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Abstract Intellectual disability is a heterogeneous disease
with many genes and mutations influencing the phenotype.
Consanguineous families constitute a rich resource for the
identification of rare variants causing autosomal recessive dis-
ease, due to the effects of inbreeding. Here, we examine three
consanguineous Arab families, recruited in a quest to identify
novel genes/mutations. All the families had multiple offspring
with non-specific intellectual disability. We identified homo-
zygosity (autozygosity) intervals in those families through
SNP genotyping and whole exome sequencing, with variants
filtered using Ingenuity Variant Analysis (IVA) software. The
families showed heterogeneity and novel mutations in three
different genes known to be associated with intellectual dis-
ability. These mutations were not found in 514 ethnically
matched control chromosomes. p.G410C in WWOX,
p.H530Y in RARS2, and p.I69F in C10orf2 are novel changes
that affect protein function and could give new insights into
the development and function of the central nervous system.
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Introduction

Neurogenetic disorders, encompassing a wide array of clinical
presentations, represent the biggest class of single gene disor-
ders in humans. Intellectual disability (ID), the most common
clinical presentation, is a serious neurodevelopmental disorder
characterized by significant limitations in intellectual func-
tioning and adaptive behavior, having an age of onset before
18 (reviewed by Schalock and Luckasson 2015). ID is rela-
tively common with a prevalence that can reach 3.6 %
(Delobel-Ayoub et al. 2015) with a higher frequency expected
in inbred populations (Shamia et al. 2015; Iqbal and van
Bokhoven 2014). The advances in Intellectual Disability gene
discovery have identified many causative genes, but about
half of cases do not have a known etiology (Ellison et al.
2013). Currently, more than 700 genes are reportedly involved
in a wide variety of ID-associated phenotypes with multiple
clinical presentations (Kochinke et al. 2016), and around 2000
genes are estimated to be implicated with ID in total (van
Bokhoven 2011). Confirming pathogenicity of gene muta-
tions is a challenge, given the extensive genetic heterogeneity
of ID. Consequently, identification of the same or different
mutations in the same tentative gene in patients with similar
phenotype constitutes a solid establishment of a conclusive
etiological molecular diagnosis. This approach of finding
more patients with mutations in the same gene is usually ham-
pered by the scarcity of each individual genetic cause of ID.
Patient families with related parents can accelerate gene and
mutation identification through homozygosity scanning,
which guides researchers to underlying genetic cause, even
with phenotypic variability (Alkuraya 2010). Combining
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homozygosity mapping with next generation sequencing has
uncoveredmany novel disease genes andmutations (Alkuraya
2013).

In this study, we recruited three consanguineous families
segregating intellectual disability of unidentified cause. Novel
mutations were identified in three genes previously associated
with ID. This study shows the heterogeneity of Intellectual
Disability and the robustness and utility of combining next
generation sequencing with homozygosity mapping to identi-
fy novel disease-causing mutations. Additionally, this is the
first study to look at the etiological genes and mutations caus-
ing intellectual disability in the Jordanian Arab population.

Methods

Family ascertainment

Families were recruited from the pediatric clinic in King
Abdulla University Hospital in the north of Jordan. All fami-
lies were consanguineous with multiple affected offspring.
Patients were assessed by a pediatric neurologist (SA) and
underwent a brain MRI to screen for abnormal anatomical
features. Participants or their legal guardians gave informed
consent to participate and the study was approved by the in-
stitutional review board of both the Jordan University of
Science and Technology and the Qatar Biomedical Research
Institute. Whole peripheral blood was drawn from all partici-
pants and DNA was extracted using the Gentra Puregene
Blood Kit (Cat# 158,422, QIAGEN, Germantown, MD) ac-
cording to the manufacturer’s protocol and guidelines.

