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Abstract Toxoplasma gondii, an intracellular protozoan para-
site, has a striking predilection for infecting the Central Nervous
System and has been linked to an increased incidence of a
number of psychiatric diseases. Several in vitro and in vivo
studies have shown that T. gondii infection can affect the struc-
ture, bioenergetics and function of brain cells, and alters several
host cell processes, including dopaminergic, tryptophan-
kynurenine , GABAergic , AKT1, Jak/STAT, and
vasopressinergic pathways. These mechanisms underlying the
neuropathology of latent toxoplasmosis seem to operate also in
schizophrenia, supporting the link between the two disorders.
Better understanding of the intricate parasite-neuroglial com-
munications holds the key to unlocking the mystery of T.
gondii-mediated schizophrenia and offers substantial prospects
for the development of disease-modifying therapies.

Keywords Toxoplasma gondii . Schizophrenia .Mental
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Introduction

Schizophrenia and other psychiatric diseases are chronic men-
tal disorders with a reaching impact on the human society.
Worldwide, about 2 billion people suffer from brain related
illnesses, such as dementia, Alzheimer’s disease, depression,
epilepsy, schizophrenia, stroke, or chronic pain. The overall
cost of brain disorders in Europe has been estimated at €798
billion in 2010 (Gustavsson et al. 2011). Despite the far-
reaching impl ica t ions of menta l di seases , the i r
pathoetiological mechanisms remain incompletely understood
due to the complexity of their pathogenesis. Indeed, genetic
predisposition does not fully account for neuropsychiatric dis-
eases; immunity, infection and other environmental factors,
and socioeconomic status have also been implicated in the
development of these diseases (Kendler and Diehl 1993;
Lohmueller et al. 2003).

With the increasing dual burden of infectious and psychi-
atric diseases on human population the realization of the con-
tribution of and interaction between these diseases and our
understanding of themwill form the basis for any future public
health program. The effects of central nervous system (CNS)
infections on the behavior of the infected individuals have
been well documented. For example, borna virus has been
associated with schizoaffective disorder and mania (Hans et
al. 2004), HIV was linked to cognitive impairment and psy-
chosis (Kalichman et al. 2000), rabies virus can cause hydro-
phobia (Bentivoglio et al. 2011). Also, Brucella suis can con-
tribute to cognitive and emotional disturbances (Eren et al.
2006), Leptospira might trigger psychotic symptoms (Semiz
et al. 2005), Mycobacterium tuberculosis can cause anxiety
and depression (Vega et al. 2004), and streptococcal infections
have been linked to obsessive-compulsive disorder and pedi-
atric autoimmune psychoses (Swedo et al. 2004). Further, the
neurotropic parasite Toxoplasma gondii (T. gondii) was linked
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to behavioral changes in rodents, chimpanzee, and humans
(Vyas et al. 2007; Flegr et al. 2011; Ingram et al. 2013;
Poirotte et al. 2016). Elucidating the role of these microbial
infections in neuropsychiatric diseases has been difficult to
achieve probably due to the multifaceted nature of these
diseases.

The past decade has marked exciting developments in un-
derstanding the important role specific pathogens can play in
the development of these diseases (Jones-Brando 2003; Flegr
2007; Fekadu et al. 2010; Brooks et al. 2015). The aim of this
review is to discuss the underlying pathophysiologic mecha-
nisms by which T. gondii contributes to neuropsychiatric ill-
ness with an emphasis on processes or molecules that are
known to alter brain function in schizophrenia, and hence
are of interest for neuropsychiatric disease development.
Although the exact molecular and cellular mechanisms under-
pinning the association between latent toxoplasmosis and
schizophrenia remains poorly understood many neuropatho-
logic commonalities between T. gondii infection and schizo-
phrenia point out to a plausible relationship as explained in
this review. Understanding the connection between T. gondii
infection and psychiatric diseases will teach us a great deal
about pathogenesis of these illnesses and may offer sugges-
tions for improvement including testable hypothesis for future
investigations and therapeutics’ discovery.

