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Abstract Neurological disease comprises a series of disor-
ders featuring brain dysfunction and neuronal cell death.
Among the factors contributing to neuronal death,
excitotoxicity induced by excitatory amino acids, such as glu-
tamate, plays a critical role. However, the mechanisms about
how the excitatory amino acids induce neuronal death remain
elucidated. In this study, we investigated the role of HIF-1α
(hypoxia inducible factor-1α) and RTP801 in cell apoptosis
induced by quinolinic acid (QUIN), a glutamatergic agonist,
in PC12 cells. We found that QUIN at 5 μM increased the
expression of HIF-1α significantly with a peak at 24 h. After
the treatment with QUIN (5–20 μM) for 24 h, the cells exhib-
ited decreased viability and cell apoptosis with a concomitant
increased expression of apoptosis related proteins. QUIN
treatment also induced the generation of intracellular reactive
oxygen species and RTP801 up-regulation in a HIF-1α-
dependent manner that were inhibited by 2-methoxyestradiol,
a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalida-
tion by siRNA rescued the cell apoptosis induced by QUIN or
cobalt chloride, a chemical inducer of HIF-1. Taken together,
these findings support the concept that neurotoxicity induced
by QUIN is associated with HIF-1-dependent RTP801 activa-
tion and provide insight into the potential of RTP801 inhibitor
in treatment of neurological disorders.
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Introduction

Excitotoxicity, the sustained activation of receptors for excit-
atory amino acids, plays an important role in the pathogenesis
of various chronic neurodegenerative disorders, such as
Parkinson’s disease (PD) and Huntington’s disease (HD).
The excessive stimulation of glutamate receptors, mostly the
N-methyl-D-aspartate (NMDA) subtypes, increases intracel-
lular Ca2+ levels and triggers events for the initiation of deadly
cascades (Mattson 2007; Szydlowska and Tymianski 2010).
In addition, the biological changes have been featured in an-
imal models of neuronal excitotoxicity, such as generation of
reactive oxygen species (ROS), lipid peroxidation, inhibition
of cellular respiration and elevated inflammation (Barger et al.
2007; Maalouf et al. 2007).

Quinolinic acid (QUIN), a selective NMDA receptor ago-
nist, is a metabolite of tryptophan along the kynurenine path-
way (Lugo-Huitron et al. 2013). In neurons, sustained NMDA
receptor activation by QUIN induces Ca2+ influx and subse-
quent activation of proteases, phospholipase and endonucle-
ases, resulting in neuronal death (Ryu et al. 2005; Essa et al.
2013). QUIN also induced the autophagy of neuronal cells,
which can be blocked by NMDA antagonist MK801 (Braidy
et al. 2014). In glial cells, QUIN enhances the expression and
secretion of potent chemokines and proinflammatory cytokines,
such as interleukin-1β, monocyte chemoatractant protein-1 and
interferon-γ (Guillemin et al. 2005), leading to marked inflam-
matory responses in brain. In vivo studies have shown that
intrastriatal administration of QUIN in rodents produces similar
biochemical changes to that in patients with HD (Pierozan et al.
2014). In patients with neurodegenerative disorders, the content
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of QUIN in brain is also elevated (Stoy et al. 2005). These
results suggest the role of QUIN in the pathology of neurode-
generative disorders, while the mechanisms by which QUIN
induces neuronal degeneration and loss still remain elucidated.

Increasing evidences show that excitotoxins induce neuro-
nal apoptosis, leading to neurodegeneration (Mehta et al.
2013). Among the factors involved in neuronal apoptosis, hyp-
oxia inducible factor-1 (HIF-1), a transcription factor that me-
diates fundamental cellular responses to hypoxia, regulates the
adaptive response of neuronal cells to different stresses
(Semenza 2000, 2010). HIF-1 is composed of two subunits,
an oxygen-regulated HIF-1α and a constitutively expressed
HIF-1β subunit. During hypoxia, HIF-1α is stabilized, dimer-
izes with HIF-1β and translocates to the nucleus to bind to
hypoxia responsive elements (Semenza 2010). Thereafter, mul-
tiple target genes of HIF-1 will be activated, including glyco-
lytic enzymes, growth factor and proapoptic proteins (Zaman
et al. 1999; Meijer et al. 2012; Ferrer et al. 2014). Under ische-
mic conditions, HIF-1α is significantly up-regulated in neuro-
nal cells and exerts regulatory effects on the tissue injury
(Helton et al. 2005; Baranova et al. 2007). Since HIF-1α is
involved in both protective signals and detrimental changes,
the role of HIF-1α in neuronal survival remains controversial.

