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Abstract

Post-traumatic stress disorder (PTSD) is the serious psychiatric disorder. Paeoniflorin (PF) produces the antidepressant-like
properties. However, few studies are concerned about its anti-PTSD-like effects and mechanisms. To investigate these, the single
prolonged stress (SPS) model was utilized. PTSD-like behavioral deficits in rats after exposure to SPS were improved by PF (10
and 20 mg/kg, i.p.), evidenced by blocking increased freezing time in contextual fear paradigm (CFP) and increased time and
entries in open arms in elevated plus maze (EPM) test without affecting the locomotor activity in open field (OF) test. We also
found that increased levels of corticosterone (Cort), corticotropin releasing hormone (CRH) and adrenocorticotropic hormone
(ACTH) after exposure to SPS were reversed by PF (10 and 20 mg/kg, i.p.) in serum, respectively. Moreover, the decreased levels
of serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus were reversed by PF (10
and 20 mg/kg, i.p.), respectively. In summary, the anti-PTSD-like activities of PF were associated with the modulation of HPA

axis and 5-HT system activation.
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Introduction

Post-traumatic Stress Disorder (PTSD) is a prevalent and
chronic psychiatric disorder that develop from exposure to
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traumatic events (Muhtz et al. 2012). The patients with PTSD
exhibit psychiatric comorbidities, such as major depression and
generalized anxiety (Beristianos et al. 2016). So far, the pathol-
ogy of PTSD is remain unclear. Researches into the underlying
neurobiology of PTSD has implicated alterations of various
neurotransmitters and neuroendocrine systems, including dys-
regulation of the monoaminergic neurotransmission and
hypothalamic-pituitary-adrenal (HPA) axis (Fenchel et al.
2015; Kozaric-Kovacic 2008). The dysregulation of HPA axis
may promote stress-related illnesses (e.g. depression, PTSD)
(Raineki et al. 2016). Taking corticosterone (Cort) for example,
administration of Cort in rodents could induce depressive-like
behavior. Previous study showed that repeated Cort injection
paradigm provided a useful and reliable mouse model within
which to further study the role of stress and glucocorticoids in
depressive illness (Zhao et al. 2008). Other studies also support
that Cort induced anxiogenic- and depressive- like behavior as
observed by increased immobility time in the tail suspension
test and decreased sucrose consumption (Oliveira et al. 2017).
Enhanced negative feedback inhibition of HPA axis may be a
risk factor for PTSD. The levels of HPA stress hormones, such
as Cort, corticotrophin releasing hormone (CRH) and adreno-
corticotropic hormone (ACTH), are closely associated with
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PTSD (de Kloet et al. 2012; Kao et al. 2015; Pervanidou and
Chrousos 2012). These stress hormones result in the release
and dysregulation of glucocorticoids and elevation in patients
or animal models with PTSD (Yehuda et al. 2014).

Glucocorticoids exert the potential effects on prefrontal-
mediated behaviors, including working memory, behavioral
flexibility, executive function, et al. The prefrontal cortex is
the executive control center of the brain, providing the top-
down regulation of behavioral function. Thus, it is an important
site for glucocorticoid actions and regulation of the HPA axis
(McKlveen et al. 2013). Previous study determined that gluco-
corticoids act at the prefrontal cortex to inhibit HPA axis
responses to psychogenic stress (Akana et al. 2001). In addition,
The hippocampus is critical for processes involved memory,
particularly contextual and spatial learning and memory retriev-
al. The effects of glucocorticoids in the hippocampus have long
been recognized and studied in detail. Glucocorticoids are
abundantly expressed in hippocampus, and memory processing
is heavily influenced by circulating levels of glucocorticoids
(Oitzl and de Kloet 1992; Roozendaal et al. 2001).