Toxoplasmosis and psychosis

Toxoplasmosis is one of the most common zoonotic diseases
that has infected about one-third of the world’s human popu-
lation (Montoya and Liesenfeld 2004). T. gondii is a predom-
inantly intracellular pathogen with a strict neurotropism. Key
to T. gondii neuropathogenesis is its ability to transmigrate
across the blood–brain barrier and to colonize brain cells of
infected hosts. During acute infection these events cause direct
structural neurological damage due to invasion, growth and
exit of the tachyzoite stage of the parasite (Fig. 1a) from the
infected host cells, and by forming cyst during latent infection,
in amygdala, olfactory bulb, cerebellum, and the cortical re-
gions (Berenreiterová et al. 2011; Haroon et al. 2012; Evans et
al. 2014), this parasite can elicit several hormonal and behav-
ioral alterations in humans and rodents (Flegr 2013) (Fig. 1b).
T. gondii uses several mechanisms to manipulate the host’s
phenotype and increase aggressiveness of the infected male
hosts (Flegr et al. 2003). For example, the parasite enhances
the levels of the neurotransmitter, dopamine (DA) in the brains
of infected rodents, via its own tyrosine hydroxylase (Flegr et
al. 2003; Gaskell et al. 2009; Parlog et al. 2015). Also, T.
gondii enhances the plasma levels of the steroid hormone,
testosterone, in infected male hosts via increasing the number
of luteinizing hormone receptors, which regulate the synthesis
of testosterone in testes on Leydig cells (Lim et al. 2013;

Zghair et al. 2015). T. gondii hypomethylates the arginine
vasopressin promoters in the medial amygdala of rats, leading
to more activation of vasopressinergic neurons after exposure
to cat odour, which leads to the reversion of fear into attrac-
tion, an evolutionary meachnaims meant to increase transmis-
sion of the parasite to its definitive felid hosts (Hari Dass and
Vyas 2014). Further, latent infection with T. gondiiwas report-
ed to cause dendritic retraction in the basolateral amygdala,
possibly contributing to diminished fear and anxiety-like be-
havior in infected rodents (Mitra et al. 2013). Interestingly,
time-dependent and gender-related differences have been de-
tected in the levels of neurotransmitters. For example, DA
release was found to be higher in acutely infected males, and
a decrease in the noradrenergic system activity was found in
females compared to slight increase in some brain areas of
males. Also, acute invasion was associated with a rise in se-
rotonin system activity, mostly in males (Flegr et al. 2008;
Gatkowska et al. 2013).

Latent toxoplasmosis has been involved in psychiatric dis-
orders, such as schizophrenia, autism, obsessive compulsive
disorder (OCD), and bipolar disorder (Miman et al. 2010;
Kusbeci et al. 2011; Taboas 2012; Sutterland et al. 2015).
Schizophrenia in particular has received much attention and
epidemiologic evidence supporting the link between latent
toxoplasmosis and schizophrenia has been reported in many
studies. T. gondii seropositive schizophrenic patients were
found to experience poor course of schizophrenia and more
severe positive psychopathology as indicated by the higher
score on the Positive and Negative Symptom Scale
(PANSS)-positive subscale (Holub et al. 2013). In young in-
dividuals, a link between infection with T. gondii and schizo-
phrenia has been proposed based on the demonstration that T.
gondii infection is associated with a high risk of developing
schizophrenia, and children subjected to infection in utero are
more likely to develop psychiatric disease than non-infected

Fig. 1 Morphological appearance of the two life cycle forms of
Toxoplasma gondii. a Acridine orange-stained human brain microvascu-
lar endothelial cells infected with Toxoplasma gondii RH strain. Note the
presence of multiple tachyzoites (green dots indicated by the arrow),
which are enclosed by a parasitophorous vacuole within host cell cyto-
plasm. N indicates host cell nucleus. Scale bar = 10 μm. b Toxoplasma
gondii tissue cyst in the brain of infected mouse. Scale bar = 50 μm. This
image was used with the kind permission of Dr. J.P. Dubey, Ph.D.,
USDA, Beltsville, MD, USA
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children. T. gondii in utero infection affects fetal brain devel-
opment and increases the vulnerability to develop ‘true’
schizophrenia later in life (Mortensen et al. 2007). The risk
of developing schizophrenia or autism is not limited to prena-
tal exposure to T. gondii; congenital infection to other patho-
gens including influenza, rubella, measles, and cytomegalovi-
rus has also been implicated in the etiology of this psychiatric
disorder (Brown and Derkits 2010). T. gondii infection in the
post-natal life could induce schizophrenia symptoms (i.e. not
‘true’ schizophrenia) by affecting brain function via, for ex-
ample, altered dopamine transmission or causing neuro-in-
flammation. T. gondii infection can thus be a risk factor for
schizophrenia in the young and the elderly. These epidemio-
logical links are still debatable and better understanding of the
neurophysiologic mechanisms underpinning these associa-
tions is needed if we are to develop better management of T.
gondii-mediated psychiatric diseases.

