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Intracerebroventricular administration of α-ketoisocaproic
acid decreases brain-derived neurotrophic factor and nerve
growth factor levels in brain of young rats
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Abstract Maple syrup urine disease (MSUD) is an inherited
aminoacidopathy resulting from dysfunction of the branched-
chain keto acid dehydrogenase complex, leading to accumu-
lation of the branched-chain amino acids (BCAA) leucine,
isoleucine and valine as well as their corresponding
transaminated branched-chain α-ketoacids. This disorder is
clinically characterized by ketoacidosis, seizures, coma, psy-
chomotor delay and mental retardation whose pathophysiolo-
gy is not completely understood. Recent studies have shown
that oxidative stress may be involved in neuropathology of
MSUD. However, the effect of accumulating α-ketoacids in
MSUD on neurotrophic factors has not been investigated.
Thus, the objective of the present study was to evaluate the
effects of acute intracerebroventricular administration of
α-ketoisocaproic acid (KIC) on brain-derived neurotrophic
factor (BDNF) and nerve growth factor (NGF) levels in the
brains of young male rats. Ours results showed that intra-
cerebroventricular administration of KIC decreased BDNF
levels in hippocampus, striatum and cerebral cortex, without

induce a detectable change in pro-BDNF levels. Moreover,
NGF levels in the hippocampus were reduced after intra-
cerebroventricular administration of KIC. In conclusion, these
data suggest that the effects of KIC on demyelination and
memory processes may be mediated by reduced trophic sup-
port of BDNF and NGF.Moreover, lower levels of BDNF and
NGF are consistent with the hypothesis that a deficit in this
neurotrophic factor may contribute to the structural and func-
tional alterations of brain underlying the psychopathology of
MSUD, supporting the hypothesis of a neurodegenerative
process in MSUD.
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Introduction

Maple syrup urine disease (MSUD) or branched-chain
ketoaciduria is an autosomal recessive metabolic disorder
caused by a deficiency of the branched-chain α-keto acid
dehydrogenase complex (BCKAD) activity, with a world fre-
quency estimated in approximately 1 in 185,000 newborns
(Chuang et al. 2008). The metabolic defect leads to accumu-
lation of the branched-chain amino acids leucine, isoleucine
and valine, as well as their corresponding transaminated
branched-chain α-keto acids α-ketoisocaproic (KIC),
α-ketoisovaleric (KIV) and α-keto-β-methylvaleric (KMV)
acids in tissue and body fluids (Chuang and Shih 2001). The
major clinical features presented by MSUD patients include
convulsions, ketoacidosis, apnea, hypoglycemia, coma, atax-
ia, psychomotor delay, and mental retardation (Chuang and
Shih 2001; Schonberger et al. 2004). Neuropathologic find-
ings characteristic of the disease are cerebral edema, atrophy
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of the cerebral hemispheres, spongy degeneration of the white
matter, and delayed myelination (Chuang and Shih 2001; Jan
et al. 2003; Klee et al. 2013; Treacy et al. 1992).

Although the mechanisms of brain damage in MSUD are
still unclear, it appears that leucine and KIC are considered to
be the main neurotoxic metabolites since increased plasma
concentrations of these metabolites are associated with the
appearance of neurological symptoms (Chuang and Shih
2001; Snyderman et al. 1964) and can reach concentrations
as high as 5.0 mM in untreated patients (Zielke et al. 1996). In
addition, it has been postulated that metabolites accumulation
in MSUD causes brain energy deficit (Amaral et al. 2010;
Howell and Lee 1963; Ribeiro et al. 2008; Sgaravatti et al.
2003), oxidative stress (Barschak et al. 2008; Barschak et al.
2009; Bridi et al. 2005; Mescka et al. 2011; Mescka et al.
2013; Scaini et al. 2012b), neuronal apoptosis (Jouvet et al.
2000a; Jouvet et al. 2000b), and increases acetylcholinesterase
activity in brain (Scaini et al. 2012a). Furthermore, these me-
tabolites are also reported to cause impairment of myelin de-
velopment (Taketomi et al. 1983; Treacy et al. 1992; Tribble
and Shapira 1983), reduced brain uptake of essential amino
acids and subsequently disturbed neurotransmission (Araujo
et al. 2001; Tavares et al. 2000;Wajner et al. 2000;Wajner and
Vargas 1999; Zielke et al. 2002).

Brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF) are members of the neurotrophin (NT)
gene family, which play critical roles on growth, differentia-
tion, maintenance, and synaptic plasticity in neuronal systems
(Bibel and Barde 2000; Huang and Reichardt 2001). NGF
serves as a neurotrophic factor for basal forebrain cholinergic
neurons (Gnahn et al. 1983; Gu et al. 2009; Klein et al. 2000;
Mendell et al. 2001; Nagahara et al. 2009; Sofroniew et al.
2001), while BDNF is associated with a broader spectrum of
functions, promoting the functioning and survival of dopami-
nergic, GABAergic, noradrenergic, and serotonergic neurons
(Lee et al. 2001; Lu et al. 2008; Murer et al. 2001; Soule et al.
2006; Tyler et al. 2002). Two different types of receptors
expressed by responsive cells regulate the biological activity
of NGF and BDNF: the specific Trk family of tyrosine protein
kinases (NGF/TrkA and BDNF/TrkB) and p75 receptor that is
a member of the tumor necrosis factor receptor superfamily
(Lim et al. 2003; Lu et al. 2005; Meakin and Shooter 1992;
Yoshii and Constantine-Paton 2010). Dysregulation of the
levels of neurotrophins or their receptors, or alterations in
neurotrophin function or trafficking, can damage neurons,
leading to gradual neuronal degeneration (Mufson et al.
2003). Moreover, studies have shown a link between lower
BDNF and NGF concentrations and neuronal and cognitive
dysfunction (Belrose et al. 2014; Gelfo et al. 2011; Gu et al.
2009; Peng et al. 2004; Peng et al. 2005).

Accumulating evidence suggests BDNF and NGF as
candidate molecules involved in the pathophysiology of
MSUD. Scaini et al. (2013b) suggested that decreased NGF

levels in hippocampus may play a role in cognitive dysfunc-
tion observed in MSUD. A recent study showed an increase in
BDNF levels after chronic administration of H-BCAA, sug-
gesting that the increase of BDNF levels had a correlation with
the cognitive impairment (Scaini et al. 2013a). Moreover, it
has been also shown that acute administration of H-BCAA
causes an increase in the levels of pro-BDNF and a decrease
tPA levels in brain of rats, suggesting that BCAA may play a
role in BDNF post-translational processing (Scaini et al.
2015). However, the effect of the accumulating organic acids
in MSUD on neurotrophic factors has not been so far investi-
gated. Therefore, in order to determine the specific participa-
tion of KIC in neurotrophins levels in MSUD, the objective of
the present study was to evaluate the effects of acute intra-
cerebroventricular administration of KIC on BDNF and NGF
levels in the brain of young male rats.

Materials and methods

Animals

Male Wistar rats at 30 days old (weighing 60–80 g) were ob-
tained from the Central Animal House of the Universidade do
Extremo Sul Catarinense. All rats were caged in groups of 5
with free access to food and water and were maintained on a
12-h light/dark cycle (lights on 7:00 am) at a temperature of
23 ± 1 °C. All experimental procedures were carried out in
accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and the Brazilian
Society for Neuroscience and Behavior recommendations for
animal care, with the approval of the Ethics Committee of the
Universidade do Extremo Sul Catarinense (protocol number
05/2014).

α-ketoisocaproic acid administration

Rats were anesthetized with an intraperitoneal (i.p.) injection
of a mixture of ketamine (80 mg/kg) and xylazine (10 mg/kg)
and thereafter placed on a stereotaxic apparatus. One small
hole was drilled in the skull for microinjection, and 2 μL of
a 0.8 μmol KIC solution dissolved in freshly prepared artifi-
cial CSF (aCSF) (147 mM NaCl; 2.9 mM KCl; 1.6 mM
MgCl2; 1.7 mM CaCl2 and 2.2 mM dextrose) or ACFs
(controls) at the same volume and concentration, was slowly
injected bilaterally over 4 min into the lateral ventricle via
needle connected by a polyethylene tube to a 10 μL
Hamilton syringe (de Castro et al. 2004). The needle was left
in place for another 1 min before being softly removed. The
pH of each solution was previously adjusted to 7.4 with 0.1 N
NaOH or 0.1 N HCl. The coordinates for injections were as
follows: 0.6 mm posterior to bregma, 1.0 mm lateral to mid-
line and 3.2 mm ventral from dura (Paxinos and Watson
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1986). The rats were killed by decapitation without anesthesia
60 min after the intracerebroventricular administration of KIC
or ACFs. The brain was rapidly excised on a Petri dish placed
on an ice plate and the hippocampus, striatum and cerebral
cortex were dissected.

