
ORIGINAL ARTICLE

Neonatal hyperglycemia induces cell death in the rat brain
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Abstract
Several studies have examined neonatal diabetes, a rare disease characterized by hyperglycemia and low insulin levels that is
usually diagnosed in the first 6 month of life. Recently, the effects of diabetes on the brain have received considerable attention. In
addition, hyperglycemia may perturb brain function and might be associated with neuronal death in adult rats. However, few
studies have investigated the damaging effects of neonatal hyperglycemia on the rat brain during central nervous system (CNS)
development, particularly the mechanisms involved in the disease. Thus, in the present work, we investigated whether neonatal
hyperglycemia induced by streptozotocin (STZ) promoted cell death and altered the levels of proteins involved in survival/death
pathways in the rat brain. Cell death was assessed using FluoroJade C (FJC) staining and the expression of the p38 mitogen-
activated protein kinase (p38), phosphorylated-c-Jun amino-terminal kinase (p-JNK), c-Jun amino-terminal kinase (JNK), pro-
tein kinase B (Akt), phosphorylated-protein kinase B (p-Akt), glycogen synthase kinase-3β (Gsk3β), B-cell lymphoma 2 (Bcl2)
and Bcl2-associated X protein (Bax) protein were measured by Western blotting. The main results of this study showed that the
metabolic alterations observed in diabetic rats (hyperglycemia and hypoinsulinemia) increased p38 expression and de-
creased p-Akt expression, suggesting that cell survival was altered and cell death was induced, which was confirmed by
FJC staining. Therefore, the metabolic conditions observed during neonatal hyperglycemia may contribute to the harmful
effect of diabetes on the CNS in a crucial phase of postnatal neuronal development.
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Introduction

Diabetes is a common and severe chronic disease character-
ized by a high blood glucose concentration (hyperglycemia)
that occurs either when the pancreatic beta cells do not

produce enough insulin or when the body has a defect in
insulin action or both, consequently resulting in impaired glu-
cose uptake and storage and reduced utilization of glucose for
energy (Wild et al. 2004; Quinn 2001; NCD Risk Factor
Collaboration (NCD-RisC) 2016).

Currently, many clinical studies of pediatric patients have
assessed neonatal diabetes, a rare condition in preterm babies
with low birth weights (Srinivasan et al. 2004; Hays et al.
2006; Flanagan et al. 2007; Suzuki et al. 2007; Aguilar-
Bryan and Bryan 2008; Flechtner et al. 2008; Greeley et al.
2010; Sagili et al. 2015; Nansseu et al. 2016). Neonatal dia-
betes has been linked to numerous complications, such as
premature retinopathy, sepsis, severe intraventricular hemor-
rhage and increased early mortality and morbidity. In the lit-
erature, several case reports describe the symptoms, etiology
and consequences of hyperglycemia in patients (Hays et al.
2006; Ertl et al. 2006; Garg et al. 2003; Kao et al. 2006). These
studies have provided a better understanding of the genes
involved in the mechanisms that control glucose homeostasis
(Aguilar-Bryan and Bryan 2008). Few studies have
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investigated the damaging effects of neonatal hyperglycemia
on the rat brain during central nervous system (CNS) devel-
opment. Therefore, a study of the effects of neonatal diabetes
on the rat brain may contribute to a better elucidation of these
mechanisms.

In addition, the effects of diabetes on the CNS have re-
ceived considerable attention. According to a recent experi-
mental study with type 1 diabetic rats, neurological damage is
a diabetic complication. The diabetic brain exhibits neurolog-
ical alterations in structure, neurotransmitters, electrophysiol-
ogy, cognitive function, neuronal density and apoptotic activ-
ity (Li and Sima 2004).