The cross-talks between T. gondii and brain cells

Different psychopathologic mechanisms can substantiate the
link between T. gondii infection and neuropsychiatric disor-
ders. These include abnormal neurotransmitter metabolism
(Stibbs 1985; Skallova et al. 2006; Gaskell et al. 2009;
Prandovszky et al. 2011), dysregulated tryptophan metabo-
lism (Schwarcz and Hunter 2007; Notarangelo et al. 2014),
immunological changes (Prandota 2010), and hormonal
(testosterone) alteration (Lim et al. 2013; Zghair et al. 2015).
T. gondii infection also induces abnormalities in specific re-
gions of the brain (e.g., hippocampus and amygdala) that are
involved in the etiology of various neuropsychiatric disorders
(Vyas et al. 2007; Mitra et al. 2013; Evans et al. 2014). Neuro-
inflammation and the imbalance between pro- and anti-
inflammatory cytokines seem to be the main mechanisms that
underpin the various pathways linking T. gondii and schizo-
phrenia. Herein, we discuss how the activation of pro-
inflammatory cytokines in response to T. gondii infection con-
tributes to the pathogenesis of schizophrenia via its effects on
various aspects of the brain function and structure (Fig. 2).

Alteration of neurotransmitter balance

Abnormality in the level of extracellular neurotransmitter con-
centrations has remained the core hypothesis supporting the
link between latent toxoplasmosis and behavioral alterations.
Dysregulation of the neurotransmitter DA has been implicated
in psychiatric disorders, such as schizophrenia, bipolar disor-
der, OCD, and addiction in humans (Kim et al. 2003; Berk et
al. 2007; Van Os and Kapur 2009; Ingram et al. 2013; Volkow
et al. 2013; Brisch et al. 2014), and the ability of T. gondii to
interrupt DA equilibrium has been documented in vivo and in
vitro (Stibbs 1985; Skallova et al. 2006; Vyas et al. 2007;

Prandovszky et al. 2011). Dopamine is produced by host neu-
ral cells, but the parasite is also able to augment dopaminergic
function (Prandovszky et al. 2011). T. gondii can increase DA
levels in rodents (Stibbs 1985) through the inflammatory re-
lease of DA by increasing cytotoxic nitric oxide (NO) and
other inflammatory cytokines such as Interleukin-2 (IL-2)
and IL-6, which are produced by activated leukocytes at sites
of local inflammation in the infected brain (Miller et al. 2009).
Also, increased DA release can occur via direct parasite’s
production. This proposition was supported by the discovery
of two genes, AAH1 and AAH2, in T. gondii genome encoding
for two isoforms of aromatic amino acid hydroxylases AAH
(tyrosine and phenylalanine hydroxylases), which catalyze
phenylalanine (Phe) to Tyrosine (Tyr) and Tyr to 3,4
dihydroxyphenylalanine (L-Dopa) (the precursor to DA),
which alters DA pathway and leads to alteration in the behav-
iour of T. gondii-infected host (Gaskell et al. 2009).
Interestingly, the antipsychotic, dopamine-blocking agents,
haloperidol and the mood stabilizer valproic acid were found
to inhibit T. gondii growth in vitro (Jones-Brando et al. 2003;
Goodwin et al. 2008, 2011), whereas DA stimulates
tachyzoite propagation (Guo et al. 2010; Strobl et al. 2012).
This has led to the assumption that the effects of drugs used in
the treatment of schizophrenia and other psychoses may be
potentiated through their toxic effect on the parasite in infected
individuals (Webster et al. 2006; Strobl et al. 2012). However,
this is only relevant for treating T. gondii and T. gondii-in-
duced schizophrenia symptoms because most people with
schizophrenia are not infected with T. gondii.

