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TAM receptor deficiency affects adult hippocampal neurogenesis
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Abstract The Tyro3, Axl and Mertk (TAM) subfamily of
receptor protein tyrosine kinases functions in cell growth,
differentiation, survival, and most recently found, in the reg-
ulation of immune responses and phagocytosis. All three
receptors and their ligands, Gas6 (growth arrest-specific gene
6) and protein S, are expressed in the central nervous system
(CNS). TAM receptors play pivotal roles in adult hippocampal
neurogenesis. Loss of these receptors causes a comprised
neurogenesis in the dentate gyrus of adult hippocampus.
TAM receptors have a negative regulatory effect on microglia
and peripheral antigen-presenting cells, and play a critical role
in preventing overproduction of pro-inflammatory cytokines
detrimental to the proliferation, differentiation, and survival of
adult neuronal stem cells (NSCs). Besides, these receptors
also play an intrinsic trophic function in supporting NSC
survival, proliferation, and differentiation into immature neu-
rons. All these events collectively ensure a sustained
neurogenesis in adult hippocampus.
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Abbreviations
NSC Neural stem cell
DG Dentate gyrus

TAM Tyro3, Axl, and Mertk
TKO Triple knockout
BrdU 5-bromo-2′-deoxyuridine

Introduction

Neurogenesis is a process by which new neurons differentiate
from neural stem cells (Gage 2000; Emsley et al. 2005). This
event was initially considered to occur only during embryonic
or early postnatal development, but numerous evidence has
demonstrated that it also constantly takes place in the adult
brain, predominantly in two locations, i.e., the subventricular
zone (SVZ) lining the lateral ventricles (Reynolds and Weiss
1992; Richards et al. 1992) and the subgranular zone (SGZ) of
dentate gyrus in the hippocampal complex (Gage et al. 1995;
Palmer et al. 1997). Injury or degenerative changes in the CNS
may induce neurogenesis in adult brains. Newborn neurons
and neuronal differentiation have been observed in other areas
throughout the adult brain, such as the amygdal (Bernier et al.
2002), brainstem (St-John 1998), neocortex (Magavi et al.
2000), substantia nigra (Zhao et al. 2003), tegmentum
(Hermann et al. 2006), and spinal cord (S-i et al. 2001),
particularly in responses to injury or degenerative changes.
Differentiation of neuronal stem cells to mature neurons is
composed of several steps, from stem cell proliferation, mi-
gration, survival, commitment to neuronal lineage, and finally
to the integration of the newly differentiated mature neurons
into the existing circuits, even as far as to the spinal cord
(Chen et al. 2004).

Adult neurogenesis in hippocampal subgranular zone is a
well-studied model system. Figure 1 shows a typical hippo-
campal neurogenesis pattern in adult mouse brain (Fig. 1). In
general, NSCs proliferate and give rise to transient amplifying
(TA) progenitors that may subsequently differentiate into
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immature neurons, some of which migrate to the granule cell
layer, where they further maturate into granular neurons.
These newly differentiated neurons can receive input from
the entorhinal cortex and send projections to CA3 and hilar
regions (Markakis and Gage 1999; Laplagne et al. 2007; Toni
et al. 2008; Yan et al. 2007). Similarly, NSCs in the SVZ can
also proliferate and generate TA progenitors, which differen-
tiate into immature neurons that subsequently migrate in
chains along the rostral migratory stream (RMS) to the olfac-
tory bulb (OB), where they differentiate into interneurons. It is
well accepted that adult hippocampal neurogenesis is involved
in spatial learning and memory (Deng et al. 2010; Aimone
et al. 2011), while neurogenesis in the SVZ generates new
neurons destined for the olfactory bulb to function in fine
olfaction discrimination (Conover and Shook 2011).

Neurogenesis is a precisely regulated process. Many intrin-
sic and extrinsic regulatory mechanisms have been identified,
including a number of morphogens that are critical for embry-
onic development of the nervous system, such as Notch
(Morrison et al. 2000), Sonic hedgehog homolog (SHH)
(Lai et al. 2003), Wnts (Lie et al. 2005; Wexler et al. 2009),
and Bone morphogenetic proteins (BMPs) (Lillien and
Raphael 2000). These regulatory systems are conserved and
continue to function during the adult neurogenesis. In addi-
tion, many other neurotransmitters, growth factors,
neurotrophins, cytokines, and hormones may play critical
regulatory roles at different phases of adult neurogenesis.
Many intrinsic factors, such as micro RNA (miRNAs), tran-
scription factors, cell-cycle regulators, and epigenetic factors
also exhibit cell-autonomous regulation of adult NSCs prolif-
eration, differentiation, and survival (Suh et al. 2009; G-l and
Song 2011).

