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Excessive corticosterone induces excitotoxicity of hippocampal neurons
and sensitivity of potassium channels via insulin-signaling pathway
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Abstract
Corticosterone (CORT) is a kind of corticosteroid produced by cortex of adrenal glands. Hypothalamic–pituitary–adrenal (HPA)
axis hyperfunction leads to excessive CORT, which is associated with depression. Few studies have investigated the role of
CORT in voltage-gated ion channels and its upstream signaling pathway in central nervous system. In this study, we investigated
the mechanism of excessive CORT resulting in brain impairment on voltage-gated ion channels, and its upstream signaling
effectors in hippocampal CA1 neurons. The action potential (AP) and voltage-gated potassium currents were determined by
using whole-cell patch-clamp. Insulin and CORT improved the neuronal excitability. Independent effects existed in transient
potassium channel (IA) and delay rectifier potassium channel (IK). The inhibition of potassium currents, IA in our experiment,
could increase neuronal excitability. CORT led to the excitotoxicity of hippocampal neurons via phosphatidylinositol 3 kinase
(PI3K)-mediated insulin-signaling pathway. Therefore, the stimulation of excessive CORT induces excitotoxicity of hippocam-
pal neurons and sensitivity of potassium channels via PI3K-mediated insulin-signaling pathway, which indicates one possible
way of depression treatment.
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Introduction

The primary physiological function of glucocorticoids (corti-
sol in humans and corticosterone in rodents) (Grinevich et al.
2012) is to mediate the specificity and magnitude of neural,
behavioral and hormonal responses to stress (Lucassen et al.
2014). The impaired feedback regulation of hypothalamic-
pituitary- adrenal (HPA) axis results in the increased level of
corticosterone (CORT) (Buhl et al. 2010; Lee et al. 2015).
Short-term and long-term of excessive CORT have the pro-
found influence on physiological and neurobehavioral func-
tions during adolescent development (Kinlein et al. 2017).

Insulin signaling has been studied extensively in peripheral
organ systems and central nervous system (CNS) (Chiu and
Cline 2010; Dai et al. 2014). Particularly, it is reported that
insulin signaling plays various roles in CNS, including the
regulation of neuronal survival, synaptic plasticity, cognition,
and memory (Chiu et al. 2008). Insulin resistance can be in-
duced by CORT treatment, including the reduction of associ-
ated intracellular pathways and insulin receptor (IR) activation
(Buhl et al. 2010; Dobarro et al. 2013; Solas et al. 2013).
Chronic CORT treatment can alter gene expression of
insulin-signaling pathway, resulting in the impairment of
learning and memory function (Osmanovic et al. 2010). In
addition to responding through gene-mediated signaling path-
ways, CORT can also rapidly and reversibly change
nongenomic hippocampal signaling within minutes after
stress-induced elevation of corticosteroid level (Karst et al.
2005). Short-termCORTadministration and peripheral insulin
resistance can damage insulin signaling in rat hippocampus
(Piroli et al. 2007).

Ion channels are vital to the activation of action potential
(AP) and the maintaining of resting membrane potential. AP is
a fundamental property of hippocampal neurons, which mainly
reflects the excitability of cell membrane. It has been
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demonstrated that toxic impairments could lead to neuronal
excitotoxicity by virtue of modifying AP (Chen et al. 2013).
Voltage-gated potassium ion (K+) channels have been demon-
strated similar characteristics in pancreaticβ-cells, smooth mus-
cle cells and central neurons (Teramoto 2006). K+ channels
affect resting membrane potential, influence repolarization and
depolarization, and alter waveform and frequency of AP.

Depression is a common debilitating mood disorder and
becomes the second disease contributing to the disability
worldwide (Cai et al. 2015). Some studies showed that
CORTwas associated with cognitive impairments and behav-
ior changes, such as depression (Aurand et al. 2016; Grinevich
et al. 2012; Lee et al. 2015). CORT suggested a possibility of
exploring the mechanism of antidepressants (Aurand et al.
2016). Several effective antidepressant drugs and therapies
that regulate cortisol secretion have shown promise in clinical
trials (Johnson et al. 2006). However, the definite changes of
excessive CORT in voltage-gated ion channels in CNS and its
upstream signaling effectors remain unclear. In this study, we
constructed an in vitro model of excessive CORT (Karst et al.
2005) to explore its impact on voltage-gated ion channels and
insulin-signaling pathway in hippocampal CA1 pyramidal
neurons. We reported that the stimulation of excessive
CORT induced excitotoxicity of hippocampal neurons and
sensitivity of potassium channels via phosphatidylinositol 3
kinase (PI3K)-mediated insulin-signaling pathway, which
played an important role in cognitive diseases.