The induction of indoleamine 2,3-dioxygenase (IDO) en-
zyme by IFN-γ is another example of the modulation of host
neurotransmission by T. gondii-associated immune activation.
The cytokine-mediated expression of IDO of the tryptophan/
kynurenine metabolism leads to the depletion of plasma trypto-
phan (Try), which may interfere with brain 5-HT(serotonin)
synthesis, and increase production of anxiogenic and
depressogenic Try catabolites (Schwarcz and Pellicciari 2002;
Leonard and Maes 2012). A dramatically increased concentra-
tion of two neuroactive metabolites, quinolinic acid (QA) and
kynurenic acid (KA), was observed in the brain ofmice infected
with a type II T. gondii strain (Notarangelo et al. 2014). In
human patients, excessive QA and KA levels have been corre-
lated with a number of neurodegenerative disorders, depres-
sion, schizophrenia, and non-fatal suicidal self-directed vio-
lence (Schwarcz et al. 2001; Schwarcz and Pellicciari 2002;
Guidetti and Schwarcz 2003; Guilleminet al. 2006; Okusaga
et al. 2016). Produced primarily by microglia, QA binds to
glutamate N-methyl-D-aspartate receptors (NMDARs) induc-
ing excitotoxicity and oxidative stress (OS) in the brain
(Schwarcz and Pellicciari 2002; Guillemin et al. 2005). The
KA, which is produced primarily in astrocytes, is a potent an-
tagonist of NMDARs and attenuates glutamatergic neurotrans-
mission at excitatory synapses, leading to alteration of the
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neuronal oscillations, cognitive defects and schizophrenia-like
symptoms (Schwarcz and Pellicciari 2002; Guillemin et al.
2005; Kegel et al. 2014; Goff 2015; Howes et al. 2015).
However, a recent study revealed that kynurenine pathway al-
teration in acutely T. gondii-infectedmicemight not fully reflect
changes observed in the brain of schizophrenia patients
(Notarangelo et al. 2014), suggesting that other mechanisms
might contribute to schizophrenia pathogenesis in individuals
infected with T. gondii. Indeed, recent evidence showed that
Type II ME49 T. gondii directly interferes with GABA signal-
ling in the brain by inducing global changes in the distribution
of glutamic acid decarboxylase 67 (GAD67), a key enzyme that
catalyzes the neuronal biosynthesis of gamma-aminobutyric
acid (GABA) in the brain (Brooks et al. 2015). GABA is the
major inhibitory neurotransmitter in the brain and can be secret-
ed from T. gondii-infected dendritic cells (DCs), which pro-
motes parasite dissemination by stimulating motility of infected
DCs through GABAergic signalling pathways (Fuks et al.
2012).

The effects of infection with representative strains of T.
gondii on the expression of genes coding for neurotransmitter
and neuropeptide systems (NNS) in human neuroepithelioma

cells was studied using microarray (Xiao et al. 2013).
Compared to controls, cells infected with type I strain showed
alterations in the gene transcription and protein levels of three
neurotransmitter systems (dopamine, glutamate and seroto-
nin) and two neuropeptides (PROK2 and TAC1). Infection
with type III changed the critical enzyme, TDO2, in the
kynurenine pathway, whereas type II caused no significant
abnormalities in the NNS. Interestingly, levels of mRNA
encoding for TDO2 are elevated in the brain of individuals
with schizophrenia (Miller et al. 2004).

Metabolic alterations

IFNγ, produced by T cells, natural killer cells infiltrating the
brain, and by resident microglia (Suzuki et al. 2005), is the
main component of the anti-T. gondii immune response
(Hunter and Sibley 2012). It primes phagocytes to produce
toxic intermediates that suppress the growth of the parasite,
but also increases the activity of IDO. Interestingly, this en-
zyme depletes Try, which is necessary to limit the replication
of T. gondii tachyzoites, but on the other hand it interferes with
brain 5-HT synthesis and causes alteration in the kynurenine

Pro-inflammatory cytokines:
IL-6, TNF-α, IL-1β, ROS, and NO

Anti-inflammatory cytokines:
IL-10

Dopamine level 
Kynurenic acid (neuroprotective)
Quinolinic acid (neurotoxic)
Oxidative stress 
Cortisol level
CRP, PAI-1, TIMP-1

Tryptophan
Serotonin
Synaptic plasticity 

Activated microglial

Resting microglia

Inflammation
(Peripheral or CNS)

Aggravators
Activated microglial cells polarize 
to M1 phenotype and produce
pro-inflammatory cytokines. In
contrast, IL-4 and IL-13 induce
alternative activation of microglia
to M2 phenotype which down-
regulates M1 functions by anti-
inflammatory cytokine IL-10.

Triggers
Resting microglial cells become
activated by inflammatory IFN-γ
from peripheral or brain source.

Manipulators 
Immune activation and
inflammation interfere with and
interrupt many neurological and
cognitive functions leading to
altered synaptic transmission,
dysregulated brain metabolism,
disrupted blood-brain barrier,
neuronal apoptosis, imbalanced
glutamate/GABA, and astrocyte
dysfunction.