BDNF and NGF protein levels

BDNF and NGF levels in the brain tissues [homogenized in
phosphate buffer solution with a protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA)] were determined
using a sandwich-ELISA assay with monoclonal antibodies
specific for BDNF or NGF (Millipore, USA & Canada).
Briefly, microtiter plates (96-well flat-bottom) were coated
for 24 h with the samples (diluted 1:2 in sample diluent) and
a standard curve (ranging from 7.8 to 500 pg/ml of BDNF or
15.6 to 1000 pg/ml of NGF). The plates were then washed
four times with the sample diluent. After washing, a monoclo-
nal anti-BDNF or anti-NGF rabbit antibody (diluted 1:1000)
was added to each well and incubated for 3 h at room
temperature. After washing again, a peroxidase-
conjugated anti-rabbit antibody (diluted 1:1000) was
added to each well and incubated at room temperature for
1 h. After the addition of the streptavidin-enzyme, substrate
and stop solution, the amount of BDNF and NGF were
determined by measuring the absorbance at 450 nm. The
total protein was measured by Lowry et al. (1951) utilizing
bovine serum albumin as a standard.

Immunoblotting

To perform the immunoblot experiments, the samples were
first homogenized in Laemmli-sample buffer (62.5 mM
Tris–HCl, pH 6.8, 1 % (w/v) SDS, 10 % (v/v) glycerol).
Equal amounts of protein (30 μg/well) were fractionated by
SDS-PAGE and electro-blotted onto nitrocellulose mem-
branes. The protein loading and electro-blotting efficiency
were verified with Ponceau S staining. The membranes were
blocked in Tween-Tris-buffered saline (TTBS: 100 mM Tris-
HCl, pH 7.5, containing 0.9 % NaCl and 0.1 % Tween-20)
containing 5 % albumin. The membranes were incubated
overnight at 4 °C with an antibody against pro-BDNF
(Abcam - ab72440). The primary antibody was then removed,
and the membranes were washed 4 times for 15 min. After
washing, an anti-rabbit and anti-goat IgG peroxidase-linked
secondary antibodywas incubated with the membranes for 1 h
(1:10,000 dilution) and the membranes were washed again.
Finally, the immunoreactivity was detected using an enhanced
chemiluminescence ECL Plus kit. After exposure, the mem-
branes were stripped and incubated with a mouse monoclonal
antibody to β-actin (Sigma - A2228) in the presence of 5 %
milk. An anti-mouse IgG peroxidase-linked secondary anti-
body was incubated with the membranes for 1 h (1:10,000

dilution), and the membranes were washed again. The immu-
noreactivity was detected using an enhanced chemilumines-
cence ECL Plus kit. Densitometry was performed using the
Image J v.1.34 software. SeeBlue ® Plus2 Prestained Standard
(Invitrogen) was used as a molecular weight marker to make
sure that the correct bands were analyzed for pro-BDNF and
β-actin.

Statistical analysis

Results are presented as mean ± standard deviation. All assays
were performed in duplicate, and mean was used for statistical
analysis. Tests for determination of normality and equal vari-
ances were performed to examine whether our data qualified
for parametric statistical tests. The data were normally distrib-
uted (Shapiro–Wilks, p > 0.05) with equal variances among
samples (equal variances test, p > 0.05). Thus, Student’s t test
was used for the comparison of two means, and differences
between the groups were considered to be significant at
p < 0.05. All analyses were carried out on an IBM-
compatible PC computer using the Statistical Package for
the Social Sciences software (Armonk, New York, USA).

Results

We first investigated whether a single intracerebroventricular
administration of KIC could induce changes in BDNF levels
in hippocampus, striatum and cerebral cortex of young rats.
We verified that the intracerebroventricular administration of
KIC decreased the BDNF levels in hippocampus, striatum and
cerebral cortex, when compared to the control group (Fig. 1).
The assay does not allow us to distinguish between pro-BDNF
and mature BDNF, as they are equally recognized by the an-
tibody used in the ELISA. Due to the potential contrasting
effects of pro-BDNF and mature BDNF, we felt that it was
important to measure the level of the precursor protein in the
brain. Immunoblot analysis detected a specific pro-BDNF sig-
nal (ab72440 antibody; Abcam) in the 28 kDa range.

Fig. 1 The effect of acute administration of intracerebroventricular
administration of α-ketoisocaproic acid (KIC) on brain-derived
neurotrophic factor (BDNF) levels in the hippocampus, striatum and
cerebral cortex of 30-day-old rats. Data are expressed as the
mean ± standard deviation for five to six animals per group. *p < 0.05
compared to the control group (Student’s t test)
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Intracerebroventricular administration of KIC showed a trend
towards a slight reduction in the protein levels of pro-BDNF
in the hippocampus and cerebral cortex; however it did not
reach significance (Fig. 2).

We also analyzed the effects of intracerebroventricular ad-
ministration of KIC on NGF levels in the hippocampus,
striatum and cerebral cortex. ELISA measurements dem-
onstrated that NGF levels in the hippocampus were re-
duced after intracerebroventricular administration of
KIC. On the other hand, no differences in NGF levels were
observed in striatum or cerebral cortex when compared to the
control group (Fig. 3).

