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Abstract

Due to its ability to cross blood brain barrier and placenta, dibutyl phthalate (di-n-butyl phthalate, DBP) is expected to cause severe
side effects to the central nervous system of animals and humans. A little data is available about the potential DBP neurotoxicity;
therefore, this work was designed to investigate the brain tissue injury induced by DBP exposure. Forty Wister albino rats were
allocated randomly into 4 groups (10 rats each). Group 1 served as control and the rats administered with physiological saline (0.9%
NaCl) orally for 12 weeks. Groups 2, 3 and 4 were orally treated with DPB (100, 250 and 500 mg/kg) respectively for 12 weeks.
DBP-intoxicated rats showed a disturbance in the oxidative status in cerebral cortex, striatum and brainstem, as represented by the
elevated oxidants [malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2-deoxyguanosine (8-OHdG)] and the decreased anti-
oxidant molecules [reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and
glutathione reductase (GR)]. DBP also enhanced a pro-inflammatory state through increasing the release of tumor necrosis factor- o¢
(TNF-«) and interleukin-13 (IL-1{3). The increase of these cytokines was associated with the increase of pro-apoptotic proteins
[Bcl-2 associated X protein (Bax) and caspase-3] and the decrease of the anti-apoptotic protein, B cell lymphoma 2 (Bcl-2). In
addition, the levels of norepinephrine (NE), dopamine (DA) and acetylcholine esterase (AChE) activity were decreased. This was
accompanied by the alterations in the major excitatory and inhibitory amino acids neurotransmitters levels. The present findings
indicated that DBP could exert its neuronal damage through oxidative stress, DNA oxidation, neuroinflammation, activation of
apoptotic proteins and altering the monoaminergic, cholinergic and amino acids transmission.
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Introduction

Di-n-butyl phthalate (DBP) belongs to the phthalate esters
which are ubiquitous environmental hazards and known to
disturb the endocrine functions through affecting hormones
synthesis and metabolism or competing with their receptors
leading to the suppression of the hormonal response Tabb and
Blumberg (2006). DBP is used commonly as plasticizer in
different industries such as clothing, pharmaceuticals, toys,
furniture, medical devices and cosmetics (Wojtowicz et al.
2017). Human exposed mainly to DBP through the
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consumption of contaminated food, skin absorption and pol-
luted air resulted from the manufacturing processes (Heudorf
et al. 2007). Once inhaled or ingested, DBP is absorbed rap-
idly due to its lipophilic nature. DBP has the ability to cross
placenta and blood brain barrier and accumulate in the brain
tissue and other organs (Fujii et al. 2003; Kavlock et al. 2006).
In addition, the existence of DBP in the body fluids has been
reported (Calafat et al. 2006; Faniband et al. 2014).
Numerous reports connected between the exposure to
DBP and the developmental, reproductive, neuronal, im-
mune, cardiovascular and metabolic consequences in
humans and animals (de Mello Santos et al. 2017; Gao
et al. 2017; Mahaboob Basha and Radha 2017; Mariana
et al. 2016). But still the precise mechanisms involved in
DBP induce these health adverse events aren’t clear.
There is growing evidence that the imbalance between
the oxidant/antioxidant systems following the ROS pro-
duction play a fundamental role in DBP-induced toxicity
(Zhou et al. 2011, 2010; Zhu et al. 2017). Zhu et al.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11011-018-0341-0&domain=pdf
http://orcid.org/0000-0002-1520-1601
mailto:ramikassab@mail.muni.cz