Toxoplasma gondii Blood-brain barrier

Fig. 2 Summary of the
alterations associated with brain
infection with the protozoan
Toxoplasma gondii. Besides the
direct physical damage associated
with T. gondii infection on brain
cells, the parasite disrupts a
number of neurochemical
processes and these are
summarized here. Inflammatory
and immune responses seem to be
the main drivers for all cascade of
events starting from activation of
resting microglial cells, polarizing
their immuno-regulatory func-
tions, which cause many neuro-
chemical changes, similar to those
occurring in schizophrenia, lead-
ing to irregularities in mood,
cognition and behaviour observed
in some infected individuals.
Abbreviations: GABA gamma-
aminobutyric acid, CRP C-
reactive protein, PAI-1 plasmino-
gen activator inhibitor 1, TIMP-1
tissue inhibitor of metalloprotein-
ases 1, VCAM-1 vascular cell ad-
hesion molecule 1, TNF-α tu-
mour necrosis factor alpha, ROS
reactive oxygen species,NO nitric
oxide
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pathway of Try metabolism, which has been linked to schizo-
phrenia as stated above. Of note, patients suffering from im-
mune activation and inflammation, critical factors in the path-
ogenesis of toxoplasmosis, were found to have elevated serum
levels of Phe together with an elevated Phe to tyrosine ratio
(Phe/Tyr), which was associated with neuropsychiatric symp-
toms, such as depression and mood changes (Neurauter et al.
2008). The associations between immune and inflammatory
activation and the disturbed Phe metabolism is most likely a
consequence of a reduced conversion of Phe to Tyr by the
aromatic amino acid phenylalanine 4-hydroxylase (PAH).
Given the oxidative stress associated with both T. gondii in-
fection and neuropsychiatric disorders it is reasonable to ex-
pect that metabolites, such as 5,6,7,8-tetrahydrobiopterin
(BH4), which acts as an antioxidant as well as a cofactor for
PAH in mammals are rapidly destroyed (Widner et al. 2001).
As a consequence, the BH4-dependent enzyme PAH loses its
activity, leading to increased concentration of Phe and Phe/Tyr
ratio, characteristics of neuropsychiatric disorders.

A recent untargeted LC-MS-based metabolomic’s study
identified 19 metabolites that are differentially regulated in
the serum of T. gondii-infected mice compared to controls.
Among these compounds, 5 were detected in the ESI+mode.
These include kynurenine, serotonin, glycerophosphocholine,
choline, and N-Acetyl-DL-tryptophan, which play key roles
in mediating host-pathogen interaction as described above
(Zhou et al. 2016). A similar metabolomics approach in
BALB/c mice during infection with T. gondii Pru strain re-
vealed alteration in the metabolism of amino acids, organic
acids, carbohydrates, fatty acids, and vitamins in the brain of
infected mice (Zhou et al. 2015).

Inflammatory markers

Elevated levels of pro-inflammatory cytokines, e.g. IL-1, IL-6
and tumour necrosis factor alpha (TNF-α), and Th-1-derived
cytokines, such as IL-2 and interferon gamma (IFN-γ) have
been reported in the cerebral spinal fluid (CSF) and serum of
individuals with schizophrenia. Recent evidence suggests that
levels of C-reactive protein (CRP) are increased in the brain of
schizophrenia patients adds to the evidence of activated im-
mune response in schizophrenia. CRP is a protein involved in
acute phase response and is considered a generic marker of
inflammation. Increased levels of peripheral CRP in schizo-
phrenia was found to be independent of confounding factors,
such as smoking or body mass index (Dickerson et al. 2013).
Also, a positive association exists between serotiters to T.
gondii infection and circulating CRP levels in schizophrenia
(Hinze-Selch et al. 2007). Levels of CRP remain elevated
regardless of treatment with antipsychotic medications
(Suvisaari et al. 2011) and were associated with the severity
of cognitive impairment (Dickerson et al. 2007), suggesting

that interventions that are able to lower CRP levels could
benefit schizophrenia patients.

Oxidative stress and stress-activated signalling pathways

The innate immune system generates reactive oxygen species
(ROS) and reactive nitrogen species (RNS) to aid in the de-
struction of foreign pathogens. On the other hand, most of the
inflammatory mediators are potentially toxic for neurons
(Zindler et al. 2010). For instance, scientific evidence points
to ROS-mediated oxidative damage as a key pathogenic path-
way involved in infection-mediated neuropathy (Gao et al.
2014). Pro-inflammatory cytokines associated with T. gondii
infection induce the activation of apoptosis through microglial
activation and subsequent production of ROS and increased
RNS. T. gondii also activates immune cells (Jones et al. 2006)
and a host of inflammatory actions through Jak/STAT path-
way, and induces neuronal expression and activation of
NADPH oxidase (NOX2) enzyme. NOX2, in turn, can pro-
duce large amounts of ROS (Sun et al. 2007), primarily su-
peroxide known to be connected to seizures, stroke and neu-
rodegenerative diseases (Vasconcelos et al. 2014). Also, a
number of schizophrenia susceptibility genes are involved in
the life cycle of T. gondii (Carter et al. 2009), whereby these
genes have a role in immunity, but also regulate binding to the
integrin system, which could influence AKT1 signaling,
preventing host cell death, but also modulating dopamine-
dependent behavior (Tan et al. 2008).