SNP genotyping and DNA sequencing

Awhole genome scan was performed using the Illumina hu-
man mapping HumanOmniExpress-12 v1.0 array. Genotypes
and copy number variants (CNVs) were analyzed with
GenomeStudio software v2011.1. Homozygosity intervals
were identified by Homozygositymapper (Seelow and
Schuelke 2012). Paired end whole exome sequencing was
carried out for all parents and at least two affected offspring
in each family, after enrichment using Nextera Rapid Capture
Exome kit V1.2 (Illumina) and run on Illumina HiSeq 2500.
Mean target coverage was 56X with 72 % of bases covered at
>20X. The sequences were mapped to the UCSC Genome
brower hg19, human genome reference, using the Burrows
Wheeler Aligner (Li and Durbin 2009). Variants were identi-
fied with Genome Analysis toolkit (GATK) (McKenna et al.
2010), annotated based on SNPeff (Cingolani et al. 2012)
using in-house scripts and reviewed by Ingenuity Variant
Analysis (IVA) (http://ingenuity.com). Potential disease-
causing variants were first filtered according to call quality
and read depth; with those lower 20 and 10, respectively, were

removed. Second, variants with an allele frequency more than
0.1 % in the public variant databases including the 1000 ge-
nome project (www.1000genomes.org), and the Exome
Variant Server (EVS, http://evs.gs.washington.edu/EVS/)
were excluded. Third, only non-synonymous, frameshift,
non-sense, and splice-site variants were selected. Fourth, only
variants homozygous in patients and heterozygous in parents
were selected. The effects of non-synonymous variants on
protein function were predicted using Polyphen-2 and SIFT.
Confirmation of potential disease-causing variants, analysis of
their co-segregation with disease phenotype, and assaying their
population frequency in 257 controls was performed by standard
Sanger dideoxy sequencing on an ABI 3730 automatic DNA
sequencer (Applied Biosystems, USA). Primers used to assay
mutations were designed by primer3 software (http://frodo.wi.
mit.edu/primer3). Primers used to assay for WWOX variant;
forward: 5′-CCTTTGCTATGCCAAGATCC-3′, reverse: 5′-
CCTGCTTCCCATTGGTACTT-3′ (ref. seq: NM_016373.3),
to assay for RARS2 variant; forward: 5′-CCTTTAAT
GGTTCTGGGCTTT-3′, reverse: 5′- AGTAATATTAGT
CTCAGGAGCTAGGG-3′ (ref. seq: NM_020320.3), to assay
for C10orf2 variant ; forward: 5 ′- GGCACCTAA
GGCATTTCAAG-3′, reverse: 5′-TGGTCATGCAGA
GAAAGTGG-3′ (ref. seq: NM_021830.3).

Results

All three families were consanguineous first-cousin mar-
riages; family 2 resulted from double first-cousin marriage.
Seven patients were assessed, six females and one male
(Fig. 1a), all of whom had intellectual disability of unidenti-
fied etiology, global developmental delay, and normal mag-
netic resonance imaging of the brain. Family I patients had
delayed speech, and no dysmorphic features and one of the
two patients had early onset epilepsy that started at 2 years of
age. Family II patients had generalized spasticity and seizures,
and one of the three patients had down-slanting palpebral
fissures. Family III patients were hypotonic with weakness,
hyperactive deep tendon reflexes, delayed speech, delayed
walking, bilateral foot drop, absent deep tendon reflexes and
no history of epilepsy. One of the patients had MRI at 3 years
of age that showed delayed myelination while nerve conduc-
tion studies and electromyography were normal.

Genotyping did not detect CNVs that segregated with the
disease. Homozygosity mapping was done for all available
family members; two affected offspring and parents for fam-
ilies 1 and 3, and three affected offspring and parents for
family 2. Multiple homozygosity intervals were identified in
each family with no overlap between families (Fig. 1b).
Homozygosity intervals were large and not amenable to
screen candidate genes. Whole exome target enrichment next
generation sequencing was performed for two affected
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children and the parents of each family, with variants filtered
through the Ingenuity Variant Analysis software as described
in the methodology; only variants localized within the homo-
zygous intervals (with a length greater than 2Mb) were further
evaluated and validated.