Moreover, many proteins respond to the diabetes status.
The mitogen-activated protein kinase (MAPK) signaling path-
way has been correlated with hyperglycemia-induced injury
(Venkatachalam et al. 2008; Soetikno et al. 2012; Evans et al.
2002). Proteins of the MAPK family are important signal
transduction mediators and play critical roles in cellular pro-
cesses, such as cell growth and proliferation, differentiation,
survival and apoptosis (Kyosseva 2004; Kyriakis and Avruch
2012). The p38 and JNK proteins are members of the MAPK
superfamily that are activated by stress signals and promote
many cellular responses, depending on the cell type and stim-
ulus (Hommes et al. 2003; Heidenreich and Kummer 1996;
Juretic et al. 2001; Sabapathy 2012). The p38 and JNK sig-
naling pathway is involved in stress-induced apoptosis in
many cell lines (Kummer et al. 1997; Dhanasekaran and
Reddy 2008). A study of diabetic rats showed activation of
p38 and JNK. In addition, the inhibition of both proteins ame-
liorated cell death in the dorsal root ganglion and sciatic nerve
(Cavaletti et al. 2007).

Protein phosphorylation plays an important role in intracel-
lular signal transduction activated by several extracellular
stimuli, including insulin and plasma glucose levels. Protein
kinase B (PKB/Akt) is a key protein in signal transduction
pathways and is activated in response to growth factors or
insulin. Akt is thought to contribute to several cellular func-
tions, including nutrient metabolism, cell growth and apopto-
sis (Hanada et al. 2004; Scheid andWoodgett 2001). Gsk3 is a
serine/threonine kinase that is involved in diabetes and neuro-
degenerative diseases. Downregulation of insulin signaling
increases the activity and level of the Gsk3 protein in the
skeletal muscle of mice with type 2 diabetes and in the adipose
tissue of obese diabetic mice, probably due to both abnormal
insulin signaling and hyperglycemia (Nikoulina et al. 2000;
Eldar-Finkelman et al. 1999). Gsk3β is also involved in cell
survival and apoptosis (Miyashita et al. 2009). Chronically
increased glucose levels significantly downregulate Akt ex-
pression in retinal glial cells, potentially contribute to high
glucose-induced apoptosis (Xi et al. 2005).

Cells under stress activate cell survival and cell death sig-
naling pathways. Cell death signaling converges on the mito-
chondria, a process that is regulated by the activities of pro-

and anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins.
The important roles of Bcl-2 family proteins in regulating
apoptosis have been studied for the past decade. Bcl2 proteins
family play important roles in stimulating or blocking apopto-
sis during neuronal development and in response to injury,
since they regulate the mitochondrial transmembrane passage
of cytochrome C and activate downstream caspase proteins
(Anilkumar and Prehn 2014; Youle and Strasser 2008).
Therefore, the Bcl2 family acts as key modulators of the in-
trinsic (mitochondrial) apoptosis pathway (Youle and Strasser
2008). Moreover, a high Bax/Bcl2 ratio promotes increased
apoptotic activity (Oltvai et al. 1993).

In summary, neonatal diabetes is a rare metabolic dis-
ease characterized by hyperglycemia that occurs in preterm
babies and most studies of this condition focus on its eti-
ology, symptoms, and treatments. On the other hand, few
studies of neonatal rats have focused on the impact of this
disease on the CNS. Based on previous findings, diabetes
may lead to neuronal alterations. Thus, the mechanisms by
which neonatal hyperglycemia and hypoinsulinemia cause
brain damage remain poorly understood. Therefore, the
present study aimed to investigate whether neonatal hyper-
glycemia promoted alterations in the expression of proteins
involved in balancing cell survival and death and induced
neuronal damage in a crucial period of postnatal brain
development.

Materials and methods

Materials

All chemicals reagents were obtained from Sigma-Aldrich (St.
Louis, MO, USA). Streptozotocin (STZ) solutions were fresh-
ly prepared with saline (70% of the final volume) and 20 mM
sodium phosphate buffer pH 7.4 (30% of the final volume).