Neurogenesis is dramatically affected by inflammatory
factors (Ekdahl et al. 2003; Monje et al. 2003; Rolls et al.
2007). Microglia and astrocytes, both play roles in regulation
of immune responses in the inflamed brain, are involved in the
onset of inflammation and major immune defenses in the
infected and damaged CNS. Microglia, like its counterpart
in the peripheral immune system, macrophage, contribute to
the immune responses by acting as antigen-presenting and
innate immune responsive cells that secrete cytokines and
other signaling molecules (Carson et al. 1998; Shrikant and
Benveniste 1996). However, chronic inflammation is recog-
nized as a major negative contributor to adult neurogenesis
(Ekdahl et al. 2003; Monje et al. 2003), although there are
several evidences that show the activated microglia promoting
neurogenesis through secreting anti-inflammatory cytokines
(Butovsky et al. 2005, 2006; Gómez-Nicola et al. 2011;
Walton et al. 2006). Chronic inflammation or acute inflam-
mation induced by infection or lipopolysaccharide (LPS) ad-
ministration promotesmicroglial pro-inflammatory responses,
which are clearly detrimental to neurogenesis (Ekdahl et al.
2003; Monje et al. 2003; Cacci et al. 2008; Iosif et al. 2006;

Kuzumaki et al. 2010; Liu et al. 2005; Picard-Riera et al.
2002). We have recently demonstrated that the Tyro3, Axl
and Mertk (TAM) subfamily of receptor tyrosine kinases
functions as important homeostatic regulators and sets appro-
priate guidance for microglial response to infection and tissue
damages. Mice lacking all three receptors (TAM TKO) pro-
duced increased level of pro-inflammatory cytokines, espe-
cially IL-6, which inhibits neuronal stem cell (NSC) prolifer-
ation and differentiation (Ji et al. 2013). This reviewwill focus
on the recent progress of TAM functions in glial and NSC
cells and their contribution in the regulation of adult
neurogenesis.

TAM receptors, their cognate ligands and functions

The Tyro3, Axl and Mertk proteins have been identified as a
distinct subfamily of receptor-type protein tyrosine kinase
(PTK) (Janssen et al. 1991; Jia and Hanafusa 1994; Lai et al.
1994; Lai and Lemke 1991; Mark et al. 1994; Rescigno et al.
1991; Taylor et al. 1995; O’Bryan et al. 1991). As shown in
Fig. 2, this subfamily of proteins contains a single transmem-
brane domain and is expressed on the cell plasma membrane
with the N-terminus located on the outside of the cell surface,
serving as an extracellular ligand-binding domain. The C-
terminus of protein is oriented intracellularly and harbors a
large intracellular kinase domain followed by a short sequence
containing a few tyrosine residues. When activated, the tyro-
sine residues on the C-terminal short tail are phosphorylated
and act as docking sites for downstream signaling molecules
(Lai et al. 1994; O’Bryan et al. 1991; Heiring et al. 2004;
Sasaki et al. 2006). Two structurally close-related proteins,
namely growth-arrest-specific 6 (GAS6) and protein S, have
been identified as TAM receptor ligands (Stitt et al. 1995). The
binding of those ligands to TAM receptors triggers receptor
dimerization and activation. As a result, it causes the recruit-
ment, phosphorylation, and activation of multiple downstream
signaling proteins, which ultimately changes gene expression
or biological responses.