Among the target genes of HIF-1 involved in regulation of
cell survival, RTP801 (REDD1/DITT4) functions as a suppres-
sor of mammalian target of rapamycin (mTOR), resulting in
the inhibition of mTOR activity following modest hypoxia or
energy deprivation (Brugarolas et al. 2004). In response to
hypoxia, RTP801 is highly induced in Drosophila and mam-
malian cells (Reiling and Hafen 2004; DeYoung et al. 2008).
Overexpression of RTP801 potently inhibits the activity of
mTOR,whereas genetic deletion of RTP801 impairs the down-
regulation of mTOR activity in hypoxia (DeYoung et al. 2008).
Moreover, RTP801 has been shown to function in regulation of
PI3K/Akt signaling and formation of intracellular reactive ox-
ygen species (ROS) (Regazzetti et al. 2010), implyingmultiple
roles of RTP801 in cellular physiological process.

In this study, we investigated the effects of QUIN on cul-
tured rat adrenal pheochromocytoma PC12 cells. We demon-
strated that QUIN inducesHIF-1α accumulation and activation,
leading to the activation of RTP801 and cell apoptosis. The
results indicate that inhibition of HIF-1α or RTP801 may be a
potential neuroprotective strategy to counteract the toxicity of
QUIN and an efficient therapy for neurodegenerative disease.

Results

QUIN induced PC12 cell injury, ROS generation
and HIF-1α up-regulation

We first determined the cell viability of PC12 cells by MTT
assay after the treatment with different concentrations of

QUIN for 24 h. As shown in Fig. 1a, QUIN (2.5–20 μM)
reduced cell viability in a concentration-dependent manner.
In addition, administration of QUIN at 2.5~10 μM for 2 h
significantly induced intracellular ROS generation (Fig. 1b).

It has been reported that after the stimulation by ischemia
or glutamate, the stabilization of HIF-1α is significantly in-
duced in neurons, leading to the cell death (Helton et al.
2005). Thus, to characterize the expression of HIF-1α in
response to QUIN, a time course of induction curve was
performed. PC12 cells were treated with QUIN for increased
periods of time, and HIF-1α expression was detected by
immunoblotting. As shown in Fig. 1c, HIF-1α was weakly
expressed in PC12 cells under normal conditions. An in-
crease in HIF-1α protein level was detected after a 0.5-h
incubation with QUIN at 5 μM, the level peaked at 24 h
and declined to basal level at 72 h.

Pharmacological Inhibition of HIF-1α protected PC12
cells against QUIN-induced cell injury

Employing 2-methoxyestradiol (2-Me), a HIF-1α inhibitor,
we assessed the cell viability and HIF-1 expression. As shown
in Fig. 2, 2-Me at 10 μM significantly protected PC12 cells
against the injury induced by QUIN treatment at 5 μM for
24 h, while 2-Me at 10 μM alone did not affect the cell via-
bility (data not shown).

During the neuronal death induced by neurotoxin, apopto-
tic cell death accounted for a large part of neuronal death.
Thus, we determined the cell apoptosis induced by QUIN
and the effect of HIF-1α inhibitor on cell apoptosis. Using
Hoechst 33258 staining, we found that PC12 cells underwent
apoptosis after the treatment with QUIN for 24 h, showing
condensed nuclei and enhanced blue fluorescence (Fig. 3a).
The apoptosis was also blocked by 2-Me at 10 μM.