Animals

In this work, we utilized the NIH Guide for the Care and Use
of Laboratory Animals (NIH publication # 80–23, revised
1996) as a guide for all experiments. For these experiments,
we used five-day-old Wistar rats bred in the Animal House of
Universidade Federal do Rio Grande do Sul, and the sample
size was calculated based on 80% power at the 0.05 level of
significance (MiniTab®). We used both male and female rats
because they have not yet developed secondary sexual char-
acteristics at the age in which they were used in the experi-
ments. Animals were housed with dams until sacrifice, with
the exception of a brief period of starvation. Dams had free
access to water and a 20% (w/w) protein commercial chow
(Germani, Porto Alegre, RS, Brazil). Rats were maintained in
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a room with 12:12 h light/dark cycle (lights on 7:00–19:00 h)
and controlled temperature (22 ± 1 °C).

Streptozotocin-induced neonatal hyperglycemia

The STZ-induced neonatal hyperglycemia model was de-
scribed previously (Rosa et al. 2015). Briefly, 5-day-old
Wistar rats were submitted to eight hours of starvation. The
neonatal hyperglycemia model was induced by a single intra-
peritoneal (i.p.) injection of STZ (100 mg/Kg body weight).
Controls received vehicle (saline and buffer) instead. Ten
hours after the STZ injection, rats received an i.p. injection
of glucose (2 mg/g body weight). Finally, rats were sacrificed
five days after the STZ injection. Glycemia was assessed by
caudal puncture daily. Rats were sacrificed by decapitation,
the brains were immediately removed, the olfactory bulb,
pons, and medulla were discarded, and the whole brain was
utilized for Western blot analyses. For the histochemical anal-
yses and insulin dosage (plasma) experiments, rats were anes-
thetized (90 mg/Kg Ketamine and 10 mg/Kg xylazine, i.p.)
and perfused with saline solution.

Western blot analysis

The brain was homogenized in buffer (20 mmol/L Tris,
150 mmol/L NaCl, 5 mmol/L EDTA, 10% glycerol,
20 mmol/L phenylmethylsulfonyl fluoride (PMSF), 10 μL/
mL aprotinin and 10 μL/mL leupeptin). The homogenate
was centrifuged at 1000 x g for 10 min at 0–4 °C to remove
the nuclei and cell debris and the supernatants were utilized
for the Western blot assay. We separated one hundred micro-
grams of protein by one-dimensional sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) in a discon-
tinuous system using a 12% (w/v) separating gel and stacking
gel (Laemmli 1970). The proteins separated were electropho-
retically transferred to nitrocellulose membranes utilizing a
buffer containing 150 mmol/L glycine, 20 mmol/L Tris,
pH 8.2, and 20% (v/v) methanol, and 0.1% (w/v) SDS, in a
cooled Bio-Rad Trans-Blot unit. Afterwards, membranes were
incubated with non-fat milk in Tris buffer for one hour to
block non-specific protein-binding sites. Membranes were
processed for immunodetection using the antibodies described
in Table 1 and signals were revealed using chemilumines-
cence. We utilized an image densitometer (Imagemaster
VDS CI, Amersham Biosciences Europe, IT) to quantitatively
analyze the autoradiographs produced. A standard molecular
weight marker was used as a reference to determine the mo-
lecular weights of the bands (RPN 800 rainbow full range,
Bio-Rad, CA, USA).

The tubulin mRNA is expressed at lower levels in periph-
eral nerves from diabetic patients and animals (McLean
1997). In addition, insulin influences the expression of the
GAPDH protein in other tissues, such as adipose tissues and

the liver (Alexander et al. 1988). Therefore, the STZ-induced
d i a b e t i c mode l p r e s en t e d hype rg l y c em i a a nd
hypoinsulinemia, both of which are capable of influencing
housekeeping gene expression, such as tubulin, GAPDH and
structural cytoskeletal proteins. Since the levels of housekeep-
ing proteins should be influenced by the treatment or the pro-
tocol used in this study, their utilization as a normalizer could
compromise the quantification and analysis of the data.
Therefore, we used the Ponceau method (Klein et al. 1995),
which is not influenced by the STZ diabetic model.