In addition, preclinical and clinical evidences also sug-
gested that disturbed monoaminergic neurotransmission is
one of important mechanisms underlying PTSD (Wilson
et al. 2014). The hypothesis of monoamine indicated that
monoamines, (e.g serotonin (5-HT), noradrenaline (NE), do-
pamine (DA), 5-Hydroxyindoleacetic acid (5-HIAA),
Homovanillic acid (HVA), 3,4-Dihydroxyphenylacetic acid
(DOPAC), adrenalin (AD), et al) are important neurotransmit-
ters involved in the etiology of PTSD (Kozaric-Kovacic
2008). Actually, most of the anti-PTSD drugs act on more
than one mechanism based on the monoamine hypothesis,
such as inhibition of the reuptake of 5-HT and its metabolites.
Evidences from various studies indicated that the levels of
metabolic monoamine neurotransmitters (i.e 5-HT) in brain
increased compared with that of controls after anti-PTSD
treatments (Lin et al. 2016a, b; Zhang et al. 2012).

Selective serotonin reuptake inhibitors (SSRIs) (e.g sertra-
line (Ser) and paroxetine) are the first-line treatment options for
PTSD (MacNamara et al. 2016). However, there are several
drawbacks in SSRIs including a response / non-response with
residual symptoms, a delayed onset of action, as well as severe
side effects (Reid et al. 2015). Thus, searching the novel phar-
macological therapy for anti-PTSD drugs is important.

Traditional Chinese medicine (TCM) draws more and more
attentions and provides a prospective alternative to the treat-
ment of PTSD based on its lower side effects and better com-
pliance (Wang et al. 2009; Zhang 2014b). The root part of
Paeonia lactiflora Pall (Ranunculaceae), called peony, is often
used in Chinese herbal medicine for the treatment of
depressive-like disorder (Mao et al. 2008). Among these com-
ponents, paeoniflorin (PF) is usually referred as one of the
most important active components of peony (Wang et al.
2014). PF has been widely studied as an anti-convulsant,
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anti-oxidant, anti-thrombotic agent, cognition enhancer or
learning impairment-attenuating and neuroprotective agent
(Li et al. 2014; Nam et al. 2013; Ye et al. 2001). Moreover,
the pharmacological activity of PF is associated with alterna-
tion levels of HPA stress hormones and monoamines (Huang
et al. 2015; Qiu et al. 2013). However, little information
regards the anti-PTSD-like activities of PF. Consequently, it
is reasonable to hypothesis that PF may also be effective in
ameliorating stress-induced psychiatric conditions, i.e PTSD.

The present study is to evaluate the anti-PTSD-like effects
of PF firstly. Following the preparation of SPS model (the
classical PTSD model in rodent), the anti-PTSD-like proper-
ties of PF were assessed by behavioral tests. The role of HPA
stress hormones and monoamines in anti-PTSD-like activities
of PF was also investigated after the behavioral tests.

Materials and methods
Drugs

Sertraline (Ser) (St Louis, MO, U.S.A.) was prepared in 0.9%
normal saline and injected intraperitoneally (i.p.) as a positive
control (15 mg/kg) based on its anti-PTSD-like activities (Miao
et al. 2014; Zhang et al. 2012, 2014a). PF (purity>98%, St
Louis, MO, U.S.A.) was also prepared in 0.9% normal saline
and given once daily (5, 10 and 20 mg/kg, i.p.) from day 2 to 13
(Figs. 1 and 2). The selective doses of PF were based on its
antidepressant-like effects (Qiu et al. 2013). The behavioral
tests were performed 1 h after drugs treatment. The control
group animals received 0.9% normal saline (i.p.) (Fig. 2).

Animals

The rats (Sprague-Dawley, male, 190 £ 10 g) were obtained
from Vital River Laboratory Animal Technology Company
(China) and maintained in a temperature (2224 °C)- and
humidity (50-60%)- controlled condition. The total number
of the animals is sixty. All the animals were housed in a 12 h-
light/dark cycle environment during the tests with water and
food available freely. All the procedures were carried out
based on the National Institute of Health Guide for the care
and Use of Laboratory Animals (NIH Publications No. 80-23,
revised 1996) and approved by the institutional committee on
animal care and use. All efforts were made to minimize the
number of animals used and their suffering.