TAM receptors and their ligands are broadly expressed in
immune, nervous, reproductive, and vascular systems. They
were initially identified as growth trophic receptors for cell
survival in numerous cell types involving many cell lineages,
including mesangial and glomerular cells (Yanagita et al.
1999; Yin et al. 2002), fibroblasts (Bellosta et al. 1997;
Goruppi et al. 1996), vascular smooth muscle cells
(Valverde et al. 2004; Nakano et al. 1996; Son et al. 2006),
endothelial cells (D’Arcangelo et al. 2002; O’Donnell et al.
1999), testicular cells (Chan et al. 2000), lens epithelial cells
(Valverde et al. 2004), and peripheral macrophages (Anwar
et al. 2009). The growth trophic and anti-apoptotic effects of
the TAM signaling pathway have also been demonstrated in a
variety of cell types in the nerve system, including neurons
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(Allen et al. 1999; Pierce et al. 2008; Yagami et al. 2002),
Schwann cells (R-h et al. 1996), and oligodendrocytes (Binder
et al. 2008; Shankar et al. 2003, 2006).

Many lines of evidence show that phosphatidylinositol-3-
kinase (PI3K) is a critical signaling pathway initiated by TAM
receptor activation (Konishi et al. 2004; Hasanbasic et al.
2010; Goruppi et al. 1997; Weinger et al. 2008; Chen et al.
2014). The phosphorylated TAM receptors are able to activate
PI3K by either directly binding the p85 subunit of PI3K

(Weinger et al. 2008; Braunger et al. 1997) or via the growth
factor receptor-bound 2 (Grb2) adaptor protein to indirectly
recruit and activate the PI3K (Weinger et al. 2008). The
activated PI3K causes the phosphorylation of Akt or nuclear
translocation of NF-κB, and eventually leads to anti-apoptosis
response and cell survival. In addition, the binding of the Grb2
adaptor protein to the phosphorylated TAM receptors can also
recruit the son of sevenless (SOS), which activates the extra-
cellular signal-related kinase (Erk)-signaling pathway to

Fig. 1 Adult neurogenesis in the dentate gyrus of hippocampal complex.
(a) A representative picture of dentate gyrus (DG) shows the BrdU
labeled proliferative NSCs (green), doublecortin immunostained
immature neurons (red), and granular cell layer (GCL) stained with
DAPI (blue). (b) An enlarged picture shows details in the dashed
square of (a). A newborn NSC was labeled with BrdU along the

subgranular zone of the dentate gyrus (green, by open triangle), and
the newly differentiated immature neurons were doubly stained with
doublecortin and BrdU (white arrow). These immature neurons migrate
into the granule cell layer, and differentiate into mature neurons. This
pattern represents neurogenic process in adult hippocampus. Scale bar:
50 μm for (a) and 10 μm for (b)

Fig. 2 schematic diagram of
TAM receptors. Extracellular
domain consists of two
immunoglobulin domains (Ig)
and two fibronectin type III
domains (FN III) are located
outside of the cell surface.
Intracelluar domain is composed
of a large kinase domain (KD)
followed by a carboxyl terminal
tail housing a few tyrosine
residues. The numbers indicate
the tyrosine location on themouse
Tyro3 protein
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promote cell proliferation (Goruppi et al. 1996, 1997, 1999;
Fridell et al. 1996; Brown et al. 2012) (Fig. 3a). Such a TAM
receptor-mediated signaling pathway has been found in a
number of cell types including cardiac fibroblasts (Stenhoff
et al. 2004), Schwann cells (R-h et al. 1996), and vascular
smooth muscle cells (Benzakour et al. 1995).

Creation of the Tyro3, Axl or Mertk single gene knockout
mice and subsequent generation of different combinations of
the compound double or triple knockout mice uncovered
many unexpected biological functions of TAM receptors
(Scott et al. 2001; Lu et al. 1999; Lu and Lemke 2001). The
major discoveries from the knockout mice are the participa-
tion of the TAM receptors in phagocytic regulation, mainly
through Mertk and Axl (Scott et al. 2001; Zagorska et al.
2014; Tsou et al. 2014), and their precise regulation of both
adaptive and innate immune responses (Lu and Lemke 2001;
Rothlin et al. 2007; Carrera Silva et al. 2013). Mice without
these three receptors exhibit systemic autoimmune disorders,
due to hyperactivation of the antigen-presenting cells (APC)
such as macrophage and dendritic cell (Lu and Lemke 2001;
Ye et al. 2011). In these APC cells, the TAM receptors adopt a
different signaling mechanisms involving the Janus kinase-
signal transducer and activator of transcription (JAK-STAT)
pathway (Rothlin et al. 2007). Pathogenic activation of pattern
recognition receptors, such as Toll-like receptors (TLRs),
triggers a wide spectrum of cytokine production and, interest-
ingly, an upregulation of TAM expression as well (Zagorska
et al. 2014; Rothlin et al. 2007). These newly expressed TAM
receptors stimulate transcriptional expression of suppressor of
cytokine signaling (SOCS)-1 and −3, which function as neg-
ative regulators for the TLRs and cytokine receptor signaling
cascades (Lemke and Rothlin 2008) (Fig. 3b). Such TAM-
mediated negative regulation of cytokine/chemokine produc-
tion ensures the immune systemwill mount appropriate innate
immune responses to infection or tissue damages.