Material and methods

Slice preparation

The experimental protocol was approved by the local Ethical
Committee of Nankai University. MaleWistar rats (10-14d on
postnatal days) were used in the experiment (Yin et al. 2017).
They were purchased from the Laboratory Animal Center,
Academy of Military Medical Science of People’s Liberation
Army, and temporarily fed in the animal house of Medicine
School, Nankai University. After the rats were decapitated,
their brains were quickly removed and immersed in an ice-
cold and oxygenated (95%O2 and 5% CO2) dissection buffer,
containing the following (in mM): 220 sucrose, 2.5 KCl, 6
MgCl2, 1 CaCl2, 1.23 NaH2PO4, 26 NaHCO3 and 10
Glucose, and pH 7.4. Subsequently, hippocampal slices
(400 μm thick) were cut using a vibratome (VT1000S,
Leica, Germany). They were placed in a water bath kettle
and incubated with artificial cerebrospinal fluid (ACSF) con-
taining the following (in mM):125 NaCl, 25 NaHCO3, 1.25
NaH2PO4, 1.25 KCl, 1.5 MgCl2, 2.0 CaCl2 and 10 Glucose,
and pH 7.4 (saturated with 95% O2–5% CO2). Then, slices
were used for whole-cell patch-clamp recording and Western
blot assay.

Drug application

The final concentrations of CORT and insulin were 0.1 μM
and 0.5 μM, respectively. CORT was dissolved in ethanol.
The concentration of ethanol was less than 0.009% (Karst
et al. 2005). Transient outward potassium current (IA) and
delay rectifier potassium current (IK) were two types of
voltage-dependent potassium channels. IA and IK were sepa-
rated by 25 mM tetraethylammonium chloride (TEA-Cl) and
3 mM 4-Aminopyrodine (4-AP) (Chen et al. 2014; Liu et al.
2014). Tetrodotoxin (TTX, 1 μM) and CdCl2 (0.2 mM)
blocked sodium and calcium channels, respectively. TTX
was purchased from the Research Institute of the Aquatic
Products of Hebei (China). TEA-Cl, 4-AP, CdCl2, EGTA,
HEPES and ATP-Na2 were obtained from Sigma (USA),
and other reagents were of A.R. grade.

Whole-cell patch-clamp recording

Whole-cell patch-clamp recordings obtained from the CA1
hippocampal neurons using a patch-clamp amplifier (EPC-
10, HEKA, Germany). It was viewed with an upright micro-
scope (BX51WI, Olympus, Japan) and visualized on a televi-
sion monitor connected to a low-light-sensitive CCD camera
(710 M, DVC, USA). After transferred into a glass-bottomed
recording chamber, slices were submerged in 1 ml oxygenated
ACSF solution. The patch electrodes were made into opening
tips of 1-2 μm by a vertical puller (PIP5, HEKA, Germany).
Then, electrodes with 4–8 MΩ electrical resistance were filled
with standard solution, containing the following (in mM): 140
KCl, 10 HEPES, 10 EGTA, 2 MgCl2·6H2O and 2 ATP-Na2,
and pH 7.4. All cells were held at −70 mVwhen slow and fast
capacitance compensation was automatically performed.