In family I, 4 variants were identified located within the
homozygosity intervals. Three of the variants were in chromo-
some 22, p.R659Q in ZDHHC8, p.F115 L in ZNF74, and
p.H474D in KLHL22, were predicted to be benign and toler-
ated by Polyphen-2 and SIFT. The fourth variant, p.G410C
(c.1228G > T, rs76204496) in WWOX on chromosome 16,
was predicted Bpossibly damaging^ by PolyPhen-2 and is lo-
cated in a highly conserved protein region (Fig. 2).WWOX has
previously been implicated in intellectual disability (Tabarki et
al. 2015; Mignot et al. 2015; Ben-Salem et al. 2015). Only one
variant remained after filtering the data from family II, and was
found within a homozygous interval in chromosome 6;
p.H530Y (c.1588C > T) in RARS2 gene. This variant was
predicted Bprobably damaging^ by Polyphen-2, Bdamaging^
by SIFT and was highly conserved (Fig. 2). RARS2 mutations
cause pontocerebellar hypoplasia, which is characterized by
intellectual disability amongst other symptoms (Dyment et
al. 2013, Li et al. 2015, Cassandrini et al. 2013). Filtering
the variants from family III resulted in a list of four mutations,
one of which did not fall with a homozygous interval. Of the
other three, p.V74I in CASC10 and p.P513S in ARHGAP21

were listed in dSNP (rs137871434 and rs749657239, respec-
tively) and predicted as Bbenign^ in Polyphen-2. The third
variant p.I69F (c.205 A > T) in C10orf2 was not listed in
dSNP, predicted to be Bpossibly damaging^ by Polyphen-2,
and localized in a highly conserved protein region (Fig. 2).
C10orf2 mutations have been implicated in intellectual dis-
ability (Park et al. 2014; Faruq et al. 2014; Hartley et al. 2012).

Neither, the RARS2 and C10orf2 variants were present in
the 1000 genomes project (The 1000 Genomes Project
Consortium, 2015), dSNP (URL: http://www.ncbi.nlm.nih.
gov/SNP/) (accessed December 2015), the exome variant
server (URL: http://evs.gs.wahsington.edu/EVS/) (accessed
December 2005), nor in the exome aggregation consortium
(ExAC) (URL: http://exac.broadinstitute.org) (accessed
December 2015). In addition, none of these identified
variants were detected in 514 ethnically and geographically
matched control chromosomes.

Discussion

In this study, we recruited three consanguineous families of
Arab descent, all of whom had at least two affected children
with intellectual disability. The families were unrelated to each
other. We have taken the approach of homozygosity mapping
to identify runs of homozygosity shared within each family.

Family I Family II Family III

WT/mut WT/mut WT/mutWT/mutWT/mutWT/mut

mut/mut mut/mutmut/mutmut/mutmut/mutmut/mut mut/mut

a

b

Fig. 1 a Family pedigrees; circles are females and squares are males,
filled symbols denote affected individuals, double lines denotes
consanguinity. Wild type (WT) allele and putative mutant (mut) allele
for sequenced members of the family are indicated. b Homozgyosity

Mapping results. Using homozygosityMapper, plots of homozygous
regions identified in affected individuals are shown. Red bars denote
runs of homozygosity shared by affected individuals in each family, X
axis represent chromosomes
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We then subjected two affected children and the parents of
each family to whole exome sequencing and investigated the
variants identified within the homozygosity intervals.
Stringent filtering identified novel variants in three genes pre-
viously associated with intellectual disability.

Three of the four variants found in the homozygosity inter-
vals of family I were predicted benign and has not been asso-
ciated with ID, global developmental delay or epilepsy.
p.R659Q in ZDHH8 is present in the ExAC data set;
rs781662370. ZDHH8 has been reported to be associated with

susceptibility to schizophrenia (Mukai et al. 2004), ZNF74 has
been also reported o be associated with age-at-onset of schizo-
phrenia (Takase et al. 2001), and KLHL22 plays a role in
ubiquitination (Metzger et al. 2013). The WW domain-
containing oxidoreductase (WWOX), a likely tumor suppres-
sor gene, is linked to neuronal development (Chang 2015).
Early connection betweenWWOX and neurological disorders
came from animal models that demonstrated epilepsy and
ataxia caused by WWOX loss (Suzuki 2009 and Mallaret
2014). A critical role of WWOX in central nervous system