TAM receptors, especially Mertk, play an essential role in
regulating phagocytic functions for many professional and
non-professional phagocytes; the well-studied of which are
Sertoli cells in testis, retinal pigment epithelial (RPE) cells in
eye, and the macrophages and dendritic cells in immune
system. Mice lacking all three TAM receptors are sterile and
blind due to impaired spermatogenesis (Lu et al. 1999; Lu and
Lemke 2001) and postnatal photoreceptor degeneration (Feng
et al. 2002; Prasad et al. 2006). The death of developing germ
cells in testis is a direct consequence of the dysfunctional
Sertoli cells that are unable to perform a normal phagocytic
clearance of the abandon cytoplasmic debris from the matur-
ing germ cells (Lu et al. 1999). The blindness observed in
these TAM triple knockout mice is caused by a defective
Mertk-mediated phagocytic clearance of the spent photore-
ceptor out-segments by the adjacent RPE cells that normally
express Mertk receptor (Lu et al. 1999; Lu and Lemke 2001;
Prasad et al. 2006). Similar to their function in Sertoli and

RPE cells, this subfamily of receptors plays a very important
role in phagocytic clearance of the apoptotic cells by macro-
phages and dendritic cells (Scott et al. 2001; Seitz et al. 2007).
Mounting evidence shows that the TAM cognate ligands,
Gas6 , and p ro t e in S can s imu l t aneous ly b ind
phosphatidylserine (PS) on the surface of apoptotic cell and
the TAM receptors on phagocyte, which triggers phagocytic
uptake of the engulfed dead cell (Zagorska et al. 2014; Tsou
et al. 2014; Nakano et al. 1997; Anderson et al. 2003).
Although the molecular mechanism underlying the TAM-
mediated signaling pathway in regulation of phagocytosis is
not clearly elucidated, the TAM involvement in regulation of
cytoskeletal rearrangement during phagocytic process is con-
vincing. Several TAM-mediated signaling models have been
proposed (Wu et al. 2005; Grommes et al. 2008; Nandrot et al.
2004; Ji et al. 2014), but most likely, these signal transduction
pathways will trigger cytoskeletal reorganization and
phagocytosis.

TAM receptors protect neurogenesis by maintaining BBB
integrity and inhibiting peripheral inflammation

Brain is normally separated from the peripheral immune sys-
tem by the brain–blood barrier (BBB), which is formed by
capillary endothelial cells, a thick basement membrane, and
the endfeet of astrocytes. TAM receptors, especially Tyro3
and Axl, are expressed and function on microvessel endothe-
lial and vascular smooth muscle cells (Zhu et al. 2010;
Melaragno et al. 2004; Holland et al. 2005; Korshunov et al.
2006). Loss of these receptors, the brain microvessel integrity,
cause endothelial cell adhesion to be interrupted (Zhu et al.
2010; Li et al. 2013). When BBB is disrupted, it becomes
more permeable and allows lymphocytes and large molecules,
such as proinflammatory cytokines and neurotoxic molecules,
to freely cross the BBB to impair neurogenesis in the adult
brain.