Discussion

Neurological sequelae are frequent in untreated patients af-
fected by MSUD, but the mechanisms underlying the neuro-
toxicity in this disease are yet not well established. However, it
is well known that KIC and its precursor leucine, which
achieve 5.0 mM concentrations in tissues of MSUD patients,
are the most toxic metabolites in this disease (Chuang and
Shih 2001; Snyderman et al. 1964). We have previously dem-
onstrated that the acute administration of BCAAs in young
rats increased pro-BDNF, total-BDNF and tPA levels in stria-
tum and decrease NGF levels in hippocampus. In the present
report, we investigated the effects of the KIC, at concentra-
tions similar to those found in MSUD patients on pro-BDNF,
total-BDNF and NGF levels in hippocampus, striatum and
cerebral cortex of young rats. Our present results showed that
KIC provokes the most significant effects on BDNF levels in
brain, since intracerebroventricular administration of KIC de-
crease BDNF levels in all analyzed structures, and decreased
the NGF levels only in hippocampus.

Although the exact mechanism through which KIC de-
creases the BDNF andNGF levels are still unknown, evidence
from the literature shows that oxidative stress causes selective
alterations in signalling cascades activated by BDNF and
NGF, through several mechanisms, including p38 MAPK
phosphorylation, decreased CREB phosphorylation or in-
creased NF-kB DNA-binding activity (Haddad and Land
2002; Iwata et al. 1997; Zou and Crews 2006). Moreover,
Jean et al. (2008) have demonstrated that glutamate, through
the metabotropic glutamate receptors, also supports the pro-
duction and release of BDNF from cultured basal forebrain
astrocytes (Jean et al. 2008). Studies also showed that gluta-
mate increases BDNF release in hippocampal neurons and in
glial cells, such as Schwann cells and Muller cells (Canossa
et al. 2001; Taylor et al. 2003; Verderio et al. 2006).
Notably, oxidative stress and a decrease in glutamate levels
have been implicated in the pathophysiology of MSUD, thus
these findings may be closely related to the decrease in BDNF
and NGF levels elicited by KIC in brain, observed in the
present study.

Neurotrophins have several important effects in developing
neurons, such as controlling neurite outgrowth, differentiation
and cell survival, as well as synaptic plasticity and function
(Huang and Reichardt 2001). Moreover, neurotrophins have
been implicated in influencing the dynamic and complex sig-
nals that occur between neurons and glial cells that regulate
myelination (Cellerino et al. 1997; Chan et al. 2004; Du et al.
2006; Vondran et al. 2010; Walsh et al. 1999; Xiao et al.
2010). Furthermore, studies demonstrate the importance of
the reciprocal synergistic relationship between NGF and
BDNF and acknowledge their potential implications in myelin
formation and repair (Canossa et al. 1997; Michael et al. 1997;
Reichardt 2006). Additionally, NGF and BDNF also play key
roles in the fine-tuning of learning and memory performances
(Mu et al. 1999; Rantamaki et al. 2013). Studies have shown
that BDNF and NGF mRNA and protein are decreased in
post-mortem brain tissue from subjects with AD, and these
reduction correlates with the degree of cognitive impairment

Fig. 2 The effect of acute administration of intracerebroventricular
administration of α-ketoisocaproic acid (KIC) on pro-brain-derived
neurotrophic factor (pro-BDNF) levels in the hippocampus, striatum
and cerebral cortex of 30-day-old rats. Figure shows representative
immunoblot bands in the shown groups. The ratio of the immunoblot
integrated optical density (IOD) of the protein of interest to β-actin was
used for statistical analysis. Data are expressed as the mean ± standard
deviation for five to six animals per group

Fig. 3 The effect of acute administration of intracerebroventricular
administration of α-ketoisocaproic acid (KIC) on nerve growth factor
(NGF) levels in the hippocampus, striatum and cerebral cortex of 30-
day-old rats. Data are expressed as the mean ± standard deviation for
five to six animals per group. *p < 0.05 compared to the control group
(Student’s t test)
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(Garzon et al. 2002; Gelfo et al. 2011; Hock et al. 2000;
Mufson et al. 2003; Peng et al. 2005).

It has been reported that BCAA can cause demyelination
and impair memory performance (de Castro et al. 2004;
Glaser et al. 2010; Scaini et al. 2012c; Taketomi et al. 1983;
Treacy et al. 1992; Tribble and Shapira 1983; Vasques et al.
2005; Walsh and Scott 2010). Taking together these findings
and the present results, we suggest that the effects of KIC on
demyelination and memory processes may be mediated by
reduced trophic support of BDNF and NGF. Moreover, lower
levels of BDNF and NGF are consistent with the hypothesis
that a deficit in this neurotrophic factor may contribute to the
structural and functional alterations of brain underlying the
psychopathology of MSUD, supporting the hypothesis of a
neurodegenerative process in MSUD.
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