WWOX RARS2 C10orf2

WWOX
Mutated Homo sapiens 410 A L S E R L I Q E R L C S Q S G

Homo sapiens 410 A L S E R L I Q E R L G S Q S G *
Pan troglodytes 410 V L S E R L I Q E R L G S Q S G
Felis catus 333 V L S E R L I Q E A L G S Q S G
Mus musculus 410 E L S E R L I Q D R L G S P S
Gallus gallus 410 E L S E R L I R E Q L G R R S

RARS2
Mutated Homo sapiens 530 R H I V S Y L L T L S Y L A A V A H K T L Q

Homo sapiens 530 R H I V S Y L L T L S H L A A V A H K T L Q
Pan troglodytes 530 R H I V S Y L L T L S H L A A V A H K T L Q
Macaca mulatta 530 R H I V S Y L L T L S H L A A V A H R T L Q
Mus musculus 530 K H I V S Y L L T L S H L A A V A H K T L Q
Gallus gallus 531 K H I V S Y L L T L S H L A A V A H R T L P
Takifugu rubripes 549 V N F L L K L S H L I A S A H R E L P
Danio rerio 549 H L V N F L M T L S H L V A S A H R E L P
Xenopus tropicalis 535 R Y L V T Y L M S L G H L A N

C10orf2
Mutated Homo sapiens 69 R Q Y L R G H G F P F Q D G H S C L R A

Homo sapiens 69 R Q Y L R G H G I P F Q D G H S C L R A
Pan troglodytes 69 R Q Y L R G H G I P F Q D G H S C L R A
Macaca mulatta 69 R Q Y L R G H G I P F Q D G H S C L R T
Felis catus 69 R Q Y L R A R G I P F Q D G H S C L R A
Mus musculus 69 R Q Y L R A H G I P F Q D G H S C L R A

Fig. 2 Upper panel, Sanger sequences of mutations; c.1228G > T
(p.G410C) in WWOX, c.1588C > T (p.H530Y) in RARS2, and
c.205 A > T (p.I69F) in C10orf2. Red arrows points to mutations,

upper panel are controls, middle panel heterozygotes, and lower panel
are for affected individuals. Lower panel, conservation of protein
sequences at mutation sites. Mutated residues are shaded yellow
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(CNS) homeostasis has been suggested by the pattern of its
increased expression in the CNS (Nunez et al. 2006). Several
WWOXmutations have been reported in patients characterized
as having intellectual disability, epilepsy, developmental de-
lay, and/or neurological manifestations of ataxia (Abdel-
Salam et al. 2014; Mallaret et al. 2014; Mignot et al. 2015;
Ben-Salem et al. 2015; Valduga et al. 2015; Tabarki et al.
2015). The WWOX-associated phenotype displays a wide
range of phenotypic abnormalities which might be related to
the nature of mutations; point mutations (such as p.P47T,
p.P47R, p.G372R) are usually associated with milder pheno-
types than those associated with nonsense mutations (such as
p.R54*, p.K297*, p.W335*) or partial/complete deletions
(Abu-Remaileh et al. 2015). Nonsense or null mutations exhib-
ited severe phenotype including progressive microcephaly, se-
vere early onset spasticity, infantile epileptic encephalopathy,
optic atrophy, failure to thrive, and premature death or abortion
(Abdel-Salam et al. 2014, Ben-Salem et al. 2015, Valduga et al.
2015, Tabarki et al. 2015), while missense mutations in our
patients and others cause a milder phenotype with no progres-
sive microcephaly, no spasticity or spasticity with exaggerated
reflexes (Mallaret et al. 2014). Interestingly, neither our patients
nor others had developed tumors, however, this does not negate
a cumulative lifespan risk to develop cancer.