The apoptosis regulator proteins, such as B-cell lymphoma
2 (Bcl-2) and bcl-2-like protein 4 (Bax), are involved in the
modulation of cell apoptosis. Bcl-2 possesses an anti-
apoptotic activity, while Bax is a pro-apoptotic protein and
the increased expression ratio of Bax and Bcl-2 indicates the
execution of apoptosis (Rahmani et al. 2013). After the QUIN
treatment at 5 ~10 μM for 24 h, the expression ratio of Bax/
Bcl-2 was increased, which was blocked by the administration
of 2-Me at 10 μM (Fig. 3b).

Treatment with 2-Me decreased blocked HIF-1α
up-regulation and nucleic accumulation

To confirm that the protective effect of 2-Me is due to HIF-1α
inhibition, PC12 cells were treated with QUIN at 5 μM for
24 h with or without 2-Me. As shown in Fig. 4a, 10 μM of
2-Me blocked the HIF-1α up-regulation after QUIN treatment.
Upon activation, HIF-1α is transferred into nuclei and func-
tions as a potent transcriptional factor, initiating the expression
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of its target genes (Semenza 2000). By immunostaining with
HIF-1α antibody, we found that HIF-1αwasweakly expressed

in cytosol under normal conditions. While after the treatment
with QUIN, HIF-1α protein expression was markedly induced

Control 1.25 2.5 5 10 20
QUIN ( M)

)lortnocfo
%(

ytilibaiV
lle

C

0 0.5 1 6 12 24 48 72
QUIN treatment (h)

-actin

HIF-1

0 0.5 1 6 12 24 48 72

QUIN treatment (h)

0

0.05

0.1

0.15

0.2

0.25

0.3

*

**

** **
**

R
el

at
iv

e
ex

pr
es

si
on

of
H

IF
-1

R
O

S
ge

ne
ra

tio
n

(%
)

0

100

200

300

400

500

600

700

800

**

**

C

A  B

Control 1.25 2.5 5 10
QUIN ( M)

**

0

20

40

60

80

100

120

**

**

**

**

24-h treatment 2-h treatment
Fig. 1 QUIN decreased cell
viability, increased ROS
generation and HIF-1α
expression in PC12 cells. a The
treatment with QUIN for 24 h
reduced the cell viability
determined by MTT reduction
assay. b ROS generation was
significantly induced in PC12
cells by QUIN. cWestern blotting
analysis showed the increased
expression of HIF-1α in PC12
cells treated with QUIN. Data are
expressed as mean ± SD; n= 8
wells for cell viability and ROS
generation, n = 4 for HIF-1α
expression; *P< 0.05, **P< 0.01
compared with control

LD
H

(U
/L

)

0

50

100

150

200

#

*

*
*

C
el

l
Vi

ab
ili

ty
(%

 o
fc

on
tro

l)

Control 2.5 M QUIN

5 M QUIN 5 M QUIN  + 2-Me

B C  D

A

QUIN only
QUIN + 2-Me

QUIN only
QUIN + 2-Me

0

20

40

60

80

100

120

*
*

*

#

Control 2.5 5 10 5
QUIN ( M)

0

2

4

6

8

10

*

*
* #

C
el

ln
um

be
r(

10
4 /w

el
l)

Control 2.5 5 10 5
QUIN ( M)

Control 2.5 5 10 5
QUIN ( M)

QUIN only
QUIN + 2-Me

Fig. 2 A HIF-1α inhibitor 2-Me
protected the PC12 cells from cell
injury induced by QUIN. a
Representative micrographs
showed the morphological
changes in PC12 cells at 24 h after
QUIN treatment. Scale
bar = 20 μm. b The pretreatment
with 2-Me attenuated cell injury
induced by QUIN treatment for
24 h. c and d The pretreatment
with 2-Me protected against cell
death detected by LDH activity
measurement and cell counting.
Data are expressed as mean ± SD;
n= 8; *P< 0.01 compared with
control, #P< 0.01 compared with
5 μM QUIN

Metab Brain Dis (2016) 31:435–444 437



and translocated into the nuclei (Fig. 4b). Accordingly, 2-Me
blocked the nuclear accumulation of HIF-1α.