Histochemical processing for FluoroJade C staining

FluoroJade C (FJC) is a fluorochrome used to detect neurons
that are undergoing death (Schmued et al. 2005). For this
technique, animals were anesthetized and transcardially per-
fused with saline, and brain tissues were fixed in buffered
formalin. Following fixation, tissues were dehydrated in a
graded ethanol series and embedded in paraffin. Brain tissues
were serially sectioned into 6 μm coronal sections. Slides
were sequentially rinsed with 70% ethanol and distilled water
for 2 min each and then incubated with a 0.06% potassium
permanganate solution for 10 min. Slides were then incubated
with a 0.0001% solution of FJC (Histo-Chem, Jefferson, AR,
USA) dissolved in 0.1% acetic acid vehicle for 10 min. The
slides were then rinsed with distilled water three times for
1 min each. The excess water was drained, and the air-dried
slides were then cleared in xylene for 1 min and then
coverslipped after addition of Permount media. Using a fluo-
rescence microscope (4000X magnification, Zeiss micro-
scope, Axiostar Plus, Jena, Germany), FJC-positive cells were
identified by green fluorescence in the brain. The number of
positive cells per slide was quantified by an observer who was
blinded to the groups.

Protein determination

Protein concentrations in brain homogenates were determined
using bovine serum albumin as a standard (LOWRY et al.
1951).

Statistical analysis

Data are expressed as means ± SEM and were compared using
Student’s t-test. All analyses were performed using the
GraphPad Prism 5 software on a PC-compatible computer.
A value of p < 0.05 was considered statistically significant.

Results

The present study investigated whether neonatal hyperglycemia
caused neuronal death using FJC staining, and subsequently
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investigated the effects of both neonatal hyperglycemia and
hypoinsulinemia on the expression of a series of proteins in-
volved in balancing survival and death in the brain.

As proof that the model is valid, a significant increase in
glycemia in the neonatal diabetes group (222 ± 29mg/dL) was
observed compared to the controls (122 ± 3 mg/dL) p < 0.01,
n = 10. The diabetic animals presented reduced insulin plasma
levels (approximately five-fold lower) compared to control
animals, p < 0.01, n = 10 (data not shown). Furthermore, the
diabetic animals showed reduced body weights (21 ± 0.9 g)
compared to control animals (17 ± 0.4 g) p < 0.001, n = 10.

Firstly, rats with STZ-induced diabetes exhibited a dimin-
ished brain weight (182 ± 17 mg) compared to the control
group (270 ± 15mg) p < 0.01, n = 10. Therefore, we evaluated
the effect of neonatal hyperglycemia on neuronal cell death
using FJC staining. Figure 1a depicts a representative image
from the control group, in which few cells in each slide were
positive for FJC (0.75 ± 0.5) compared to the diabetic group.
Figure 1b shows a representative image from the hyperglyce-
mic group, where a 3-fold increase in the number of dying
cells per slide was observed (2.25 ± 0.95, p < 0.05), revealing
an increase in cell death throughout the tissue. Figure 1c

shows the results from the quantitative analysis of both
groups. Therefore, cell death occurred in the hyperglycemic
rat brain, and we proposed to verify which pathways were
involved in neuronal cell death.

Thus, we investigated the effect of STZ-induced neonatal
hyperglycemia on the expression of Bcl2 family proteins,
which have complex roles in regulating cell death by apopto-
sis. As shown in Fig. 2a, neonatal hyperglycemia was not able
to alter the expression of the pro-apoptotic protein Bax [t(5) =
0.77; p = 0.47]. However, as shown in Fig. 2b, neonatal hy-
perglycemia increased the expression of the anti-apoptotic
protein Bcl2 [t(5) = 3.893; p = 0.0115].