Western blot assay

Hippocampal slices were used for Western blot assay. Slices
were incubated in ACSF for 1 h before treatment with CORT
and insulin. Preparation of tissue lysates has been described in
our previous studies (Xu et al. 2012). Equal protein loading
was separated by SDS-PAGE, and it was transferred to
polyvinylidene-difluoride (PVDF) membranes. Non-specific
binding sites on membranes were incubated with blocking
buffer, which was 5% fat-free milk powder in Tris-buffered
saline including 5% Tween 20 (TBST) for 1 h at room tem-
perature. Membranes were incubated in the following anti-
bodies: primary antibodies (anti-PI3K, 1:2000 dilution, CST;
anti-Akt, 1:2000 dilution, CST; anti-p-Akt, 1:2000 dilution,
CST; anti-β-actin, 1:2000 dilution, Abcam) overnight at
4 °C and horseradish peroxidase-conjugated secondary anti-
bodies (anti-rabbit IgG, 1:2500 dilution, Invitrogen) for 1 h at
room temperature. Blots was detected by a chemiluminescent
imaging system (Tanon 5500, Tanon Science & Technology
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Co., Ltd., China). Ser473 of p-Akt was tested. β-actin was
served as an internal control on the same Western blots. The
experiments repeated at least three times.

Data acquisition and analysis

Whole-cell patch-clamp data were acquired with a patch-clamp
amplifier (EPC-10, HEKA, Germany) and analyzed by
Clampfit 10.5, Origin 9 and SPSS 22. Western blot assay data
were detected by a chemiluminescent imaging system (Tanon
5500, Tanon Science & Technology Co., Ltd., China) and an-
alyzed by Photoshop CS6, Origin 9 and SPSS 22. Paired sam-
ple t test was applied in vehicle and vehicle-insulin groups,
CORT and CORT-insulin groups. The activated currents were
converted to conductance (G) using the formula: G= I/(Vm -
Vr), where Vr was reversal potential. The current-voltage
curves, activation curves and steady-state inactivation curves
were respectively fitted with Boltzmann function: I = 1/{1 +
exp[(Vm – Vh1)/k]}, G/Gmax = 1/{1 + exp[(Vm – Vh2)/k]} and
I/Imax = 1/{1 + exp[(Vm – Vh3)/k]}. Vh1 was the voltage of
half-maximal activation. Vh2 was the voltage of half-maximal
conductance. Vh3was the voltage of half-maximal inactivation.
k was a slope factor. The recovery time of curves was fitted
with a mono-exponential function: I/I max = A{1 - exp[Δt/τ]},
where I was current amplitude at time of Δt, Awas the coeffi-
cient of amplitude and τ was the time constant.

The values were expressed as means ± SEM. p < 0.05 was
recognized as significant difference.

Results

As shown in Fig. 1, there were four groups in our experiment.
Before recording, the vehicle group received no treatment and
the CORT group was pretreated with CORT for 5 min. The
recordings of vehicle and CORT groups were performed
5 min after the establishment of recording pattern. The record-
ings of vehicle-insulin and CORT -insulin groups were per-
formed 5 min after insulin treatment.

Effects of corticosterone on the excitability
of hippocampal neurons

AP is used for describing the property of excitability of hip-
pocampal pyramidal neurons. The frequency of AP was
evoked by a 50 pA depolarizing current injection, 500-ms
maintained (Fig. 2a). After insulin application, the frequency
of AP was significantly increased by 15.50 ± 5.80% (Fig. 2c,
p < 0.05, t = −2.67, paired sample t test; n = 6; % of vehicle).
However, after pretreatment with CORT, the frequency of AP
was not influenced by insulin (Fig. 2c, p > 0.05, t = −0.70,
paired sample t test; n = 6; % of CORT). There was a marked
increase in the frequency of AP (Fig. 2e, p < 0.01,t = −3.20,
independence sample t test; n = 6) induced by CORT itself.
The results indicated that insulin or CORT could increase the
excitability of neurons. However, insulin had no effect on the
AP frequency increased by CORT.

The half-width of AP was elicited by a 5-ms depolarizing
current pulse of 100 pA (Fig. 2b). After treatment with insulin,
the half-width of AP increased by 10.06 ± 3.65% (Fig. 2d, p <
0.05, t = −2.76, paired sample t test; n = 6; % of vehicle). After
pretreatment with CORT, insulin increased the half-width by
14.37 ± 2.8% (Fig. 2d, p < 0.01, t = −5.12, paired sample t test;
n = 6; % of CORT). CORT itself showed no effect on the half-
width of AP (Fig. 2e, p > 0.05, t = −1.21, independence sam-
ple t test; n = 6). The results implied that insulin had an evident
influence on the half-width of AP. CORT showed no effect on
the half-width of AP and no mutual interference with insulin.