Knockdown of HIF-1α blocked the induction of RTP801

Given the biological importance of RTP801 in cell apoptosis
and the fact that RTP801 is a downstream target of HIF-1α,
we speculated that HIF-1α/RTP801 signaling might play a
role in PC12 cell injury. In order to efficiently inhibit HIF-

1α and RTP801 expression, PC12 cells were transfected with
siRNA directed against HIF-1α and RTP801. As shown in
Fig. 5a, HIF-1α siRNA significantly inhibited HIF-1α and
RTP801 induction by QUIN. However, knockdown of
RTP801 only blocked RTP801 up-regulation but did not affect
HIF-1α expression. Likewise, quantitative PCR analysis
showed that HIF-1α siRNA abolished the up-regulation of
both HIF-1α and RTP801 mRNA, and RTP801 siRNA only
inhibited the induction of RTP801 (Fig. 5b).
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Knockdown of HIF-1-dependent RTP801 rescued
QUIN-induced cell injury

Previous studies have showed that RTP801 is activated fol-
lowingHIF-1α activation, resulting in the inhibition ofmTOR
signaling (Horak et al. 2010). Subsequently, the activation of
RTP801 leads to a series of biochemical processes, such as
cell apoptosis, cell growth arrest, and autophagy (Schwarzer
et al. 2005; Ben Sahra et al. 2011). Thus, we determined the
effect of HIF-1α or RTP801 siRNA on cell death induced by
QUIN. As shown in Fig. 5c and d, the apoptotic cell death
induced by QUIN was rescued by either HIF-1α or RTP801
siRNA (Fig. 6a). In addition, employing HIF-1α and RTP801
siRNA, the expression ratio of Bax/Bcl-2 was reduced
(Fig. 6b). To confirm the involvement of HIF-1α/RTP801
signaling, PC12 cells were treated with cobalt chloride, a
chemical inducer of HIF-1. As shown in Fig. 7a, b and c,
the apoptotic cell death induced by cobalt chloride was atten-
uated by HIF-1α or RTP801 siRNA. Exposure of the cells to
cobalt chloride for 4 h induced significant elevation in HIF-1α
and RTP801 protein levels, which were blocked by HIF-1α or
RTP801 siRNA respectively (Fig. 7d).

Discussion

In this study, we found that QUIN at 5~20 μM significantly
induced cell apoptosis and HIF-1α up-regulation in PC12
cells. Pharmacological inhibition of HIF-1α by 2-Me blocked
the nuclear accumulation of HIF-1α and the cell injury. In

addition, RNA invalidation of HIF-1α by siRNA blocked
RTP801 expression; both HIF-1α and RTP801 siRNA
protected the cells against apoptosis, suggesting that the
HIF-1α-dependent RTP801 activation is involved in the cell
injury. These results are consistent with the previous results
that QUIN induces neuronal apoptosis in vivo (Nakai et al.
1999; Colin-Gonzalez et al. 2013) and confirmed the role of
RTP801 in neuronal apoptosis.

In addition to persistent stimulation of NMDA receptor,
elevated ROS generation also contributes to the excitotoxicity
by QUIN. In the presence of oxygen, QUIN produces the
accumulation of metal ions, such as Cu2+ and Fe2+, and there-
fore increases the formation of superoxide anion, hydrogen
peroxide and hydroxyl radical (Colin-Gonzalez et al. 2013).
Thereafter, increased ROS formation leads to the DNA injury,
lipid peroxidation and damage of biomembrane structure and
neuronal cell apoptosis (Duong et al. 2008). Recently, it has
been reported that ROS can also induce the activation of HIF-
1α (Yuan et al. 2011) and modulate neuronal apoptosis
(Agrawal et al. 2011). In neuronal cells, ischemic-like insult
induces ROS generation, HIF-1α activation and cell apopto-
sis, which can be reversed by antioxidants (Rayner et al. 2006;
Duong et al. 2008). Consistent with the previous studies, our
study showed that PC12 cells exhibited elevated ROS level
and HIF-1α expression after QUIN treatment, which was ac-
companied by cell apoptosis, implying the role of ROS/HIF-
1α pathway in neuronal death.