Next, this study evaluated the effect of neonatal hypergly-
cemia on the expression of the p-JNK, JNK and p38 proteins,
which are involved in the cell death process. Neonatal hy-
perglycemia did not alter p-JNK (Fig. 3a), JNK (Fig. 3b)
and p-JNK/JNK ratio (Fig. 3c) protein expression, respec-
tively (Fig. 3a) [t(7) = 0.6219; p = 0.5537];[t(6) = 2.301;
p = 0.0611]; [t(70 = 1.514; p = 0.1738]. However, the ex-
pression of the p38 protein was significantly increased in
the hyperglycemic group compared to the control group
(Fig. 3d) [t(5) = 3.261; p = 0.0224].

Table 1 Description of the
antibodies and the respective
dilutions utilized in the Western
blot analysis

Primary Antibodies from Santa Cruz
Biotechnology, Santa Cruz, CA

Secondary Antibodies from Santa Cruz Biotechnology,
Santa Cruz, CA

Dilution

Rabbit anti-p-Akt polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-Akt polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-p-JNK polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-JNK polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-Gsk3β polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-p38 polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:1000

Rabbit anti-Bax polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:500

Rabbit anti-Bcl2 polyclonal Horseradish peroxidase-conjugated goat anti-rabbit 1:500

Fig. 1 Effect of STZ-induced
neonatal hyperglycemia on cell
death, as analyzed by FluoroJade
C (FJC) staining. a
Representative image of a brain
section from a control rat; b
representative image of a brain
section from a hyperglycemic rat
showing an FJC-positive cell
(arrow). c Quantification of the
number of FJC-positive cells per
slide.*p < 0.05 (Student’s t test)
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Fig. 2 Western blot analyses of STZ-induced neonatal hyperglycemia using a Bax antibody (a) and Bcl2 antibody (b). Results are presented as themeans
± SEM (n = 6) of independent experiments performed in duplicate; *p < 0.05 and **p < 0.01 compared to the control (Student’s t test)

Fig. 3 Western blot analyses of STZ-induced neonatal hyperglycemia
using a p-JNK antibody (a), JNK antibody (b), p-JNK⁄JNK (c)
and p38 antibody (d). Results are presented as the means ± SEM

(n = 6–7) for independent experiments performed in duplicate; *p <
0.05 and **p < 0.01 compared to the control (Student’s t test)
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We also studied the effect of neonatal hyperglycemia on the
expression of the Akt and Gsk3β proteins. The expression of
the total Akt protein and p-AKT⁄AKT ratio were not altered by
neonatal hyperglycemia compared to the control group, re-
spectively (Fig. 4b and c) [t(6) = 1.952; p = 0.0988]; [t(6) =
0.007; p = 0.9941]. However, levels of the p-Akt protein were
decreased in the hyperglycemic group compared to the control
group (Fig. 4a) [t(6) = 2.671; p = 0.0370]. Furthermore, as
shown in Fig. 4d, neonatal hyperglycemia did not alter levels
of the Gsk3β protein [t(6) = 0.3430; p = 0.7433].

Discussion

Neonatal diabetes is a rare condition, characterized by hyper-
glycemia diagnosed before 6 months of life (Aguilar-Bryan

and Bryan 2008). Hyperglycemia may induce neuronal dam-
age due to the excessive glucose levels (Tomlinson and
Gardiner 2008) and may consequently promote alterations in
proteins involved in neuronal survival/death (Kummer et al.
1997; Xi et al. 2005; Yang et al. 2016; Chen et al. 2014).
However, a few studies investigate the effects of hyperglyce-
mia in a brain of diabetic neonate rats.