On the other hand, TAM receptors play a critical regulatory
role in the peripheral immune system. Loss of TAM receptors
on dendritic cells (DC)s and macrophage (Seitz et al. 2007;
Lemke and Lu 2003; Cohen et al. 2002), or other non-
professional phagocytes (Prasad et al. 2006; Xiong et al.
2008), causes defective phagocytosis and hence, accumula-
tion of apoptotic debris which is not normally presented. TAM
receptors also negatively regulate cytokine production and
without these receptors, the activated DCs and macrophages
produce increased amount of proinflammatory cytokines.
Constant encountering self-antigens released from apoptotic
cells and unrestricted production of proinflammatory cyto-
kines lead to chronic inflammation and systemic autoimmune
disorders seen in TAM triple knockout mice (Lu and Lemke
2001; Rothlin et al. 2007; Ye et al. 2011).
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Systemic or local chronic inflammation in the CNS is
detrimental to normal neural functions (Lehnardt et al.
2003), as well as to the adult neurogenesis and neuronal
differentiation. The bacterial LPS can provoke microglial
inflammation and elicit the release of proinflammatory cyto-
kines that affect NSC activity (Ekdahl et al. 2003; Monje et al.
2003; Carpentier and Palmer 2009), but using immunosup-
pressive drugs to hinder inflammation will restore hippocam-
pal neurogenesis (Monje et al. 2003). Systemic autoimmune
disorders usually produce increased level of proinflammatory
cytokines and autoreactive lymphocytes, which are able to
drive peripheral autoimmunity into the CNS. TNF-α has been
shown to increase the permeability of brain microvascular
endothelial cells (Dickstein et al. 2000; Jacob et al. 2010;
Ozaki et al. 1999; Tsao et al. 2001; Wong and Dorovini-Zis
1992; Yang et al. 1999). A higher level of circulating TNF-α
was found in TKO blood and caused abnormal activation of
endothelial cells (Lu and Lemke 2001; Li et al. 2013). TNF-α
increases BBB permeability and induces intracellular adhe-
sion molecule (ICAM) expression on endothelial cells
(Nishioku et al. 2010; McHale et al. 1999). Such cytokine-
driven and exaggerated ICAM-dependent leukocyte-

endothelial interactions were found in the brains of MRL–
lpr mice (James et al. 2006), a mouse model with a systemic
autoimmune disease that spontaneously develops a manifes-
tation of humanmultiple sclerosis. In addition, CD3 positive T
cells were constantly detected in the parenchymal tissue in the
TKO brains. T-cell mediated inflammation has been consid-
ered as a major factor of demyelination and damage to oligo-
dendrocytes in multiple sclerosis disorders. Disruption of the
BBB in TKOmice increases permeability of proinflammatory
cytokines and autoreactive T cells that cause inflammatory
damage to the CNS, where the most vulnerable region is the
hippocampal complex (Li et al. 2013). This is probably one
important cause for the impaired neurogenesis in the TAM
TKO mice. This observation is in agreement with other find-
ings that the removal of T cells, especially the CD4 popula-
tion, causes an increase in NSC proliferation, followed by an
escalated improvement in functional recovery after cortical
infarction (Wolf et al. 2009). It is conceivable that depletion of
T cells in the TAM TKO mice might provide insights regard-
ing the causes of the impaired neurogenesis. These observa-
tions demonstrate that systemic autoimmunity and neuroin-
flammation in the TAM TKO mice may contribute

Fig. 3 Simplified TAM signaling pathways in supporting cell
proliferation and survival (a) and inhibiting inflammation (b). (a) The
phosphorylated TAM receptors activate phosphatidylinositol-3-kinase
(PI3K) by either directly binding the p85 subunit of PI3K; or via the
growth factor receptor-bound 2 (Grb2) adaptor protein to indirectly
recruit and activate the PI3K, which in turn causes the phosphorylation
of Akt and nuclear translocation of NF-κB, eventually leading to anti-
apoptosis response and cell survival. In addition, the activation of the

Grb2 adaptor protein can also recruit the son of sevenless (SOS) that
subsequently activates the extracellular signal-related kinase (ERK)-
signaling pathway to promote cell proliferation. (b) Activation of TAM
receptors upregualtes the transcription of both suppressor of cytokine
signal-ling (SOCS) 1 and 3 via interferon-α receptor (IFNAR) and
transducer and activator of transcription 1 (Stat1) signal transduction
pathway. As a result, the increased SOCS-1 and −3 suppress the
cytokine receptor signal transduction cascades
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significantly to hippocampal damage and the inhibition of
adult neurogenesis.