A series of studies have been performed to elucidate the
molecular mechanisms by which HIF-1α regulates neuronal
survival and suggest that HIF-1αmay possess opposite effects
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in different conditions. For example, inhibition of HIF-1α
protects cortical neurons against ischemic insult (Lin et al.
2013; Cheng et al. 2014) and activation of HIF-1α contributes
to neuronal apoptosis (Jiang et al. 2012), indicating the pro-

apoptotic character of HIF-1α. In severe hypoxic conditions,
HIF-1 activation potentiates p53 signaling and leads to neuro-
nal apoptosis (Fan et al. 2009). While other studies show the
protective effects of HIF-1 activation on neuronal death.
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Inhibition of HIF-1 abolishes the beneficial effects of the neu-
roprotective agent (Lopez-Hernandez et al. 2015) and en-
hances the toxicity of neurotoxins (Jeong and Park 2012),
whereas induction of HIF-1 protects against neuronal death
(Seo et al. 2010; Du et al. 2011). HIF-1 may also up-regulate
the expression of growth factors and exert anti-apoptotic ef-
fects (Piret et al. 2002). Our results showed that HIF-1α ex-
pressionwas increased after the treatment with QUIN from 6 h
with a peak at 24 h and the nucleic accumulation of HIF-1α
was induced. Both the upregulation and nucleic accumulation
of HIF-1α were blocked by 2-Me. These results support the
detrimental role of HIF-1α in neuronal survival and suggest
that pharmacological inhibition of HIF-1α may be a useful
therapy for neuronal excitotoxicity.

Several signaling pathways are involved in QUIN-induced
cell death, including nuclear factor-like 2 (Colin-Gonzalez
et al. 2014), peroxisome proliferator activated receptor-γ
(Mishra et al. 2014), and histone deacetylase (Mishra et al.
2014). In this study, we found that RTP801 was involved in
mediating the QUIN-induced toxicity, demonstrated by pro-
tection against cell death by the knockdown of RTP801 ex-
pression. RTP801 has been reported to be related to ROS
generation and DNA damage. In an animal model of cerebral
ischemia, RTP801 expression is increased in the infarct region
(Wu et al. 2011). In patients with PD and HD, the increased
levels of RTP801 are also detected in neurons (Malagelada
et al. 2006; Martin-Flores et al. 2015). Recently, RTP801
has been identified as a negative regulator of Schwann cell
myelination and knockdown of RTP801 produced more my-
elinated segments (Noseda et al. 2013). Additionally, the up-
regulation of RTP801 is shown in animal models of non-
neuronal injury, such as cardiac ischemic injury and acute
cigarette smoke–induced lung injury (Yoshida et al. 2010).
Taken together, these results identify RTP801 as a positive
regulator of neuronal death.

In addition, we found that silencing of HIF-1α expression
by siRNA reduced RTP801 expression and protected cells
against cell injury induced by QUIN, indicating the involve-
ment of HIF-1α/RTP801 signaling in neuronal death. To con-
firm the role of HIF-1α/RTP801 signaling in cell death, the
cells were treated with cobalt chloride. Similar to QUIN treat-
ment, cobalt chloride induced the up-regulation of HIF-1 and
RTP801 and cell apoptosis that was rescued by knockdown of
HIF-1α or RTP801. In agreement with our results, knock-
down of RTP801 exhibits neuroprotection in the animal
models of HD and ischemic injury (Shoshani et al. 2002;
Martin-Flores et al. 2015). Inhibition of RTP801 by
rapamycin or siRNA also protects against neuronal death in
experimental models of PD (Malagelada et al. 2010). These
results confirm that inhibition of RTP801 may be useful in the
treatment of ischemic disease or neurodegenerative disease.
Importantly, we found that HIF-1α siRNA blocked the ex-
pressions of HIF-1α and RTP801, while RTP801 siRNA

cannot block HIF-1α up-regulation, showing that HIF-1α is
the upstream signal of RTP801.