The preparation of SPS model

SPS is a classical PTSD animal model and widely used in
PTSD studies (Jin et al. 2016; Miao et al. 2014; Zhang et al.
2012). Each rat was placed in a restrainer with tail-gate with-
out impairing the circulation to limbs for 2 h. The bag size was
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Fig. 1 The chemical structure of paconiflorin (PF)
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adjusted based on the size of each one to achieve complete
immobilization. Following the restraint, each rat was placed
individually into an acrylic cylinder (height 45 cm, diameter
20 cm, that contained 23-25 cm of water and maintained at
the temperature of 23-24 °C) to perform a 20-min forced swim.
After a 15-min recuperation period, rats were exposed to the

ether vapors until loss of consciousness and removed from the
restrainer. The control group remained in a room adjacent to
SPS rats for the duration of the SPS procedure.

Behavioral paradigms

Seven days after the exposure to SPS, behavioral tests were
performed, including the contextual fear paradigm (CFP) (day
8 and 9), elevated plus-maze (EPM) test (day 11), and open-
field (OF) test (day 13).

Contextual fear paradigm (CFP)

The CFP represents as the freezing response on re-experience
to traumatic context, which was used as a measure of PTSD-
associated fear memory (Eskandarian et al. 2013; Jin et al.
2016; Levkovitz et al. 2015; Zhang et al. 2012). Each rat
was exposed to a 180-s conditioned context without stimula-
tion. After that, a foot electric shock (0.8 mA, for 4 s) through
the stainless steel grid floor was given. Each rat remained in
the chamber for an additional 1 min before being returned to
home cages. Twenty-four hours later, each one was placed in
the conditioning chamber where it was exposed to the foot
shock previously. The contextual fear response was deter-
mined as the time of freezing-like behavior by observers
blinded to the treatment groups during a 5-min interval.

Elevated plus maze (EPM) test

The EPM test is a classical assessments to evaluate the PTSD-
associated anxiogenic-like behavior in rodents (Santos et al.
2016; Wang et al. 2009; Zhang et al. 2014). The apparatus
consisted of four arms (60 x 12 ¢cm) with two open arms and
two closed arms with dark walls (40 cm hight). The maze was
50 cm above the ground with the arms were connected by a
central platform (12 x 12 cm). Each rat was placed in the plat-
form facing the closed arms. The rats were scored as entering
an open/closed arm when all four paws passed over the divid-
ing line. The time and numbers of entries into the open arms
were obtained as anxiety indices by observers who were blind
to treatment conditions of the animals (Li et al. 2009; Wang
et al. 2009).

CFP EPM OF
Tissue and serum collection for
Acclimatization SPS J_I_l l l biochemical experiments
I R T A | N
Day 1 % 8 9 11 13

| Drugs treatment

Fig. 2 Treatment and behavioral test schedules. Animals were subjected
to SPS on day 1. From day 8 through 13, animals were performed testing
sessions that were composed of various behavioral tests: contextual fear
paradigm (CFP), elevated plus maze (EPM) test and open field (OF) test.

|
PF (at doses of 5, 10 and 20 mg/kg, i.p.) and Ser (at a dose 15 mg/kg, i.p.)

were administered daily from day 2 through 13. The drugs were admin-
istered 1 h before testing, respectively
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Open field (OF) test

To evaluate the role of locomotor activity in the anti-PTSD-like
activities of PF, the number of crossings, rears, and fecal pallets
was determined as the previous literature (Xue et al. 2013). Each
rat was placed in the corner of the plastic box (76 x 76 x 46 cm)
that the base was divided into equal sectors for a 5-min accli-
mation duration. After that, the number of crossings (with four
paws placed into a new square), rears (with both front paws
raised from the floor), and fecal pallets was measured for 5 min.

Enzyme-linked immunosorbent assay (ELISA)

The rats were decapitated after the behavioral tests in 24 h and
the blood was collected. The blood was sampled in the EDTA-
free sterile tubes. Serum was then separated by centrifugation
(1500 g, 30 min) at 4 °C. The supernatants were collected, clot
and stored at —80 °C until the further analyses. The levels of Cort,
CRH and ACTH in serum were determined according to the
instructions of the ELISA kits (magnetic solid phase; TPI Inc.,
WA, USA). The standard/sample and conjugate were added to
each well, and the plate was incubated for 1 h at 37 °C. After the
washes and proper color development, the optical density was
determined at 450 nm by an ELISA plate reader.