Effects of corticosterone on the I-V changes of IA
and IK

To record IA, the holding potential was −70 mV, and the cur-
rent traces of IA were evoked by using an 80 ms constant
depolarizing pulse from −50 to +90 mV in increments of
10 mV (Fig. 3a). IK was obtained using a 300 ms constant
depolarizing pulse by a similar pulse protocol (Fig. 3b). The
current-voltage curves of IA and IK in four groups were fitted
well with the Boltzmann equation: I = 1/{1 + exp[(Vm–Vh)/
k]}. The detailed parameter list was showed in Table 1. After
insulin application, IA currents were decreased significantly
(Fig. 3c, p < 0.05, t = −3.10, paired sample t test; n = 6; %
of vehicle) while IK currents had no significant change (Fig.
3d, p > 0.05, t = −0.14, paired t test; n = 8; % of vehicle) at
different command potentials. After pretreatment with CORT,
the effect of insulin on IA currents was abolished (Fig. 3c, p >
0.05, t = −0.10, paired t test; n = 6; % of CORT), and the effect
of insulin on IK currents had no significant change (Fig. 3d, p
> 0.05, t = −2.14, paired sample t test; n = 6; % of CORT).
CORTalone had no effect on IA and I K currents (Fig.S1a, b). It
showed that insulin could effectively reduce the amplitudes of
IA currents. After pretreatment with CORT, however, insulin
had no effect on the amplitudes of IA currents.

Fig. 1 The schematic of four groups with different treatments. -5 min
represented the time before the establishment of recording pattern, de-
fined as 0 min. Drugs in the ovals added at the appointed time. Rectangles
represented group and recording of electrophysiological indexes at a par-
ticular time. The concentration of ethanol was less than 0.009%. cort =
corticosterone; ins = insulin
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Effects of corticosterone on the activation kinetics
of IA and IK

The activation kinetics curves of IA and IK in four groups were
visible (Fig. 3e, Fig. 3f), which were fitted well with the
Boltzmann equation: G/Gmax = 1/{1 + exp[(Vm–Vh)/k]}. It
showed that after the addition of insulin for 5 min, the activa-
tion curves of IA and IK showed no visible alteration.
Moreover, after pretreatment with CORT, there were no sig-
nificant change in the activation curves of IA and IK with
insulin application. The detailed parameter list was shown in
Table 2. The CORT alone had no influence on the activation
curves of IA and IK (Fig.S1c, Fig.S1d).

Effects of corticosterone on the inactivation kinetics
of IA

To obtain the steady-state inactivation kinetics, neurons were
under the parameter: being at the holding potential of −70mV,
elicited with an 80 ms test pulse to +50 mV, proceeded by
80 ms prepulse to potentials between −110 and + 10 mV of
currents (Fig.4a). The amplitudes for IA currents were normal-
ized as I/I max, and the curves were fitted up with the
Boltzmann equation: I/Imax = 1/{1 + exp [(Vm – Vh)/k]. The
parameter of inactivation curves was displayed in Table 3. It

showed that insulin significantly reduced the Vh and increased
the slope factor of IA inactivation curves (Fig.4c). With CORT
pretreatment, there was no further change following insulin
administration. CORT alone showed no effect on the steady-
state inactivation (Fig.S1e).

Effects of corticosterone on the recovery
from inactivation of IA

To explore the kinetics of recovery from activation, neurons
were under the holding potential of −70 mVand applied with
an 80 ms conditioning depolarizing pulse of +50 mV that
completely inactivated the transient outward potassium chan-
nels. Then neurons were treated with an 80 ms test pulse of
+50 mV that was following a series of 80 mV intervals vary-
ing from 10 to 265 ms (Fig. 4b). The I2/I1 ratio signified the
recovery from inactivation, in which I1 was the peak value of
IA evoked by the conditioning pulse, and that of I2was evoked
by the test pulse. The recovery from inactivation of I2/I1 vs.
the interval of the 80 mV was well fitted up with a mono-
exponential function: I/Imax = A + B exp(−t/τ). It showed that
insulin did not influence the recovery from inactivation of IA
(Fig.4d). With CORT pretreatment, there were no further
change following insulin administration. CORT alone did
not make significant change in the recovery from inactivation

Fig. 2 Comparison of firing frequency and half-width of AP before and
after application of drugs in four groups. (a, b) A recording example
before and after application of drugs in four groups. The evoking firings,
depolarizing current (500 ms, 50 pA), stimulated the neurons to acquire
the distinction of insulin sensitivity in four groups. AP was evoked by

5 ms brief depolarizing current pulses in four groups. (c, d) Comparison
of firing frequency and half-width in four groups. (e) The contrast of
firing frequency and half-width between vehicle and cort groups. Data
were presented as means ± SEM. * p < 0.05, ** p < 0.01. cort =
corticosterone
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(Fig.S1f). τ, the parameter of recovery from inactivation of IA,
listed in Table 4.