The activation of NMDA receptor has also been known to
trigger oxidative stress in schizophrenia through glutamate,
which is actively taken up into astrocytes and is converted into
glutamine. Alterations in glutamine increase calcium influx
into neurons, which may contribute to excitotoxicity,
NMDA antagonism in schizophrenia and altered neurotrans-
mission. The imbalance in the glutamatergic neurotransmis-
sion leads to further production of ROS and RNS, which sub-
sequently leads to nitrosative damage to DNA, proteins and
lipids. These finding indicate that a high degree of
degenerated neurons and cognitive impairment are expected
to be associated with the presence of T. gondii in the brain.

Neuronal damage and apoptosis

Intracerebral T. gondii infection was found to activate neuro-
toxic microglia CCR9+ Irg1+ in C57BL/6 J mice and in-
creased TNF-α mRNA expression that promoted neuronal
apoptosis and thus facilitates neurodegeneration (Li et al.
2006). Considering the neuroinflammation hypothesis, the
possible relevance of activated microglia in the pathophysiol-
ogy of schizophrenia is increasingly recognized (Van Berckel
et al. 2008; Gao et al. 2014). Microglias play a role in control-
ling T. gondii infection in the brain (Blanchard et al. 2015),
possibly through the kynurenine pathway (Notarangelo et al.
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2014), whereby differences of the microglial immune re-
sponse to different strains of T. gondii have been found
(Glaser et al. 2011). Alternatively, IL-6 production of macro-
phages reverts the inhibition of T. gondii replication caused by
astrocytes and microglial cells and may be involved in the
mechanism of reactivation of latent infection in patients with
AIDS (da Silva and Langoni 2009). IL-6 has been found to be
increased in schizophrenia patients (Miller et al. 2011).
Another hypothesis links CD8 T-cell downregulation with
the mental effects of toxoplasmosis (Bhadra et al. 2013),
which can be caused by the kynurenine pathway.

IFNγ is known to induce expression of VCAM-1 in endo-
thelial cells to allow recruitment of cytotoxic T cells to the site
of T. gondii infection (Wang et al. 2007). This is associated
with the formation of collagen-like structures, which guides
lymphocyte migration (Wilson et al. 2009). Also excessive
cytokine responses to T. gondii infection may cause neuronal
apoptosis and glial damage, decreasing the neurotrophic sup-
port and inducing structural changes (Fabiani et al. 2015).
This is in line with recent findings that showed signs of
CNS tissue damage, demyelination and increased apoptosis
in experimentally infected mice (Tomasik et al. 2015), indi-
cating that infection may be associated with exacerbated brain
pathology. These findings are relevant to the previously re-
ported decrease in the density of grey matter (the regions
containing neuronal cell bodies and almost all synaptic con-
nections) of Toxoplasma seropositive schizophrenic patients
compared with seronegative schizophrenic patients (Horacek
et al. 2012; Tomasik et al. 2015). Also, alterations in synaptic,
dendritic and axonal organization have been linked to macro-
scopic features observed in the brain of schizophrenic patients,
such as decreased cortical volume (Harrison 1999). Further,
myelin abnormalities have been described in schizophrenia
and linked to abnormal neural connectivity and functional
impairment (Flynn et al. 2003).

Proteomic signature of brain tissues

Data generated from high-throughput proteomic techniques
have furthered our understanding of the T. gondii-schizophre-
nia interface. Tomasik et al. (2015) revealed increases in the
levels of CRP, IL-1β, IFNγ, plasminogen activator inhibitor 1
(PAI-1), tissue inhibitor of metalloproteinases 1 (TIMP-1),
and vascular cell adhesion molecule 1 (VCAM-1). These fea-
tures overlapped between mice chronically infected with T.
gondii and Bpostmortem^ brain samples of schizophrenic pa-
tients. This signature of immune activation (indicative of neu-
ral damage) and tissue repair molecules are implicated in sev-
eral mechanisms in the pathogenesis of schizophrenia and
toxoplasmosis. Immune activation-induced damage and tissue
remodeling processes during T. gondii brain infection are con-
trolled by matrix metalloproteinases, enzymes that degrade
extracellular matrix proteins, and their inhibitor TIMP-1