High-performance liquid chromatography
with electrochemica detection (HPLC-ECD)

It is reported that the dysfunction of the prefrontal cortex and/
or hippocampus is implicated in the pathogenesis of PTSD-
associated behavioral deficits (van Rooij et al. 2017; Wen
et al. 2017). Both brain regions play an important role in fear
conditioning, emotional processing and explicit memory.
Actually, the SPS procedure may enhance contextual fear
and freezing behavior that may represent as the severity of
anxiety due to the dysfunction of prefrontal cortex and hippo-
campus (Qiu et al. 2016; Zhang et al. 2012). More studies also
supported that the disregulated levels of metabolic mono-
amine neurotransmitters (5-HT, NE, DOPAC, 5-HIAA,
HVA, et al) in both brain regions may be one of the possible
factors to the pathogenesis of PTSD (Wilson et al. 2014).
Consequently, to further evaluate the neurochemical mecha-
nisms involved in the anti-PTSD-like effects of PF, the levels
of the metabolic monoamine neurotransmitters and metabo-
lites in the prefrontal cortex and hippocampus were detected
by HPLC-ECD based on the previous study (Wang et al.
2016). Also, the animals were decapitated after the behavioral
tests in 24 h. The prefrontal cortex and hippocampus were
dissected on ice by a binocular dissection microscope and
homogenized in an ice-cold tissue lysis buffer. The samples
were centrifuged (12,000xg, 30 min) at 4 °C and then filtered
through a 0.45 pm pore membrane. The standard/sample so-
lution was injected into the reversed-phase C;g column
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(250 mm x 4.6 mm, 5 um). The separation was performed in
an isocratic elution mode at a column temperature of 20 °C.
The metabolic monoamine neurotransmitters and metabolites
(5-HT, 5-HIAA, DOPAC, DA, AD, HVA and NE) in the both
brain regions were caculated as ng/g wet weight of tissue.

Statistical analysis

The data were analyzed by GraphPad Prism 5.0 (GraphPad
Software Inc., San Diego, CA) and presented as the mean +
standard error of the mean (S.E.M). The statistical signifi-
cance was analyzed by one-way analysis of variance
(ANOVA) followed by Bonferroni’s multiple comparison
tests. Differences at an alpha value (p < 0.05) were considered
statistically significant for tests.

Results
The anti-PTSD-like effects of PF in CFP

The effects of PF on PTSD-like associated contextual freezing
behavior in rats were shown in Fig. 3. Following exposure to
SPS, the freezing time was significantly elevated. In line with Ser
(15 mg/kg, i.p.), the increased freezing time was markedly re-
versed by PF treatment (10 and 20 mg/kg, i.p.) (F (5,54) = 12.86,
p<0.05). These results indicated that PF treatment alleviated
PTSD-like associated contextual freezing behavior in rats.

The anti-PTSD-like effects of PF in EPM test

As shown in Fig. 4, the percentage of time (F (5,54)=7.114,
p<0.05; Fig. 4c) and entries (F (5,54) =8.648, p<0.05;
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Fig. 3 Anti-PTSD-like effects of PF on the freezing behavior in rats re-
exposed to a context in which they received footshock after exposure to
SPS. ™ p<0.01 vs. vehicle-treated SPS (—) group; ~ p<0.05, and ™
p<0.01 vs. vehicle-treated SPS (+) group (n=10)
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Fig. 4d) into open arms was significantly reduced after SPS
exposure in rats, while similar to Ser (15 mg/kg, i.p.), both
parameters above were reversed by PF (10 and 20 mg/kg,
i.p.). There was no significant difference in terms of total time
(F (5,54)=1.021, p>0.05; Fig. 4a) and entries (F (5,54) =
0.7045, p>0.05; Fig. 4b) in arms among groups. These re-
sults indicated that PTSD-associated anxiogenic behavior was
ameliorated by PF in the EPM test.

Effects of PF on locomotor activity in rats

The effects of PF on locomotor activity were shown in Fig. 5.
There was no significant effect on the number of line crossings
(F (5,54)=0.7815, p> 0.05, Fig. Sa), rears (F (5,54)=0.1081,
p>0.05, Fig. 5b), or fecal pallets (F (5,54) = 0.2006, p > 0.05,
Fig. 5¢) among groups. These results indicated that neither PF
treatment nor SPS modeling affected locomotor activity in
rats.