Therefore, in the present work, neonatal hyperglycemia
increased the expression of the p38 protein but did not alter
the pJNK, JNK and pJNK/JNK ratio protein levels in the brain
tissue. In fact, a recent study showed that hyperglycemia acti-
vates JNK in endothelial cells leading to apoptosis (Ho et al.
2000). Besides that, in these cells, JNK inhibition blocked
hyperglycemia-induced apoptosis (Ho et al. 2000). In our
study it is possible that the short period of hyperglycemia
induction (five days) could explain the absence of JNK

Fig. 4 Western blot analyses of STZ-induced neonatal hyperglycemia
using a p-Akt antibody (a), Akt antibody (b) p-AKT⁄AKT (c)
and Gsk3β antibody (d). Results are presented as the means ±

SEM (n = 7) for independent experiments performed in duplicate;
*p < 0.05 and **p < 0.01 compared to the control (Student’s t test)
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alteration in the brain tissue. However, we cannot exclude the
possibility that JNK expression would increase after an ex-
tended treatment. In relation to p38, since insulin negatively
regulates the expression of these protein in the brain (Kummer
et al. 1997), both hypoinsulinemia and hyperglycemia could
be responsible for the increase in p38 expression in the brain
of diabetic rats, as was previously described (Chen et al.
2014). In fact, according to studies of STZ-treated rats, diabe-
tes significantly increases p38 expression in several brain
structures (Cavaletti et al. 2007; Ramakrishnan et al. 2005),
and these alterations are reversed by insulin administration to
rats (Ramakrishnan et al. 2005). Based on these results, insulin
promotes neuronal survival by inhibiting a cell death pathway
regulated by p38 (Xia et al. 1995; Ichijo et al. 1997). In view
of that, in the present study, insulin deprivation and neonatal
hyperglycemia resulted in an increased expression of p38,
which is an important regulator of neuronal apoptosis (Xia
et al. 1995, Ichijo et al. 1997).

In terms of neuronal survival pathways, the effects of insu-
lin are mediated by the activation of phosphoinositide 3-
kinase (PI3K)/Akt signaling pathway (Duarte et al. 2008). In
fact, the activation of Akt pathway induced by insulin avoided
serum glucose deprivation-induced apoptosis in cells (rat
amacrine cells and in the R28 retinal cell line) (Barber et al.
2001; Politi et al. 2001) and inhibited ganglion cell apoptosis
after optic nerve transection (Kermer et al. 2000). Besides that,
Akt activity is significantly reduced by the high glucose levels
observed in the brains of non-malformed diabetic embryos
(Kruse et al. 2012). In our study, the diabetic rats presented a
decreased in p-Akt levels in the brain tissue when compared
with control. Since insulin activates the PI3K/Akt pathway,
the brains of diabetic rats may have showed decreased p-Akt

levels due to hypoinsulinemia. Consistent with our results,
chronically elevated glucose decreased Akt activity in retinal
glial Muller cells in vitro and promoted Akt dephosphoryla-
tion in vivo (STZ-induced diabetic rats) in a previous study. In
addition, the downregulation of Akt-mediated survival signal-
ing is partially responsible for apoptosis induced by high glu-
cose levels (Xi et al. 2005). Therefore, in our study, the Akt-
mediated survival signaling downregulation and the p38-
mediated death signaling upregulation probably contributed
to the glucose-induced neuronal cell death, which was verified
by FluroroJade C staining.

Another protein involved in insulin signaling and PI3K/
Akt pathway is Gsk3β. In our study, Gsk3β expression was
not altered by hyperglycemia during the neonatal period.
However, insulin-deficient diabetes significantly decreases
the phosphorylation of the insulin receptor, suggesting that
Gsk3β activity is increased by phosphorylation (Thomas
et al. 2013).

Since apoptotic cell death has consistently been shown to
play a significant role in neurotoxicity of diabetes (Zhang et al.
2010; Ye et al. 2011), in the present study, we used
FluroroJade C staining to evaluate neuronal cell death. A
greater number of FJC-positive cells was observed in the dia-
betic rats, which indicates an increase in cell death. This result
is consistent with studies performed in cell cultures that
showed a decrease in brain cell viability induced by high
glucose levels (Yang et al. 2016; Yang et al. 2014;
Aminzadeh et al. 2014; Liu et al. 2013; Afrazi et al. 2014).
Besides the induction of pro-apoptotic proteins expression
(Ho et al. 2000), hyperglycemia was recently shown to induce
neuronal cell death also due to extracellular ROS generation in
the mitochondria via Nox, suggesting that this condition may