Corticosterone alleviated the activation
of insulin-signaling pathway induced by insulin

As we know, the activation of insulin-signaling pathway can
upregulate the protein expression of Kv4.2 (Yao et al. 2012),

which is the main α-subunit of the transient potassium chan-
nels. Insulin activates the IR tyrosine kinase, which phosphor-
ylates and recruits different substrate adaptors. PI3K plays a
major role in insulin function and mainly phosphorylates the
downstream target protein, Akt. PI3K and Akt were deter-
mined by Western blot assay. The expression of PI3K was
significantly increased in the vehicle and vehicle-insulin
groups (Fig.5b, p < 0.05, t = −5.05, paired sample t test; n =

Fig. 3 Effects of corticosterone on the I-V relationship of IA and IK. (a, b)
A recording example before and after application of drugs in four groups.
IA and IK were obtained by 80 and 300 ms depolarizing pulses,
respectively, from a command potential of −50 to +90 mV in
increments of 10 mV, and the holding potential was −70 and − 50 mV,
respectively. Comparison of the effects of corticosterone on current-

voltage activation kinetics curves of IA (c) and IK (d) in four groups.
The steady-state activation kinetics curves of IA (e) and IK (f). The
current-voltage curves were fitted with a Boltzmann equation. Utilized
the eq. G= I/(Vm - Vr), amplitudes of IA and IK currents were converted
into conductance and fitted with a Boltzmann function. Data were pre-
sented as means ± SEM. * p < 0.05, ** p < 0.01. cort = corticosterone

Table 1 Effect of corticosterone on I-V curve of IA and IK

Groups IA (n = 6) IK

Vh (mV) k Vh (mV) k

vehicle 21.67 ± 1.11 29.36 ± 1.53 57.65 ± 1.31 33.52 ± 0.85
vehicle-insulin 32.95 ± 3.95* 35.82 ± 5.14 64.05 ± 1.22 33.98 ± 0.67
cort 39.16 ± 1.93 31.25 ± 1.97 49.98 ± 1.18 36.96 ± 0.96
cort-insulin 47.59 ± 2.89 33.44 ± 2.52 59.22 ± 0.79 45.31 ± 0.56

Vh the membrane potential at half-inactivation; k, slope factor

* p < 0.05 vs. vehicle and cort, respectively. t = -3.10 in Vh of vehicle-
insulin group

Table 2 Effect of corticosterone on the activation kinetics of IA and IK

Groups IA (n = 6) IK (n = 5)

Vh (mV) k Vh (mV) k

vehicle −16.06 ± 9.65 43.99 ± 7.22 28.34 ± 1.83 31.65 ± 2.46

vehicle-insulin 11.77 ± 3.03 27.22 ± 3.73 36.85 ± 1.95 35.93 ± 2.27

cort −1.33 ± 3.44 32.20 ± 3.38 13.88 ± 3.35 38.13 ± 5.33

cort-insulin 7.96 ± 1.65 28.55 ± 1.95 13.91 ± 3.59 43.90 ± 6.39

Vh, the membrane potential at half-activation; k, slope factor

* p < 0.05 vs. vehicle and cort, respectively
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3; % of vehicle) while no significant difference exists between
CORT and CORT-insulin groups (Fig.5c, p > 0.05, t = −0.61,
paired sample t test; n = 3;% of CORT).We also examined the
possible downstream proteins, Akt. It showed that insulin
treatment significantly increased the phosphorylation of Akt
compared to that of vehicle group (Fig.5d, p < 0.05, t = 4.53,
paired sample t test; n = 3), and the phosphorylation of Akt
was increased in the CORTand CORT-insulin groups (Fig.5e,
p < 0.05, t = −4.44, paired sample t test; n = 3). CORT alone
did not change the expression of PI3K (Fig.5f, p > 0.05, t =
−0.36, independence sample t test; n = 3) and the phosphory-
lation of Akt (Fig.5g, p > 0.05, t = −0.66, independence sam-
ple t test; n = 3). These results demonstrated that insulin pos-
sibly inhibited transient potassium currents via the activation

of PI3K signaling pathway, and CORT alleviated insulin-
induced inhibition of transient potassium currents by affecting
the activation of PI3K/Akt signaling pathway.

