2008) in
both males and females (Greenwood and Winocur 2005). In

contrast, diets rich in monounsaturated fatty acids, fruits and
fibers protected cognitive performance and improved memory
scores in the elderly (Alzoubi et al. 2013; Cole et al. 2005). The
precise mechanism for HFD related cognitive deficiency has
not been fully understood. Although fatty diet may have some
direct effects on the neuronal function but at the same time can
be a main contributor to other chronic diseases, such as cardio-
vascular disease, hypertension, type 2 diabetes mellitus and
depression, all of which are considered risk factors for cognitive
decline and dementia (Luchsinger et al. 2002).

Several studies have reported that diet rich in fat is associated
with heightened oxidative status and lipid peroxidation (Ding
et al. 2013; Ribeiro et al. 2009). Recent studies showed that
chronic consumption of HFD is associated with cognitive im-
pairment in rats through impaired antioxidative mechanisms
and increased oxidative stress in the hippocampus (Park et al.
2010). In addition HFD are known to increase inflammation,
which may adversely affect cognition. Chronic inflammation in
adipose tissue caused by HFD or obesity is believed to contrib-
ute to insulin sensitivity which, may influence learning and
memory. Results of the above mentioned reports are consistent
with our study in which long term consumption of HFD (for
16 weeks) impaired normal memory. In the present study
chronic HFD feeding induced oxidative stress and imbalance
of ROS and antioxidant enzyme activities, as well as increased
level of MDA and decreased GSH level in the mice brain which
may be responsible for cognitive impairment. The significant
increase in brain MDA and decreased the GSH levels in con-
comitant with HFD and As administration compared to HFD or
As alone treated mice and their higher deleterious effects on
memory are in agreement with results of step-down passive
avoidance task that assesses the ability of the animals to retain
and recall information.

In summary, findings of the present study demonstrated
that the ingested arsenic entered and accumulated in the brain
which together with HFD more impaired state-dependent
memory. The neurotoxicity of arsenic and HFD may perhaps
be due to their adverse effects on the brain mitochondria and
oxidative stress implementation which can then be responsible
for the behavioral changes in animal models. More studies are
required to clarify the exact toxic mechanisms of inorganic
arsenic and HFD on the brain and behavior.
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