Effects of PF on Cort, CRH and ACTH levels in rats

The effects of PF on Cort, CRH and ACTH levels in rats were
shown in Fig. 6. Following exposure to SPS, levels of Cort (F
(5,30)=3.413, p<0.05; Fig. 6a), CRH (F (5,30)=4.420,
p<0.05; Fig. 6b) and ACTH (F (5,30)=7.407, p <0.05;
Fig. 6¢) in serum were significantly increased. In accordance
with Ser (15 mg/kg, i.p), these effects were significantly

A 300,
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Fig. 4 Anti-PTSD-like effects of PF treatment in rats following exposure
to SPS. The behavior was presented by percentages of time spent (c) in
and entries (d) into open arms, as well as total time (a) and entries (b) in

reversed by treatment with PF (10 and 20 mg/kg, i.p), respec-
tively. These results indicated that anti-PTSD-like effects of
PF were associated with decreased levels of HPA stress hor-
mone (Cort, CRH and ACTH).

Effects of PF on levels of metabolic monoamine
neurotransmitters in the prefrontal cortex
and hippocampus

As shown in Figs. 7 and 8, after exposure to SPS, the levels of
5-HT (F (5,30)=2.952, p <0.05; Fig. 7a) and 5-HIAA (F
(5,30)=3.240, p <0.05; Fig. 7b) in prefrontal cortex were
significantly decreased. Similar to Ser (15 mg/kg, i.g.), the
decreased levels of 5-HT and 5-HIAA were significantly re-
versed by treatment with PF (10 and 20 mg/kg, i.p.), respec-
tively. In line with the results of prefrontal cortex, the de-
creased levels of 5-HT (F (5,30)=2.913, p <0.05; Fig. 8a)
and 5-HIAA (F (5,30)=3.033, p <0.05; Fig. 8b) in the hip-
pocampus were also significantly reversed by treatment with
PF (10 and 20 mg/kg, i.p.), respectively. However, NE (F
(5,30)=0.2920, p >0.05, for prefrontal cortex, Fig. 7c; F
(5,30) =0.4059, p > 0.05, for hippocampus, Fig. 8c), AD (F
(5,30)=0.2833, p >0.05, for prefrontal cortex, Fig. 7d; F
(5,30)=0.03126, p > 0.05, for hippocampus, Fig. 8d), HVA
(F (5,30)=10.3000, p > 0.05, for prefrontal cortex, Fig. 7¢; F
(5,30)=0.1837, p > 0.05, for hippocampus, Fig. 8e¢), DA (F
(5,30)=1.235, p >0.05, for prefrontal cortex, Fig. 7f; F
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p<0.05,"" p<0.01 vs. vehicle treated SPS (+) group (2 = 10)
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Fig. 5 Anti-PTSD-like effects of PF on locomotor activity. None of the
treatments altered the number of line crossings (a), rears (b), and fecal
pallets (c) in the OF test (n=10)

(5,30)=0.1805, p > 0.05, for hippocampus, Fig. 8f), DOPAC
(F (5,30)=10.2823, p > 0.05, for prefrontal cortex, Fig. 7g; F
(5,30)=0.3818, p >0.05, for hippocampus, Fig. 8g) in both
brain regions were not significantly affected by SPS and PF
treatments. These results indicated that anti-PTSD-like effects
of PF were associated with the reversion of decreased levels of
5-HT and 5-HIAA.

Discussion

In the present study, we evaluated pharmacological profile and
possible mechansims of PF in an animal PTSD model. The

@ Springer

group; * p<0.05, " p<0.01 vs. vehicle-treated SPS (+) group (1 = 6)

PTSD-like behavioral deficits were elicited in rats after expo-
sure to SPS. However, similar to Ser, significant suppression
of enhanced anxiety and contextual fear effects was induced
by PF without affecting locomotor activity in rats. Moreover,
the role of HPA stress hormones and monoamines in anti-
PTSD-like effects of PF was also assessed. The findings indi-
cated that anti-PTSD-like activities of PF were closely associ-
ated with decreased levels of Cort, CRH and ACTH in serum
and increased levels of 5-HT/5-HIAA in the prefrontal cortex
and hippocampus.