In summary, our studies demonstrate that QUIN induced
intracellular ROS generation and HIF-1α activation in rat
PC12 cells, leading to HIF-1α-dependent RTP801 activation
and cell apoptosis in rat PC12 cells. Blockade of HIF-1α or
RTP801 expression prevents QUIN-induced death. Hence,
RTP801 is a downstream effector of HIF-1α and pharmaco-
logical inhibition of RTP801might be a potential approach for
the treatment of neurodegenerative disease.

Experimental procedures

Cell culture

Rat pheochromocytoma cells (PC12 cells) were purchased
from Institute of Cell Biology, Chinese Academy of Science
(Shanghai, China). The cells were cultured in high glucose
Dulbecco’s modified Eagle’s medium (DMEM, Gibco Life
Technologies, USA) supplemented with 10 % horse serum,
5 % fetal bovine serum, penicillin (100 000U/L) and strepto-
mycin (100 mg/L; Sigma-Aldrich Chemical Co., MO, USA)
and maintained in a humidified atmosphere at 37 °C. The cells
were differentiated with 50 ng/ml nerve growth factor (NGF,
#0005017, Harlan Laboratories Inc, USA) in DMEM with
1 % fetal bovine serum for 9 days. Thereafter, the cells were
washed with DMEM at 24 h before experiments and cultured
in DMEM with 1 % fetal bovine serum. In the experiments
involving treatment with drugs, cells were pre-treated for
30 min with drug or vehicle. The stock solutions of cobalt
chloride (200 mM; Sigma-Aldrich Chemical Co., USA) and
2-methoxyestradiol (20 mM; Sigma-Aldrich Chemical Co.,
USA) were prepared before each treatment.

Cell death determination

Cell injury was examined by the determination of lactate de-
hydrogenase (LDH) level in culture medium. Fifty microliters
of culture supernatants were collected from each well and
LDH activity was measured by a LDH assay kit (Roche,
USA) according to the manufacturer’s instruction.

Cell viability assay

Cells were plated at 5×104/ml in 96-well plates. After 24 h,
cells were treated with QUIN and the agents. After the treat-
ment, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT, Sigma-Aldrich, USA) was added to each well
to reach a final concentration of 0.5 mg/ml. After incubation at
37 °C for 4 h, the medium was removed and 100 μl dimethyl
sulfoxide was added to each well. The absorbance at 490 nm
was measured with a microplate reader (Elx800, Bio-Tek
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instrument, USA). Results were expressed as the percentage
of control. In another series, at the end of the treatment, the
cells were trypsinized and resuspended in the medium mixed
with 0.4 % trypan blue (1:1, Sigma-Aldrich, USA). The
trypan blue negative cells were counted using a
haemocytometer.

Intracellular reactive oxygen species determination

The measurement of intracellular reactive oxygen species
(ROS) was based on the oxidation of 2′,7′-dichloro-
dihydrofluorescein diacetate (H2DCFDA, Sigma-Aldrich,
USA) to an intracellular fluorescent product. Briefly, after
the treatment with QUIN for 2 h, PC12 cells grown on 96-
well plates were washed with Hank’s solution and incubated
with 50 μM H2DCFDA in Hank’s solution for 40 min.
Thereafter, the cells were washed and the fluorescence was
measured at excitation of 485 nm and emission of 530 nm on a
platereader (Varioskan Flash, ThermoFisher Scientific Inc,
USA).

Cell apoptosis assay

Cells grown on coverslips were washed with PBS and then
stained with Hoechst 33258 at 10 mg/L for 10 min at 37 °C.
thereafter, the cells were observed under a fluorescent micro-
scope (Olympus BX41, Japan). The apoptotic cells were de-
termined as condensed or fragmented nuclei with strong
bright fluorescence. At least 10000 cells were counted in more
than 4 fields in each coverslip. The apoptotic cells were
expressed as percentage of total cells.

