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Abstract In response to acute adversity, emotional signals
shift the body into a state that permits rapid detection, identi-
fication, and appropriate response to a potential threat. The
stress response involves the release of a variety of substances,
including neurotransmitters, neurotrophic factors, hormones,
and cytokines, that enable the body to deal with the challenges
of daily life. The subsequent activation of various physiolog-
ical systems can be both protective and damaging to the
individual, depending on timing, intensity, and duration of
the stressor. Successful recovery from stressful challenges
during early life leads to strengthening of synaptic connec-
tions in health-promoting neural networks and reduced vul-
nerability to subsequent stressors that can be protective in later
life. In contrast, chronic intense uncontrollable stress can be
pathogenic and lead to disorders such as depression, anxiety,
hypertension, Alzheimer’s disease, Parkinson’s disease, and
an increased toxic response to additional stressors such as
traumatic brain injury and stroke. This review briefly explores
the interaction between stress experienced at different stages
of development and exercise later in life.
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Introduction

Exercise is generally considered to be health-promoting, but at
high intensity it is can also be a stressor with negative conse-
quences instead of an activity that contributes to human well-
being. Regular moderate aerobic exercise promotes antioxidant
capacity in the rodent brain (Camiletti-Moirón et al. 2013). In
contrast, anaerobic or high-intensity exercise reduced the pro-
tective response of the brain to oxidative stress (Camiletti-
Moirón et al. 2013). In addition, the beneficial effects of exercise
can be modified by prior exposure to stress, raising concerns
about its efficacy as a therapeutic modality in adulthood
(Mabandla et al. 2009; Mabandla and Russell 2010). A number
of studies have recently been published focusing on the interac-
tion between stress, exercise, and brain function.

Exercise challenges homeostasis, it stimulates the sympa-
thetic nervous system to release adrenaline and noradrenaline
(Christensen and Galbo. 1983; Droste et al. 2007).
Noradrenergic projections arising from the locus coeruleus
regulate neuronal function via β-adrenergic receptors in areas
of the brain that are critically involved in learning and mem-
ory, such as the hippocampus, prefrontal cortex, and amygdala
(Timmermans et al. 2013). High-intensity exercise also stim-
ulates the hypothalamic-pituitary-adrenal (HPA) axis to se-
crete corticotropin releasing factor (CFR), vasopressin, and
glucocorticoids (McKeever et al. 1987; Freund et al. 1991;
Droste et al. 2003; 2007). These hormones alter a variety of
physiological functions to facilitate adaptation to homeostatic
challenge (De Kloet et al. 2005).

Excitatory glutamate synapses play a critical role in synap-
tic transmission, synaptic plasticity and behavioural adapta-
tion (Timmermans et al. 2013). At glutamate synapses, the
ionotropic AMPA receptor mediates rapid transmission and
changes in its trafficking have been proposed to be a core
mechanism for synaptic plasticity (Zhang et al. 2013). This is
important in understanding how stress can influence
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behaviour since the stress-induced release of glucocorticoids
regulates synaptic plasticity by altering glutamate receptor
function in limbic brain structures such as the hippocampus,
amygdala, and prefrontal cortex (De Kloet et al. 2005; Tse
et al. 2011). Glucocorticoids enhance the influx of calcium via
glutamate NMDA receptors, facilitating both long-term poten-
tiation (LTP) and long-term depression (LTD) in the hippocam-
pus (Tse et al. 2011). However, high concentrations of cortico-
sterone reduced LTP in hippocampal slices (Zhang et al. 2013).
Prenatal stress induced depression-like behaviour and reduced
NMDA subunit (NR1 and NR2A) levels in several brain re-
gions (Sun et al. 2013). AMPA receptors cycle in and out of the
postsynaptic membrane. Norepinephrine released during exer-
cise stimulates phosphorylation of GluR1 and delivery of
GluR1-containing AMPA receptors to the synapse during
LTP, thus enhancing learning and memory formation (Hu
et al. 2007). Acute stress causes rapid insertion of Ca2+-perme-
able AMPA receptors into the synapse to facilitate LTP in the
hippocampus (Whitehead et al. 2013). Drugs that prevent
glucocorticoid-induced surface dispersal of AMPA receptors
from the synapse restored LTP in acutely stressed animals
(Zhang et al. 2013). These results attest to the complexity of
the interaction between stress and glutamate receptor function.