Accumulating evidences indicate that SPS has been de-
fined as a valid PTSD animal model based on the fact that
enhanced inhibition of the HPA axis in response to glucocor-
ticoid administration after the exposure to SPS in rodents and
exhibit a sustained exaggeration of the acoustic startle
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Fig. 7 Anti-PTSD-like effects of PF on the levels of metabolic
monoamine neurotransmitters, i.e 5-HT (a), 5-HIAA (b), NE (¢), AD
(d), HVA (e), DA (f), DOPAC (g) in the prefrontal cortex. * p <0.05,

response, which has been reliably reproduced in patients with
PTSD (Zhe et al. 2008). The presents study showed that a

vs. vehicle-treated SPS (—) group; * p < 0.05 vs. vehicle-treated SPS (+)
group (n=06)

sustained PTSD-associated contextual fear behavior and
anxiogenic-like activity was induced by SPS, which was
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evidenced by increased freezing time in the CPF and de-  possible explanation for behavioral deficits was that SPS in-
creased exploration into open arms in the EPM test. One  duced the acquisition of conditioned fear (Lin et al. 2016a).
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These responses were consistent with clinical symptoms
observed in patients with PTSD who were subjected to re-
experiencing aspects of a traumatic event or repeated trau-
matization may elicit stress-induced anxiogenic effects
(Eagle et al. 2013). The SPS procedure has been shown
to enhance contextual fear and freezing behavior that may
represent as the assessment for the severity of anxiety due
to dysfunction of prefrontal cortex and hippocampus
(George et al. 2015; Han et al. 2013).

Although animals exposed to SPS exhibited freezing
and anxiogenic-like behavior, SPS did not affect the loco-
motor activity in rats. This finding was consistent with
previous studies that locomotor activity was not affected
by SPS stress in rodents (Miao et al. 2014; Zhang et al.
2012), suggesting that freezing behavior to the context
associated with aversive stress by SPS in rats was not
generated by affecting locomotor activity.

Additionally, the aversive effects after SPS exposure
were successfully blocked by PF (10 and 20 mg/kg i.p).
The elevated freezing time in CFP test and the decreased
exploration in open arm in EPM test were reversed by PF,
indicating that PF ameliorated these behavioral changes
produced after exposure to SPS. The dose ranges of PF
were almost confirmed between CFP and EPM, and con-
cordant with prior studies of PF treatment that showed the
improvement on behavioral deficits of menopause depres-
sion in ovariectomized rats under chronic unpredictable
mild stress (Huang et al. 2015). We also found that PF
alleviated the fear and anxiogenic-like behavior in
stressed animals without affecting locomotor activity,
which was consistent with the antidepressant-like effects
of PF that were not mediated by affecting locomotor ac-
tivity (Qiu et al. 2013).

As demonstrated by studies, hyperactivity of the HPA axis
that commonly seen in patients with PTSD, is reversed during
clinically effective by anti-PTSD drugs (Jin et al. 2016).
Among various molecular events, altering level of stress hor-
mone is one of the significant mechanisms produced by anti-
PTSD-like treatments (Jin et al. 2016; Krishnamurthy et al.
2013). The HPA axis includes a feedback loop that composed
of the hypothalamus, pituitary as well as adrenal glands
(Uschold-Schmidt et al. 2013). The HPA stress response is
driven by neural mechanisms originally, invoking CRH re-
lease from hypothalamic paraventricular nucleus (PVN) neu-
rons (Ondicova et al. 2014). Briefly, the hypothalamus re-
leases arginine vasopressin and CRH in response to a stressor,
and then activates the secretion of ACTH from the pituitary,
which finally stimulates the secretion of Cort (in rodents) or
cortisol (in humans) from the adrenal cortex (Hosseinichimeh
etal. 2015). As observed in our present study, exposure to SPS
significantly increased serum CRH, Cort and ACTH levels in
rats, which was accompanied by conditioning fearful- and
anxiogenic- like behavioral alterations. The finding were

supported by that elevated levels of HPA stress hormones
(e.g Cort and ACTH) in serum were significantly increased
following subject to time-dependent sensitization (TDS) (Jin
etal. 2016). Not only in PTSD, increased levels of CRH, Cort
and ACTH in serum were also showed in menopause depres-
sion ovariectomized rats (Huang et al. 2015).