Discussion

Stress can induce activation of HPA axis and lead to excessive
corticosteroids released into the systemic bloodstream
(Russell et al. 2018). Excessive CORT, resulting from the
disorder of HPA axis, is vital to the progression of depression
(Grinevich et al. 2012; Johnson et al. 2006; Lee et al. 2015;
Wieczorek et al. 2015). Chronic CORT treatment induces cel-
lular changes of hippocampus, which can be prevented by
antidepressants (Buhl et al. 2010; Murray et al. 2008).
Neuroscientists have put forward a principal hypothesis that

Fig. 4 The steady-state inactivation kinetics curves of IA and recovery
from inactivation curves kinetics of IA. (a) Normalized steady-state inac-
tivation of IA before and after application of drugs. Currents were elicited
with a 80 ms test pulse to +50 mV proceeded by 80 ms prepulse to
potentials between −110 and + 10 mV. Steady-state inactivation of IA
was normalized as I/Imax and fitted with a Boltzmann function. (c)

Effects of corticosterone on IA steady-state inactivation kinetics curves.
(b) The recovery from inactivation of IA was well fitted with a mono-
exponential function. (d) Effects of corticosterone on the recovery from
inactivation of IA. Data were presented as means ± SEM. cort =
corticosterone

Table 3 Effect of corticosterone on the inactivation parameters of IA

Groups (n = 6) Vh (mV) k

vehicle −52.27 ± 0.79 5.50 ± 0.69

vehicle-insulin −59.64 ± 1.92 * 11.45 ± 1.75 *

cort −51.78 ± 0.97 8.44 ± 0.87

cort-insulin −57.50 ± 0.62 9.35 ± 0.55

Vh the membrane potential at half-inactivation; k, slope factor

* p < 0.05 vs. vehicle and cort, respectively

t = -3.57 in Vh of vehicle-insulin group, t = −3.30 in k of vehicle-insulin
group

Table 4 Effect of
corticosterone on the
recovery from
inactivation of IA

Groups τ (ms)

vehicle 23.50 ± 2.68

vehicle-insulin 27.04 ± 1.56

cort 28.14 ± 5.08

cort-insulin 28.74 ± 4.61

τ,the time constant for the recovery from
inactivation
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depression could result from excitotoxic damage to neurons in
hippocampus (Kudryashova 2015), which causes cognitive
impairments and behavior changes. Exposure to CORT results
in cognitive deficits in neurogenesis and synaptic plasticity

(Dobarro et al. 2013; Stranahan et al. 2008) or insulin resistant
with decreased IR phosphorylation (Solas et al. 2013). In this
study, we reported that the stimulation of excessive CORT
induced excitotoxicity of hippocampal neurons and sensitivity

Fig. 5 Effects of corticosterone on PI3K/Akt of CA1 neurons. (a) The
representative immunoreactive bands of PI3K (80 kDa), p-Akt (60 kDa)
and β-actin (43 kDa) of four groups. (b, c) Quantitative analysis of PI3K/

β-actin in four groups. (d, e) Quantitative analysis of Akt/p-Akt in four
groups. (f, g) Quantitative analysis of PI3K/β-actin and Akt/p-Akt be-
tween vehicle and cort groups.* p < 0.05, ** p < 0.01. (n = 3)
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of potassium channels by PI3K-mediated insulin-signaling
pathway,which played an important role in neuronal develop-
ment and maturation.