WWOX contains three major domains; WW1, WW2, and
SDR. The SDR domain contains a catalytic site, a proton
acceptor site, an NADP nucleotide binding site, a mitochon-
drial targeting mediating site, and a C-terminal extension spe-
cific to WWOX and a few other SDR-containing proteins.
Themutation identified in this report is the first to be identified
in the C-terminal extension region, which is highly conserved
across species. The p.G410C mutation introduces a cysteine
moiety that may cause destabilization of the protein structure
by disturbing the disulfide bonds or changing the positions of
amino acid residues that are critical for WWOX interaction
with other proteins. Just upstream of the C-terminal extension
region, a p.G372R mutation was reported to cause cerebellar
ataxia with epilepsy and mental retardation (Mallaret et al.
2014). In addition, a frame shift mutation starting at position
371 in Lde/Lde rats caused epilepsy and seizures (Suzuki et al.
2009). Together with our newly identified mutation, this dem-
onstrates the importance of the C-terminal extension region of
the WWOX protein for its function and for proper neural
development.

The RARS2 gene encodes the mitochondrial arginine-
transfer RNA synthetase which is important for all mitochon-
drial proteins (Edvardson et al. 2007).ManyRARS2mutations
have been reported in patients with pontocerebellar hypopla-
sia type 6 (PCH6) which is characterized by intellectual dis-
ability, severe motor impairment, and abnormally small cere-
bellum and brainstem (Edvardson et al. 2007; Rankin et al.
2010; Namavar et al. 2011a, b; Glamuzina et al. 2012;
Cassandrini et al. 2013; Kastrissiankis et al. 2013; Joseph

et al. 2014; Li et al. 2015; Lax et al. 2015). The RARS2 gene
is one of 19 different nucleus-encoded mitochondrial
aminoacyl-tRNA synthetases. It is not fully understood why
mutations in RARS2 cause a specific pattern of neurodegener-
ation leading to PCH6 disease; however it has been reported
that some tRNA synthetases play a role in alternate functions,
including apoptosis and splicing (Namavar et al. 2011a, b).
The development of certain t issues, such as the
pontocerebellum, is highly dependent on mitochondrial
arginine-tRNA synthetase which may explain the vulnerabil-
ity of this region of the brain to impaired RARS2 function in
patients. p.H530Y is located in a conserved region, segregates
with disease within the family, and has never been reported in
any database nor within ethnically matched controls.

C10orf2 encodes the Twinkle protein, a helicase essential
for replicating mammalian mitochondrial DNA (Milenkovic
et al. 2013). Twinkle is composed of three major functional
domains: An N-terminal primase, a linker region required for
proper helicase activity and oligomerization, and a C-terminal
helicase (Shutt and Gray, 2006). C10orf2 mutations cause at
least three distinct phenotypes: Perrault syndrome 5 (PRLTS5,
OMIM 616138) (Morino et al. 2014), Progressive external
ophthalmoplegia with mitochordrial DNA deletions autoso-
mal dominant 3 (PEOA3, OMIM 609286) (Spelbrink et al.
2001; Echaniz-Laguna et al. 2010), and Mitochondrial DNA
depletion syndrome 7 (MTDPS7, OMIM 271245, also known
as Infantile-onset Spinocerebellar Ataxia) (Nikali et al. 2005;
Hartley et al. 2012; Park et al. 2014; Faruq et al. 2014); the
latter phenotype is characterized by intellectual disability
amongst others. It is thought that theinvolvement of multiple
organ systems in those disorders is due to the mtDNA deletion
and/or depletion caused by C10orf2 mutations. In less severe
cases, mtDNA depletion is detectable in the brain and liver,
while in more severe cases mtDNA depletion is also detect-
able in muscles, having abnormal mitochondrial enzyme ac-
tivity (Nikali et al. 2005). The mutation found in our patients,
p.I69F, is located 10 amino acids upstream of the primase
domain which has a critical role in positioning the helicase
on its target; hence, it seems likely that the mutation will affect
the helicase function, leading to disease.

In conclusion, we recruited three families characterized
with intellectual disability and analyzed them through whole
exome sequencing. We identified three novel mutations in
genes known to be associated with intellectual disability.
These mutations need to be replicated or their functional effect
analyzed to confirm their cause of disease. Some mutations
might have escaped detection that could be a stronger contrib-
utor to causing the phenotype. Our results demonstrate the
practical advantage and utility of using SNP genotyping and
whole exome sequencing in consanguineous families with
disease of undetermined cause. It also shows the heterogeneity
of different mutations causing a similar phenotype in a local
inbred population.
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