Fig. 5 Overview of the principal effects of hyperglycemia and
hypoinsulinemia on the brains of rats with neonatal hyperglycemia.
Hyperglycemia and hypoinsulinemia increased the expression of the
p38 protein and decreased the levels of the p-Akt protein, both of which
could disrupt neuronal survival and proliferation. Neuronal cell death was

verified by FJC staining. Finally, a counter-regulatory response could
explain the increased Bcl2 protein expression. p38 - p38 mitogen
activated protein kinase; Akt - protein kinase B; Bcl2 - B cell
lymphoma 2. The figure was produced using Servier Medical Art
(www.servier.com)
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promote oxidative stress and brain damage (Yang et al. 2016).
In addition, ROS produced during oxidative stress activate
various signaling pathways, including MAPKs (Torres and
Forman 2003; McCubrey et al. 2006; Cargnello and Roux
2011). Therefore, oxidative stress may also contribute to the
neurological effects induced by hyperglycemia during this
crucial period of postnatal brain development (Rosa et al.
2015).

In order to evaluate proteins related with apoptosis, Blc2
and Bax expression were measured in the brain tissue. Bcl2
plays a role in cellular survival and has also been correlated
with the regulation of redox state. In relation to oxidative
stress, Bcl2 overexpression protects the cells suppressing lipid
peroxidation (Hockenbery et al. 1993), increasing total re-
duced glutathione and NADPH levels (Esposti et al. 1999;
Ellerby et al. 1996; Kane et al. 1993) and increasing the levels
of catalase, glutathione reductase and peroxidase (Ellerby
et al. 1996). Bcl2 family regulates apoptosis by modulating
cytochrome C release and their downstream effects (Green
and Reed 1998; Hengartner 2000). Although, in our study,
hyperglycemia and hypoinsulinemia reduced cell survival,
the increased expression of the anti-apoptotic Bcl2 protein
could represent a counter-regulatory response to cell death.
Bax expression, however, was not altered in this model. In
contrast to our results, studies have showed diminished levels
of Bcl2 in neuronal cell cultures exposed to high glucose (Ye
et al. 2011; Yang et al. 2014). Another study of adult STZ-
induced hyperglycemic rats showed that Bax expression was
increased and Bcl2 protein expression was significantly re-
duced in the cortex and hippocampus (Wu et al. 2012). A
possible explanation may be that these results were observed
in adult rats, whereas our study utilized neonatal rats.
Moreover, neuronal cell death represents a continuous pro-
cess, and these findings reflect the expression of proteins re-
lated to cell survival and cell death at one time point. In addi-
tion, Caspase 3 expression was not altered in STZ-induced
diabetic adult rats (Guo et al. 2014) and rat embryonic brain
in some studies (Kruse et al. 2012). Besides that, it is possible
that hyperglycemia-induced neuronal cell death observed in
our study was not mediated by the mitochondrial pathway.
However, other pathways that also trigger neuronal cell death,
such as autophagy, could not be excluded.

Finally, as outlined in Fig. 5, the STZ-induced neonatal
hyperglycemia model produces a similar metabolic condition
observed in patients with neonatal diabetes, namely, hypergly-
cemia and hypoinsulinemia. Neonatal diabetes increases p38
and decreases p-Akt levels, both of which may disrupt neuro-
nal survival and proliferation. Finally, neuronal cell death oc-
curs in the brains tissue of rats with neonatal diabetes, as
evidenced by FJC staining. Based on these results, we postu-
late that a counter-regulatory response could explain the in-
creased Bcl2 protein expression observed in subjects with
neonatal diabetes, although a significant difference in Bax

protein expression was not observed. These effects may sug-
gest possible therapeutic targets and are relevant for a better
understanding of this important pathological condition.
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