TAM receptors maintain neurogenesis by the negative
regulation of microglia and astrocyte activation

Brain inflammation has been recognized as major negative con-
tributor to adult neurogenesis (Monje et al. 2003; Carpentier and
Palmer 2009). TAM receptors have been postulated to inhibit
prolonged and unrestricted innate immune responses of macro-
phages and DCs by regulating expression of SOCSs or Twist
proteins, which terminates cytokine receptors-mediated signaling
or inhibits NF-κB transcriptional activity respectively (Rothlin
et al. 2007; Lemke and Rothlin 2008; Sharif et al. 2006). As
resident macrophages, microglia act as immunocompetent cells
in the brain and spinal cord and are responsible for CNS protec-
tion against a variety of pathogenic factors including damaged
neurons, aging–related protein aggregates, and infectious agents.
However, chronic activation of microglia causes neuronal dam-
age through the release of neurotoxic molecules, such as proin-
flammatory cytokines, reactive oxygen species, and complement
proteins. These factors are detrimental not only to normal neural
function (Lehnardt et al. 2003), but also to neurogenesis and
differentiation of neuronal stem cells (NSCs) into immature
neurons (Ekdahl et al. 2003, 2009; Monje et al. 2003; Rolls
et al. 2007; Iosif et al. 2006; Kuzumaki et al. 2010). Microglia,
expressing a wide spectrum of cytokine receptors, TLRs, and all
components of the IKK-NF-κB signaling pathway (Rivest 2009;
Olson and Miller 2004; Hanisch 2002) can be activated by a
variety of factors including proinflammatory cytokines, TNF-α,
LPS, etc. After activation, they can produce numerous proin-
flammatory mediators. LPS-elicited microglial inflammation has
been shown to induce the release of proinflammatory cytokines
affecting NSC proliferation in vitro and inhibiting hippocampal
neurogenesis and neuronal differentiation in vivo (Ekdahl et al.
2003; Monje et al. 2003; Cacci et al. 2008; Iosif et al. 2006;
Kuzumaki et al. 2010; Liu et al. 2005; Picard-Riera et al. 2002).

We have recently shown that microglia express all three
members of TAM receptors (Ji et al. 2013). Similar to their
negative regulatory role on DCs and macrophages, the TAM
receptors restrain microglia from hyper response to activation.
Microglia lacking TAM receptors produced increased
amounts of proinflammatory cytokines upon stimulation by
LPS, poly I:C, and CpG, which act through TLR4, TLR3, and
TLR9 accordingly. This suggests that TAM receptors, as
negative mediators, participate in the regulation of microglial
innate immune responses. The conditioned medium from
LPS-stimulated TAM TKO microglia cultures consistently
exhibited more severe neurotoxic for NSCs, as shown by
increased apoptosis, decreased proliferation, and neuronal
differentiation. The major component in the TKO microglial
conditioned medium was identified as IL-6, since either the

IL-6 neutralizing antibody or the conditioned medium from
the Il6−/−TKO microglial culture were able to reverse the
neurotoxic effects of the TKO microglial conditioned medi-
um. Furthermore, the neurotoxic effect of the high concentra-
tion of IL-6 from the TKO microglia was further verified
in vivo by knocking out the Il6 gene in the TAM TKO
background, in which decreased adult hippocampal
neurogenesis was seen in the TKO mice to reverse the level
compatible to that of the WT control mice. This result indi-
cates that IL-6 is a major player upregulated in the TKO
microglia and renders neurotoxic to adult hippocampal
neurogenesis in the TKO mice. Another proinflammatory
cytokine, TNF-α, was also upregulated in the activated TKO
microglia. However, neither the neutralizing antibody nor the
TNF receptor knockout in the TKO background restored
normal NSC proliferation and neuronal differentiation, except
for the TNF-α when used as a mediator linking hyperreactive
TKO microglia and halted neurogenesis.

In addition to microglia, astrocyte is another type of im-
munemodulating cells in the CNS that is capable of producing
inflammatory neurotoxic mediators (Saijo et al. 2009).
Astrocytes express TLRs, IL-1β receptors (Olson and Miller
2004; Saijo et al. 2009; Carpentier et al. 2005; Gorina et al.
2011; Glass et al. 2010; Farina et al. 2007; Meng et al. 2014),
and all three members of the TAM receptors (Ji et al. 2013). In
response to LPS activation, the cultured TKO astrocytes re-
leased higher levels of IL-6 than the WT cells did, indicating
that TAM receptors also play a negative regulatory role in
astrocyte. Interestingly, since the astrocytes also express IL-
1β receptor (Saijo et al. 2009), IL-1β stimulation on the TKO
astrocytes elicited a stronger expression of IL-6 and IL-1β
than compared to the WT cells. It is likely that the enhanced
production of IL-1β by TKO microglia may further stimulate
astrocytes to generate more proinflammatory cytokines detri-
mental to neurogenesis in adult hippocampus.