236

Metab Brain Dis (2019) 34:235-244

(2017) reported that, oxidative stress caused renal
fibrosis and dysplasia in adult rat offspring treated with
DBP. Also Yan et al. (2016) confirmed the involvement
of oxidative stress in DBP induces neurotoxicity and
behavioral alterations in Kunming mice. Moreover,
Wojtowicz et al. (2017) demonstrated that DBP induced
neuronal damage via activating apoptotic cell death and
ROS production in murine cortical neurons.
Furthermore, it has been recorded that, the prenatal
treatment with DBP decreased number of neurons and
modified the structure of hippocampus in the offspring
rats leading to learning and memory dysfunctions (Li
et al. 2013). Previous studies showed that, DBP affect
the neurobehavioral and cognitive abilities in rats and
humans (Li et al. 2009; Lien et al. 2015). Moreover,
DBP disturbed the functions of nicotinic acetylcholine
receptors via suppressing the calcium signaling in hu-
man neuroblastoma and bovine chromaffin cells (Liu
et al. 2009; Lu et al. 2004). However, still little data
is available describing the effect of DBP on the murine
brains. Therefore, the objective of the current study is to
characterize the changes in oxidant/antioxidant systems,
inflammatory response, apoptotic proteins, monoamines,
acetylcholine esterase activity, excitatory and inhibitory
neurotransmitters which may follow the exposure to
DBP in cerebral cortex, striatum and brainstem of rats.

Materials and methods
Chemicals and experimental animals

n-butyl phthalate (CsHys—1,2-[CO,(CH,);CHs],) was supplied
from Sigma (St. Louis, MO, USA). All other chemicals and
reagents used in this study were of analytical grade. Double-
distilled water was used as the solvent.

Forty Wistar strain albino rats (150—170 g) obtained from
the NODCAR Animal House, NODCAR, Giza, Egypt, were
used for the study. The rats were housed in wire mesh cages
under standard conditions (temperature 25-29 °C, 12 h light
and 12 h darkness cycles). Animals were fed with pelleted
standard rat diet and water ad libitum. Generally, the study
was conducted in accordance with the recommendations from
the declaration of Helsinki on guiding principles in care and
use of animals.

Rats were divided randomly into 4 equal groups (10 rats
each) as follow:

Group 1 served as normal control and the rats were re-
ceived normal saline orally for 12 weeks. Groups 2, 3 and
4 were orally treated with DPB (100, 250 and 500 mg/kg)
for 12 weeks according to Giribabu et al. (2014).
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Sample collection

Rats were sacrificed by decapitation 24 h after the last admin-
istration. Brain cortex, striatum and brainstem were rapidly
dissected, thoroughly washed with isotonic saline and then
weighed. Each brain tissue was homogenized in 75% aqueous
HPLC grade methanol (10% w/v). The homogenate was spun
at4000 r.p.m. for 10 min for the determination of monoamines
and amino acids, while for the estimation of the other bio-
chemical investigations; brain tissue was homogenized in an
ice-cold medium of 50 mM Tris-HCI (pH 7.4) to give a 10%
(w/v) homogenate. After being centrifuged at 3000 r.p.m. for
10 min at 4 °C, the supernatants obtained from the homoge-
nates was separated and stored at —80 °C. The total protein
content of the homogenates in all experiments was estimated
by the method of Lowry et al. (1951).

Determination of monoamines and free amino acids

The HPLC system consisted of quaternary pump; a column
oven, Rheodine injector and 20 pl loop, UV variable wave-
length detector. The report and chromatogram taken from data
acquisition program purchased from chemstation. The sample
was immediately extracted from the trace elements and lipids
by the use of solid phase extraction CHROMABOND column
NH2 phase cat. No.730031. the sample was then injected
directly into an AQUA column 150 mm 5 p C18, purchased
from Phenomenex, USA under the following conditions: mo-
bile phase 20 mM potassium phosphate, pH 2.5, flow rate
1.5 mL/min, UV 190 nm. Norepinephrine (NE), dopamine
DA), and serotonin (5-HT) were separated after 12 min. The
resulting chromatogram identified each monoamine position
and concentration from the sample as compared to that of the
standard purchased from Sigma Aldrich, and finally, the de-
termination of the content of each monoamine as pg per gram
brain tissue was calculated according to Pagel et al. (2000).
Free amino acid neurotransmitters were detected by using the
precolumn PITC derivatization technique employed by
Heinrikson and Meredith (1984).