produced by astrocytes and microglia (Clark et al. 2011).
Increased TIMP-1 level was shown in both animal models
and schizophrenic patients and overexpression of TIMP-1
can impair long-term potentiation (LTP) in the prefrontal cor-
tex (Okulski et al. 2007). Extracellular matrix abnormalities
and resulting LTP-like plasticity deficits are likely to contrib-
ute to the pathophysiology of schizophrenia and result in im-
paired information processing in patients (Berretta 2012). The
exact role of PAI-1 in T. gondii infection and schizophrenia-
related mechanisms is unknown. But, similar to TIMP-1, PAI-
1 can control the matrix metalloproteinase activity and degra-
dation of extracellular matrix proteins. However, excessive
PAI-1 may lead to accumulation of collagen and scar forma-
tion (Ghosh and Vaughan 2012). Increased levels of PAI-1
may also be linked to reduced neurotrophic support in the
brain of schizophrenic patients, because PAI-1 is involved in
brain-derived neurotrophic factor maturation in the hippocam-
pus (Mou et al. 2009). Further studies are required to investi-
gate the exact impact of elevated PAI-1 on brain function.

Epigenetic modification

Promoter hypomethylation of the neuropeptide arginine vaso-
pressin (AVP) gene in the medial amygdala was observed in
male rats infectedwith T. gondii. This epigenetic manipulation
induced more activation of vasopressinergic neurons after ex-
posure to cat odour and, thus, initiates the reversion of fear
into attraction (Hari Dass and Vyas 2014). Loss of fear in the
infected animals can be rescued by systemic hypermethylation
(i.e., administration of L-methionine). More interestingly, this
‘fatal attraction phenomenon’ can be recapitulated by induc-
ing hypomethylation via directed intracerebral delivery of
methylation inhibitor into the medial amygdala in noninfected
rats (Hari Dass and Vyas 2014).

Gaps in knowledge and future priorities

Even though several evidence suggest that T. gondii infection
contributes to psychiatric diseases in humans and influence
the behaviour of humans and animals many questions remain
to be addressed.

Abnormal transmitter release

Therapeutic drugs for the treatment of psychiatric disorders
have been developed and categorized largely on the basis of
their effects on neurotransmitter release and resulting receptor
stimulation. Interestingly some of these drugs are also effec-
tive in treating T. gondii infection. This stresses the implica-
tions of the hypotheses that address the dynamic nature of
neurotransmitter dysregulation during T. gondii infection. T.
gondii interacts with host cells and activates sets of infection-
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specific and host-specific genes and proteins. Some of these
proteins are secreted into extracellular fluids as neurotransmit-
ters (e.g. dopamine) to modify and modulate signals between
neurons and other brain cells. Whether this reflects an adap-
tive advantage to the host or enhances the fitness of the para-
site is not clear. Better understanding require tools that are able
to assess neurotransmitter release at high spatial and temporal
resolution, which will then enable the elucidation of the role of
infection related-neurotransmitter dysfunction in the develop-
ment of symptoms of neuropsychiatric disorders, and also
may refine neuro-pharmacological mechanisms to serve as
targets for new treatment approaches. Irregularities of other
neurotransmitters, including serotonin, glutamate, and
GABA have also been implicated in schizophrenia. Hence, it
is important to investigate preferential tropism of the parasite
for specific neuronal populations and subpopulations (i.e.
GABAergic or dopaminergic).

Parasite molecules that interact with host cells

Molecules, such as DA are known to mediate the interaction
between T. gondii and brain cells and contribute to the behav-
ioural changes in mice or psychiatric symptoms in infected
humans (Stibbs 1985; Prandovszky et al. 2011). During its
life cycle, T. gondii injects certain secreted proteins into the
host cell whose properties may be relevant to the above per-
spective. For instance, toxolysin is a metalloprotease with ho-
mology to insulysin (Hajagos et al. 2012), which degrades
certain growth factors (Guo et al. 2010), while certain rhoptry
proteins (e.g. ROP16 and ROP18) possess kinase activity,
which may influence key functions within the signalling net-
works (Saeij et al. 2006). On the other hand, less is known
concerning the effects of T. gondii on key processes in schizo-
phrenia, including neuregulin signaling that affects demyelin-
ation (Brinkmann et al. 2008; Buonanno et al. 2008) or gluta-
mate N-methyl-D-aspartate (NMDA) receptor function,
which is involved in the synaptic changes implicated in
schizophrenia (Carter 2006, 2007; Ogden and Traynelis
2011). Also, calcium channels play a key role in this scenario,
whereasDISC1, a key schizophrenia gene resides at the centre
of a hub controlling many of these processes (Bradshaw and
Porteous 2012). Further, the degree to which T. gondii-derived
molecules alter host’s signalling pathways or modulate neural
circuitry still needs further investigation.