The negative impact of TAM receptors on the activated
microglia and astrocytes is likely caused by the overwhelmingly
activated MAP kinases in response to stimulation by pathogenic
reagents. P38 has been shown to be a major MAP kinase in
microglia for regulation of proinflammatory cytokine production
(Bachstetter et al. 2011). TKO microglia also exhibited stronger
p38 activation upon TLRs activation than did the WTcells. This
enhanced signaling by p38, possibly in collaboration with other
MAP kinases such as pErk1/2, is likely responsible for the
increased production of proinflammatory cytokines.

TAM receptors maintain neurogenesis by supporting
NSCs

As discussed above, hyperreactive microglia in the TKOmice
produced increased level of proinflammatory cytokines that
were detrimental to neuronal stem cell proliferation and
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differentiation (Ji et al. 2013). However, when compared with
the number of β-tubulin III+ neurons differentiated from the
TKO and WT NSCs pretreated with LPS-treated microglia-
conditioned medium, the TKO NSCs showed even more
decreased neuronal differentiation. The in vivo study in which
the TKO brain showed further decline in regards to NSC
proliferation and differentiation into the BrdU+/DCX+ neuro-
nal progenies than did the WT brains that had undergone the
LPS-induced inflammation (Ji et al. 2013) also reflected this.
The data implies that TAM receptors may play an intrinsic
functional role in NSC proliferation and neuronal
differentiation.

Since they were originally cloned from many fast growing
or transformed cells, TAM receptors were initially considered
as growth trophic receptors based on their upregulated pres-
ence in these cells (Lai and Lemke 1991; O’Bryan et al. 1991).
They sustain cell growth and survival and support PC12 cell
neuronal differentiation upon neuronal growth factor stimula-
tion (Zheng et al. 2009). Genome-wide analysis of the differ-
ential expressed genes in the neuronal progenitor versus the
differentiated neuronal cells reveals that all three members of
the TAM family are expressed in the embryonic cortical
neuronal progenitor cells (Wang et al. 2011). Mice lacking
both Axl andMertk caused early differentiation and migration
of the SVZ NSCs (Wang et al. 2011) and knockout of their
common ligand, Gas6, reduced the NSC numbers in the SVZ
(Gely‐Pernot et al. 2012). This evidence indicates that TAM

receptors may play important intrinsic roles in the main-
tenance of the cortical neuronal progenitor cell identity,
in the regulation of NSCs survival, proliferation, and
differentiation.

We have recently observed that the primary culture NSC
expressed all three members of the TAM receptors that pro-
vided trophic support for NSCs survival, proliferation, and
differentiation into immature neurons in vitro. NSCs lacking
TAM receptors manifested in slow growth, reduced prolifer-
ation, and a smaller extent of neuronal differentiation, but also
in increased cell death. For the underlined mechanism, we
have found the TKO NSCs expressed less NGF, but showed a
compensational increased expression of TrkA, TrkB and
TrkC, implying that the TAM receptors may function in
coordination with neurotrophins in NSCs. According to some
other studies, the ERK pathway might be the main factor
TAM receptors use to regulate NSCs proliferation and differ-
entiation. Without TAM receptors, phosphorylation of ERK
will be upregulated (Ji et al. 2013) and will suppress the
Krüppel-like factor (Klf4), inducing NSCs to stop self-
renewal and start differentiation (Kim et al. 2012).
Moreover, some studies pointed out that the ERK pathway
might be important to regulating NSCs’ differentiation to-
wards neurons (Samuels et al. 2008). Taken together, TAM
receptors may regulate NSCs’ proliferation, differentiation,
and survival in coordination with neurotrophins or through
regulating the ERK pathway.