Oxidative stress markers in brain tissue

Malondialdehyde (MDA) was estimated using the meth-
od described by Ohkawa et al. (1979). Nitric oxide (NO)
was measured colorimetrically, using Griess reagent, ac-
cording to the method described by Green et al. (1982).
The protocol by Ellman (1959) was used for the deter-
mination of reduced glutathione (GSH). For the estima-
tion of 8-hydroxy-2-deoxyguanosine (8-OHdG), the iso-
lation and hydrolysis of brain DNA was performed using
the method of Lodovici et al. (1997).
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Endogenous antioxidant enzymes in brain tissue

Superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx), and glutathione reductase (GR) were
assayed based on the protocols described by (Nishikimi
et al. 1972), (Aebi 1984), (Paglia and Valentine 1967), and
(Factor et al. 1998), respectively.

Inflammatory markers in brain tissue

The concentration of tumor necrosis factor-o« (TNF-) and
interleukin-13 (IL-13) in the homogenates of brain were es-
timated using commercial ELISA kits (R&D System,
Minneapolis, MN, USA) according to the manufacturers’
procedures.

Estimation of apoptotic markers in brain tissue

Brain homogenates were made in lysis buffer and analyzed
using a colorimetric caspase-3 assay kit (Sigma-Aldrich Co.
USA) according to the manufacturer’s instructions. The con-
centrations of caspase-3 in brain lysates were calculated with
the help of the calibration curve generated using known
amounts of standards. B cell lymphoma 2 (Bcl-2) and Bcl-2
associated X protein (Bax) levels were measured in the brain
tissue lysates by ELISA kits, (LifeSpan BioSciences, Inc.,
Seattle, WA, USA). The procedure was performed according
to instructions of manufacturer. Levels were expressed as ng/
mg tissue protein.

Statistical analysis

One-way analysis of variance (ANOVA) was used for the
statistical analysis with post-hoc Tukey’s test. Results are
expressed as the mean+ SD (standard deviation).
Differences were considered statistically significant at p values
<0.05.

Results

The oral treatment with DBP (100, 250 and 500 mg/kg) elic-
ited a delirious effects in the oxidant-antioxidant system in the
examined brain regions. ANOVA revealed that, the oral ad-
ministration with DBP for 12 weeks produced a significant
increase (p < 0.05) in the levels of MDA and NO in cerebral
cortex, striatum and brainstem. In addition, 8-OHdG level was
increased in cerebral cortex and striatum, but in brainstem, this
increase was recorded only in rats treated with 500 mg/kg as
compared to the control group. Meanwhile, the content of
GSH was markedly decreased (Fig. 1a-d). DBP exposed rats
showed a disturbance in the activities of endogenous antioxi-
dant enzymatic system in all tested brain areas. The treatment

for 12 weeks with DBP caused a significant decline (p < 0.05)
in the activities of SOD, CAT, GPx and GR in comparison
with the control levels in the cerebral cortex, striatum and
brainstem (Fig. 2a-d).

To estimate the potential inflammatory response following
the exposure to DBP, the cytokines namely, TNF-« and IL-1f3
were measured in the selected brain areas. In comparison to
the control group, the tested inflammatory mediators elevated
significantly (p <0.05) in the cerebral cortex, striatum and
brainstem (Fig. 3a, b).

To understand the molecular mechanism which may in-
volved in DBP intoxication, our findings showed a significant
up regulation in the expression of pro-apoptotic proteins (Bax
and caspase-3) while the level of anti-apoptotic protein (Bcl-
2) was down regulated when compared to the control group in
all tested brain tissues (Fig. 4a-c).