Immunocytochemistry for the detection of HIF-1α

Cells seeded on coverslips were fixed with ice-cold methanol
for 5 min and incubated in 5 % normal goat serum for 1 h at
room temperature. Then the cells were incubated with mouse
monoclonal anti-HIF-1α antibody (1:100, Novus, USA) at
4 °C overnight. After washing with PBS, the coverslips were
incubated with Alexa Fluor 488-conjugated secondary anti-
body (1:600, Jackson ImmunoResearch Laboratories, USA).
The nuclei were counterstained with DAPI (4′,6-diamidino-2-
phenylindole). Finally, the labeled cells were observed with a
fluorescent microscopt (BX-41, Olympus, Japan).

Quantitative PCR

Total RNA was isolated using an RNeasy Mini kit including
DNase I digestion (Qiagen, USA). The reverse transcription
reaction was carried out with a High Capacity cDNA
Archived Kit (Applied Biosystems, USA) according to the
manufacturer’s protocol. Subsequently, the real-time PCR
analysis was performed with a sequence detection system

(ABI Pr i sm 7000 ; App l i ed Biosys t ems , USA) .
Amplification of specific PCR products was detected using
the SYBR Green PCR Master Mix (Applied Biosystems,
USA) according to the manufacturer’s protocol. The follow-
ing primers were used for analysis: rat HIF-1α, 5′-CCA
CAGGACAGTACAGGAG-3 ′ and 5 ′-TCAAGTCGT
GCTGAATAATC; rat RTP801, 5 ′ -GCTCTGGAC
CCCAGTCTAGT-3 ′ and 5 ′ -GGGACAGTCCTT
CAGTCCTT-3′; rat cyclophilin 5′-CCCACCGTGTTCT
TCGACAT-3′ and 5′-TGCAAACAGCTCGAAGCAGA-3′.
The gene expression was normalized to cyclophilin.

Western blotting analysis

The cells were washed twice with ice-cold PBS and then lysed
in cell lysis buffer (Cell Signaling Technology, USA) contain-
ing 1 μM phenylmethysulfonyl fluoride (Sigma-Aldrich,
USA) at 4 °C. Then the homogenates were centrifuged at
10,000×g for 30 min at 4 °C. The protein samples were sep-
arated by a 10% SDS-polyacrylamide gel and transferred onto
a nitrocellulose membrane (Millipore, USA). The blot was
blocked with 5 % non-fat milk and incubated with an anti-
HIF-1α antibody (1:500, Novus Biologicals, USA), an anti-
RTP801 antibody (1:1000, Thermo Fisher Scientific Inc.,
USA), an anti-Bax antibody (1:2000, Cell Signaling
Technology, USA), an anti-B-cell lymphoma 2 antibody
(Bcl-2, 1:2000, Cell Signaling Technology, USA) and an
anti-beta-actin antibody (β-actin, 1:2000, Cell Signaling
Technology, USA) at 4 °C. Overnight primary antibody incu-
bation was followed by incubation with a horseradish-
conjugated secondary antibody (1:5000, Jackson
ImmunoResearch Laboratories, USA) and enhanced chemilu-
minescence reagents (Pierce Biotechnolog, USA). Blots were
exposed on an X-ray film. The results of protein expression
are normalized to β-actin.

siRNA treatment of cells

Cells were grown to 60 % confluence in 24 well plate before
transfection and 20 pmol of duplex siRNA (Santa Cruz
Biotechnology Inc, USA) were diluted in 200 μl of Opti-
Mem I (Invitrogen life Technologies, USA). In parallel, 2 μl
of Oligofectamine (Invitrogen life Technologies, USA) were
added to 200 μl of Opti-Mem I and incubated at room tem-
perature for 10 min. Then the indicated duplex siRNA oligo-
nucleotide solution was added to the Oligofectamine/Opti-
Mem I mixture, incubated at room temperature for 20 min.
After rinse with Opti-Mem I to remove any residual serum, the
cells were incubated with the siRNA complexes in serum-free
conditions for 4 h at 37 °C in a 5 % CO2 incubator. Serumwas
then added back to the medium, and cells were incubated for
an additional 48 h before beginning an experiment.
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Data analysis

Differences between groups were examined for statistical sig-
nificance using one-way analysis of variance (ANOVA)
followed by Dunnett’s Multiple Comparison. P<0.05 denot-
ed the presence of a statistically significant difference.
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