Fig. 4 Effects of TAM triple knockout on the adult hippocampal
neurogenesis. Both type 1 and type 2 NSC are able to proliferate for
self-renewal; and type 2 can exit from cell cycle and differentiate into
immature neuron, which further differentiate into mature neurons.
(a) Loss of TAM receptors from NSCs affects proliferation and
differentiation with an increased effect from proliferating stem cell
stage to the neuronal differentiation into immature neurons. (b)

Loss of TAM receptors on macroglia (MG) and astrocytes (AS)
increases proinflammatory mediators, such as IL-6; and this effect
is more dramatic on the proliferating NSCs then on the neuronal
differentiation stage. (c) Loss of TAM receptors on the peripheral
dendritic cells (DC) and macrophages (MΦ) enhances release of
Il6 and other proinflammatory mediators that in turn inhibit
neurogenesis
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Summary and perspectives

In summary, TAM receptors are expressed in the CNS, in-
cluding NSCs, microglia, and astrocytes. They affect adult
neurogenesis by negative regulation of the glial cell hyperac-
tivation in the CNS, maintenance of BBB integrity, and ho-
meostatic prevention of overreactive inflammatory responses
by peripheral immune system. These processes depend on
cooperative interaction between TAM receptors and cytokine
receptor signaling systems. Notably, they also play an intrinsic
supporting role in the survival, proliferation, and differentia-
tion of adult NSCs.

It is noteworthy that the expression patterns of three TAM
members are sharply different in the brain. Tyro3 is abundant-
ly expressed in neurons, Axl is mainly restricted to the rostral
migratory stream (RMS), and Mertk transcript is widespread
and likely to be glial concentrated (Prieto et al. 2000, 2007).
Each member of the TAM receptors plays a unique role in
regulating adult neurogenesis. However, according to our
unpublished results, deletion of a single receptor is not enough
to cause changes in neurogenesis. Further studies are still
needed to examine the specific role for each TAM receptor.
Nevertheless, it is likely that loss of TAM receptors on immu-
nocompetent cells and on NSCs has a unique impact on
different stages of neurogenesis. Enhanced inflammation af-
fects preferentially on the NSC proliferation, whereas loss of
TAM on NSCs dominantly affects the differentiation stage
between the proliferating NCS to immature neurons, as sum-
marized in Fig. 4. TAM plays such an important regulatory
role in the CNS suggesting that the TAM receptor signaling
system may offer a novel target for the treatment of chronic
neuroinflammtion and aging-related neurodegenerative
disease.

Chronic inflammation has been long known as a risky
factor for the development of neurodegenerative diseases.
Non-steroidal anti-inflammatory drugs (NSAID) have been
used to attenuate inflammation in the patients with neurode-
generative diseases. Early epidemiological studies highlighted
a reduced incidence of Alzheheimer’s disease (Stewart et al.
1997) and Parkinson’s disease (Samii et al. 2009; Gao et al.
2011) in NSAID users, but more recent results from clinical
trials provided disappointing results (Jaturapatporn et al.
2012; Rees et al. 2011) because of cardiovascular risks
(Finckh and Aronson 2005) and the timing of NSAID admin-
istration. By the time a neurodegenerative disease is diag-
nosed, neuronal loss has already happened. Some studies
showed NSAID appeared to lessen cognitive decline in the
early stages of the diseases, but it also accelerated decline in
the late stages of the diseases (Breitner et al. 2011; Leoutsakos
et al. 2012).

Whether or not the expression profile of TAM receptors is
altered in the neurodegenerative disease patients is currently
not clear. Activation of the TAM receptors by their cognate

ligands, Gas6 and Protein S, is postulated to suppress inflam-
mation and improve neurogenesis in treatment of neurodegen-
erative diseases. Gas6 has been shown to activate several
downstream signaling pathways including MAPK/ERK,
PI3K/AKT, and JAK/STAT (Linger et al. 2008). Activation
of TAM receptors is a double-bladed sword: all these path-
ways can inhibit severe inflammation observed in neurode-
generative patients’ brains, but these pathways also exist in the
activation of classic oncogenic networks (Linger et al. 2008).
Therefore, the long term goal is to selectively activate TAM
receptors in an attempt to reduce chronic inflammation and to
promote adult neurogenesis in the treatment of aging related
diseases, without activating oncogenic signal transduction
networks.
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