To evaluate the effect of DBP on the monoaminergic sys-
tem, the levels of NE, DA and 5-HT were estimated in the
cortical, striatal and brainstem homogenates. The results in
Fig. 4 illustrated that the levels of NE and DA were decreased
significantly (p <0.05), while the content of 5-HT didn’t
changed following the chronic treatment with DBP as com-
pared to the normal levels. Interestingly, the cholinergic activ-
ity was also inhibited in cerebral cortex and striatum and mid-
brain in a dose dependent effect (Fig. 5a-d). Parallel to the
effect on the monoaminergic and cholinergic systems, the
content of the major excitatory and the inhibitory amino acids
were evaluated in the current study. The treatment with the
selected DBP doses for 12 weeks elevated the levels of gluta-
mate in the cerebral cortex only, while aspartate was increased
in cerebral cortex, striatum and brainstem. In contrast, the
levels of GABA were significantly decreased in all examined
brain tissues, while glycine content didn’t changed when com-
pared to the control values (Fig. 6a-d).

Discussion

Phthalates are universal environmental contaminants causing
several health problems in humans and animals. DBP is the
second most common used phthalate compound in the indus-
trial products as a plasticizer and solvent (Schettler 2006).
Few reports focused on the neurochemical changes following
DBP exposure, therefore, we aimed to evaluate the potential
neurotoxicity which may follow the exposure to DBP through
estimating the levels of oxidative status, pro-inflammatory
cytokines, apoptotic proteins, monoaminergic system, acetyl-
choline esterase activity, excitatory and inhibitory amino acids
in cerebral cortex, striatum and brainstem of Wister male al-
bino rats. Our findings recorded a disturbance in the oxidative
status in all studied brain tissues as a results of chronic DBP
intoxication, as evidenced by the elevation of MDA, NO and
8-OHdG levels and the suppression of GSH content, this was
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Fig. 1 Effects of oral administration of di-n-butyl phthalate (DBP) on MDA, NO, 8-OHdG and GSH levels in cerebral cortex, striatum and brainstem of
rats. Data are expressed as the mean + SD (= 10). *p < 0.05 vs. the control group using Tukey post hoc test

accompanied with inactivation of the endogenous antioxidant
and detoxifying enzymes including SOD, CAT, GPx and GR.
It is well known that brain is the most susceptible organ to
oxidative stress as a result of consuming oxygen in large quan-
tity, contains unsaturated fatty acids which are labile to perox-
idation; in addition, brain has a lower activity of the antioxi-
dant defense enzymes when compared to the other organs
(Uttara et al. 2009). There are several reports confirmed the
crucial role of oxidative stress in the progression of neurode-
generative diseases (Escudero-Lourdes 2016; Kassab and El-
Hennamy 2017). MDA is widely used as a lipid peroxidation
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biomarker in cells and tissues (Al-Olayan et al. 2015). The
elevation in MDA levels has been attributed to the formation
of reactive oxygen species (ROS) in the brain tissue after the
exposure to phthalates in a dose dependent effect (Peng 2015;
Yan et al. 2016; Zuo et al. 2014). NO is an important intracel-
lular and extracellular biological mediator controlling differ-
ent mechanisms in the nervous, cardiovascular and the im-
mune systems (Aktan 2004). The hazard of NO comes from
the interaction with superoxide radical (O, ) to produce
peroxynitrite (ONOO ) which is highly cytotoxic agent
(Shaw et al. 2005). The increase in NO level is also observed
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Fig. 2 Effect of di-n-butyl phthalate (DBP) intoxication for 12 weeks on SOD, CAT, GPx and GR activities in cerebral cortex, striatum and brainstem of
rats. Data are expressed as the mean + SD (= 10). *p < 0.05 vs. the control group using Tukey post hoc test

by Yavasoglu et al. (2014) following the exposure to butyl
cyclohexyl phthalate in mice, the authors attributed this be-
havior to the over expression of iNOS resulted from oxidative
damage. The increased MDA and NO in the present study
may reflect the overproduction of reactive oxygen species
and reactive nitrogen species in the examined brain tissue. 8-
OHAG is a sensitive marker for DNA oxidative damage (Al
Omairi et al. 2018). A positive correlation between phthalate
exposure and 8-OHdG concentration in humans and animals
has been reported (Franken et al. 2017; Lee et al. 2007; Rocha