T. gondii and brain function: mixed messages

Giving the complex nature of host-parasite interaction within
the brain it is reasonable to expect many pathological mecha-
nisms through which T. gondii infection contributes to the
development of psychiatric diseases. But what was not expect-
ed is the potential beneficial role of the parasite on the cogni-
tion and memory of affected host. Let us elaborate, even

though T. gondii has not yet been detected in the brain of
schizophrenic patients the parasite cysts have been detected
in the memory processing areas, such as hippocampus and
amygdala of infected mice (Haroon et al. 2012). This explains
why anti-T. gondii IgG positive individuals exhibited impaired
memory performance and infected mice exhibited memory
impairment in the passive avoidance task, and lost their
anxiety-like behaviour towards cat’s urine (Ingram et al.
2013). In striking contrast, the same pathogen can have a
neuroprotective effect. Interferon gamma (IFN-γ)-activated
microglial cells play a pivotal role in neuronal protection by
stimulating the production of transforming growth factor beta-
1, which inhibits inducible nitric oxide synthase (Rozenfeld et
al. 2005). Interestingly, immune-inhibition associated with la-
tent T. gondii infection was found to ameliorate learning and
memory deficits in Tg2576 transgenic mouse model of
Alzheimer’s disease and protected against neuronal degener-
ation, as evidenced by a reduction in cerebral β-amyloid de-
position and increased anti-inflammatory cytokines (Jung et
al. 2012).

Towards stratified psychiatry

Psychiatric diseases are polygenic in nature and are derived
from interactions between environmental factors, individual’s
immune response, mutational events in several genes, and
epigenetic modifications (Sullivan et al. 2003). It is important
to recognize the complexity associated with the understanding
of these multifactorial diseases, which requires integration of
interdisciplinary methodologies. High-dimensional data is
needed to identify new biomarkers to stratify disease risk in
psychiatric patients via the analysis of the interactions that
occur at different levels of the biological system, from genetic
variations to metabolic pathways, and their relationship to
distinct phenotypes of psychiatric disease or an infection sta-
tus. Identification of genetic variants linked to disrupted bio-
logical functions caused by a psychiatric disease state and/or
due to exposure to T. gondii can provide direct evidence that
these genes and the connecting pathways are related to disease
susceptibility. In the emerging era of ‘personalized medicine’
stratification of patients based on disease-specific genetic sig-
natures that accurately identify at risk individuals will become
an important tool of disease susceptibility testing and may
enable clinicians to accurately predict the course of the illness
(i.e. prognosis) or response to therapy. Clinical psychiatrists
are encouraged to keep abreast of developments in this in-
creasingly important area.

Conclusions and perspectives

Great strides have been made in deciphering the molecular
mechanisms involved in toxoplasmosis and schizophrenia,
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although these areas remain incompletely defined and some-
times controversial. However, knowledge generated in recent
years starts to offer fresh perspectives and opens a new avenue
for examining the links between the pathogenesis of schizo-
phrenia and latent toxoplasmosis. Herein, we have evaluated
available data from in vitro and in vivo (animals and humans)
studies to summarize the commonalities between schizophre-
nia and latent toxoplasmosis. Both entities manifest enhanced
neuroinflammation, which underpins disrupted neurotrans-
mission, increased production of L-kynurenine (and its neuro-
active metabolites), hormonal imbalance, tissue remodeling
processes, the ability of T. gondii to alter rodent neural con-
nectivity and fear behavior, and impairs human cognition, and
the high PANSS score and reduced grey matter density, of
seropositive schizophrenic patients. These links support the
latent toxoplasmosis-schizophrenia connection theory, but
some of these and other, yet unknown, hypotheses remain to
be validated. These hypotheses are only a starting point for
exploring potential mechanisms, with the aim of uncovering
cellular pathways affecting parasite replication that also can be
targeted for the development of schizophrenia-modifying
therapies. Finally, we speculate that stratification of schizo-
phrenic patients into phenotypic subgroups that share a dis-
tinct set of pathophysiologic mechanisms and treatment re-
sponses, and that correlate with a specific state of infection
will enhance the management of these disorders.
Parasitologists will increasingly need to collaborate with psy-
chiatrists to realize the full potential of these data.
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