The present study showed that the elevated levels of CRH,
Cort and ACTH in serum were blocked by SSRIs (Ser) that
were consistent with other PTSD model (Jin et al. 2016). The
similar activities had been found in PF (10 and 20 mg/kg)
which may be a primary neuroendocrine mechanism underly-
ing its behavioral effects. Other mental disorder study reported
that the increased levels of stress hormones (CRH, CORT and
ACTH) were blocked by PF at the similar dose (10 mg/kg) in
depression (Huang et al. 2015). Collectly, it is indicated that
anti-PTSD-like activities of PF were associated with the alter-
nation levels of HPA stress hormones in serum.

In mammals, the HPA axis and the monoamines system are
greatly involved in stress-related disorders, which closely in-
teract in central nervous system (CNS) (particularly in the
prefrontal cortex and hippocampus) (Fenchel et al. 2015;
McKlveen et al. 2013). Consequently, the role of monoamines
in the anti-PTSD-like effects of PF was evaluated. Following
the exposure to SPS, the levels of 5-HT and 5-HIAA in both of
the brain regions were significantly decreased. The results
were supported by the other study showing that decreased
serotonin levels (e.g 5-HT and 5-HIAA) were produced in a
PTSD animal model (Zhang et al. 2012). The reduction of 5-
HT is associated with the symptoms of fear, aggression, im-
pulsivity, and sadness/depression (Fernandez and Gaspar
2012). Furthermore, the improvement of serotonergic antide-
pressants (e.g., SSRIs) on the symptoms above has been one
explanation to support the role of serotonergic dysfunction in
the pathology of PTSD (Bentefour et al. 2016). The efficacies
of SSRIs in treating PTSD-associated symptoms are likely
mediated by the improvement of serotonergic function and
the subsequent amelioration in the modulation of impulsivity,
anger, mood, and anxiety (Echiverri-Cohen et al. 2016). Our
present study showed that similar to Ser (15 mg/kg), the de-
creased levels of 5-HT and 5-HIAA were blocked by PF (10
and 20 mg/kg), respectively. The present study also confirmed
the possibility that the antidepressant-like effects of PF
through the increased levels of 5-HT and 5-HIA in the hippo-
campus (Qiu et al. 2013). Thus, it is reasonable to speculate
that the serotonergic activities of PF might be similar to that of
SSRIs. However, further investigations on the presumptive
adaptive changes in the receptors are still needed to elucidate.

Collectly, our findings indicate that a therapeutic effect on
PTSD-like stress responding is produced by PF that is accom-
panied by the modulation of the serotonergic activation and
the HPA axis. Thus, PF may play a significant role in the anti-
PTSD-like effects. More experiments are needed to clarify the
exact molecular mechanisms underlying its effects to better
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understand the neuropathological changes in PTSD. For in-
stance, the further studies need to focus on the evaluation of
metabolic monoamine neurotransmitters in more other brain
regions, like amygdala which is also considered as one of
regions that has been repeatedly implicated in the psychopa-
thology of PTSD (Akiki et al. 2017). Previous study showed
that the disregulated levels of metabolic monoamine neuro-
transmitters (i.e 5-HT, DA and NE) in the amygdala were
associated with PTSD generation (Lin et al. 2016a, b).
Moreover, a direct comparison of the activity of the plant
extract (e.g peony) and the pure compound (PF) would be
informative and interesting based on the fact that peony con-
tains many of compounds (e.g PF, albiflorin, et al) that could
be active in itself or in combination with others, although the
anti-PTSD-like effects of PF have been preliminary evaluated
in the present study. Thus, picking out more compounds in-
stead of single could make more sense for coming to
evidence-based used traditional medicine. In that case, the
activities and concentrations among the components of the
plant extractions can be compared, and a possible role of the
pure compound for activities can also be assessed.
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