et al. 2017; Shono and Taguchi 2014). GSH is a non-
enzymatic antioxidant plays an important role in protecting
the cells and tissues through scavenging ROS (Al-Olayan
et al. 2016). It has been reported that the decrease in the con-
tent of GSH is associated with the increase in ROS production
and the elevation in lipid peroxidation which causes overcon-
sumption of functional thiol (-SH) groups in the enzymatic
and non-enzymatic system (Zuo et al. 2014). Yan et al.
(2016) found that the treatment with DBP enhances ROS gen-
eration, a drastic elevation in lipid peroxidation levels and

@ Springer
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Fig. 5 The content of monoamines (DA, NE and 5-HT) and AChE activity in cerebral cortex, striatum and brainstem of rats following di-n-butyl
phthalate (DBP) exposure. Data are expressed as the mean + SD (1 = 10). *p <0.05 vs. the control group using Tukey post hoc test

apoptotic effect to the over expression of aryl hydrocarbon
receptors. Additionally, Li et al. (2013) found that prenatal
exposure to DBP activated significantly caspase-3 in the
hippocampi of rats. Moreover, diisononyl phthalate exposure
elevated ROS levels and caspase-3 activity in mice brain
tissues (Peng 2015). Furthermore, the expression of Bax
and caspase-3 were up regulated, but Bcl-2 remained un-
changed in mice brain following the treatment with a mix-
ture of phthalates and arsenate (Mao et al. 2016).
Neurotransmitters are chemical messengers produced
from nerve cells and have multiple pivotal roles in the
nervous system (Marc et al. 2011). The estimation of the
neurotransmitters plays an important role to understand

the development of several neurological diseases and to
evaluate the treatment strategies efficiency (Cook 2008).
In our experiment, NE and DA content were declined in
the tested brain regions after DBP exposure but 5-HT
levels unaltered. DBP also suppressed significantly
AChE activity in the brain tissue in the present study.
Moreover, the excitatory amino acids levels (aspartate
and glutamate) were significantly increased, while the
major inhibitory amino acids GABA, was decreased.
Mice treated with benzyl butyl phthalate for two weeks
showed a disturbance in learning and memory functions
and impaired neurotransmission (Min et al. 2014). In
contrast to our findings, Carbone et al. (2010) recorded
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butyl phthalate (DBP) exposure. Data are expressed as the mean + SD (n = 10). *p < 0.05 vs. the control group using Tukey post hoc test

a decrease in aspartate and an increase in GABA con-
tents in rat treated with di-(2-ethylhexyl) phthalate. We
suggest that, the alterations in the monoaminergic, AChE
and amino acids transmitters in the current study might
be due to the imbalance between the oxidants and the
antioxidants and the activation of apoptotic cell death
in the brain tissue following DBP exposure.

Conclusion

DBP-exposed rats showed a disturbance in the oxidative
status, as represented by the elevated oxidants (MDA, NO,

@ Springer

8-OHdG) and the decreased antioxidant defense system
(GSH, SOD, CAT, GPx and GR). DBP also enhanced a
pro-inflammatory state through increasing the release of
TNF-o¢ and IL-13. The increase of these cytokines was as-
sociated with the increase of pro-apoptotic proteins (Bax and
caspase-3) and the decrease of the anti-apoptotic protein
(Bcl-2). In addition, the levels of NE and DA were de-
creased. AChE activity was also suppressed. This was ac-
companied by the alterations in the major excitatory and
inhibitory amino acids neurotransmitters in the cerebral cor-
tex, striatum and brainstem of adult male Wister albino rats.
However, further studies are required to explain the molecu-
lar mechanisms involved in DBP-induced neuronal damage.
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