AP is the basic characteristic reflecting neuronal excitabil-
ity on CNS, which is regulated by ion channels in membrane.
Toxic impairment or activation of signaling pathways can
modify the excitability of neurons (Joseph and Turrigiano
2017; Larimore et al. 2017), which ultimately leads to neuro-
nal excitotoxicity (Chen et al. 2013). We observed that insulin
and CORT could increase the excitability of CA1 pyramidal
neurons. The increased frequency, induced by CORT, was not
increased further by insulin treatment (Fig.2). These results
suggest that CORT has mutual effect against insulin-induced
excitability.

Many toxins and drugs aim at ion channels of cell mem-
brane. K+ channels are important to repolarization and hyper-
polarization, which determine the excitability of neurons.
Transient potassium channel (IA) and delay rectifier potassium
channel (IK) are two main types of neuronal K+ currents. They
can be activated by depolarizing voltage gradually (Schroder
et al. 2000). IA plays an important role in repetitive firing of
AP while IK is associated with the process of repolarization
(Zhang and McBain 1995). In the present study, insulin effec-
tively restrained IA while insulin had no effect on IA with
CORT pretreatment (Fig.3). It suggests that CORT alters IA
to produce excitotoxicity on neurons and induces insulin re-
sistant. The block of potassium currents, IA in our study, could
increase the neuronal excitability. Short-termmodulation of IA
can arise from a rapid mechanism due to changes in voltage-
gating properties or intracellular trafficking of the channel
proteins (Yao et al. 2013). We observed that CORT applied

acutely to the bath solution significantly increased neuronal
excitability without modification of IA activation and inactiva-
tion properties, indicating that the mechanism of action of
CORT involved long-term effects. Therefore, we explored
its upstream signaling mechanism to explain this
phenomenon.

The dysregulation of PI3K/Akt pathway is implicated in a
number of human diseases including cancer, diabetes, cardio-
vascular disease and neurological diseases. Insulin enhanced
IR phosphorylation and activated potassium channels (Yasui
et al. 2008). Chronic CORT inactivated the IR-mediated path-
way, including the Akt/GSK-3β pathway, and resulted in the
cognitive deficits (Solas et al. 2013). In the present study, we
observed that insulin inhibited transient potassium currents via
the activation of PI3K-mediated signaling pathway, and
CORT possibly alleviated insulin-induced inhibition of tran-
sient potassium currents by affecting the activation of PI3K/
Akt signaling pathway. However, CORT could not inhibit the
activation of downstream signaling effectors of PI3K signal-
ing in hippocampal neurons (Fig. 5). It confirmed that Akt was
the important intermediate medium ofmultiple signaling path-
ways. A pathway-like picture was to describe the results
(Fig. 6).

The connection between stress and depression was drawn
from observations of elevated cortisol levels in depressed pa-
tients (Gold et al. 2015; Ulloa et al. 2010), which was one of
the most robust findings in biological psychiatry (Scott and
Dinan 1998). Cognitive impairments in hippocampal function
was related to cortisol levels in depressed patients (Brown
et al. 2004). The acute increase of glucocorticoid could effec-
tively induce depression (Xiao et al. 2017). In this study, we

Fig. 6 A pathway-like figure of
conclusion description. Insulin
could cause changes of AP, K-
currents and protein levels.
However, all these effects were
abolished with CORT pretreat-
ment. The mechanism would rely
on the PI3K-mediated insulin-
signaling pathway. Cort = corti-
costerone; ins = insulin; IR = in-
sulin receptor
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found that CORT regulated the excitability of hippocampal
neurons and the sensitivity of potassium channels through
insulin-signaling pathway. It implied a possible mechanism
of depression induced by elevated CORT. However, the
deeper mechanism of potassium channel activity in depression
process remained unknown. Other ion channels may have
interferences in potassium channels, such as sodium channels.
Due to all these possibilities, further studies need to explore
the deeper mechanism of depression, ion channels and
insulin-signaling pathway.

Conclusions

Corticosterone induces the neuronal excitotoxicity and possi-
bly alleviates insulin-induced inhibition of transient potassium
currents by affecting the activation of PI3K/Akt signaling
pathway. Insulin activates insulin-signaling pathway, and the
downstream effectors involves potassium channels.
Therefore, insulin-signaling pathway is a possible pathway
that CORT leads to insulin resistant and depression. Thus,
the CORT → insulin resistant → PI3K/Akt→ IA axis may
play an important role in neuronal development and depres-
sion treatment.
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