The long-term effects of a stressor on an individual are
largely determined by its intensity, duration and the success or
failure of the individual to cope with the stressor. Successful
recovery from life events leads to strengthening of synaptic
connections in health-promoting neural networks that protect
the individual from similar challenges in later life. It is well
known that neural networks are altered by experience, the
outcome of which leads to the encoding of new information
that the body can use to survive similar recently experienced
conditions and enhance future performance as a result of
exceeding previously perceived limitations.

In response to acute environmental adversity, emotional
signals exert a powerful influence on behaviour and shift the
body into a state that is optimal for detection, identification,
and generation of an appropriate response to a possible threat.
The stress response involves the release of a variety of sub-
stances that enable an individual to deal with the challenge.
These include neurotransmitters, hormones, neurotrophic fac-
tors, and cytokines. The physiological systems that are acti-
vated by these messengers can either protect or damage the
body depending on the timing, intensity, and duration of the
stressor. In this brief review we explore the interaction be-
tween stress experienced at specific stages of development
and the benefit of subsequent exercise in later life.

Early developmental stress

Stressors in daily life are necessary for development of the
brain. The body learns to adapt to daily challenges to avoid

injury and to ensure a successful outcome. However, circum-
stances in which an individual is unable to achieve success
and avoid injury can be damaging and impair cognitive func-
tion in later life. Chronic uncontrollable stress can promote
disease.

Monti et al. (2013) showed that mild head trauma during
the early stages of development caused impairment of mem-
ory performance in adulthood. He also showed that individ-
uals who had suffered mild head trauma in early life had
reduced hippocampal volumes in adulthood. Many studies
have found reduced volume of limbic brain areas (hippocam-
pus, nucleus accumbens, basolateral amygdala and prefrontal
cortex) in middle-aged and elderly humans with stress-related
disorders such as depression (Lai et al. 2000; Steffens
et al. 2003; Campbell et al. 2004; Russo and Nestler
2013). Histological analysis of post-mortem brains of
depressed subjects suggested that the reduced brain vol-
ume may be due to loss of glia and a decrease in the
number of synaptic connections between neurons (Russo
and Nestler 2013). There is considerable evidence to
suggest that axonal outgrowth is inhibited in the pre-
frontal cortex and that structure-related proteins are de-
creased in limbic brain areas of animal models of de-
pression (Daniels et al. 2012; Dimatelis et al. 2013)

We have shown that mild pre-or postnatal stress can in-
crease the vulnerability of dopamine neurons to a toxic insult,
the infusion of 6-hydroxydopamine (6-OHDA) into the brains
of Sprague–Dawley rats. For example, prenatal stress
decreased the number of tyrosine hydroxylase-positive
cell bodies in the substantia nigra in adult rats, follow-
ing 6-OHDA infusion into the medial forebrain bundle,
and maternal separation caused a greater loss of tyrosine
hydroxylase staining in the ipsilateral striatum in re-
sponse to 6-OHDA infused into the striatum of 35-day-old
rats (Pienaar et al. 2008; Mabandla et al. 2009). In all studies,
dopamine neuron degeneration was accompanied by greater
impairment of contralateral forelimb motor function in the
stressed rats.

Exercise

It is generally accepted that exercise is beneficial for aging
humans as well as patients with Parkinson’s disease or
Alzheimer’s disease (Chapman et al. 2013). Supervised aero-
bic exercise (3×1-hour sessions/week for 12weeks) improved
immediate and delayed memory performance which was as-
sociated with increases in both left and right hippocam-
pal cerebral blood flow (Chapman et al. 2013). In
addition, the two cardiovascular parameters, VO2 max
and rating of perceived exertion, showed gains, compared
to the control group. Nevertheless exercise is a stressor and the
timing, intensity, duration, and confounding effects of
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exercise are unknown. Stress can be beneficial. A mild stress-
or, immersion of a hand in ice-cold water for 3 min after a
training session, significantly improved memory recall in a
predictive learning task (Hamacher-Dang et al. 2013).
Physical exercise reduced many of the motor symptoms of
Parkinson’s disease (Aýan et al. 2013; Nadeau et al. 2013) and
the cognitive decline that occurs in Alzheimer’s disease
(Farina et al. 2013).

These observations are supported and extended by animal
studies. Animal studies have shown similar improvements in
cognitive function following exercise (Aguiar et al. 2011;
Goes et al. 2013; Kim et al. 2013; Wang et al. 2013). Short
bouts of mild-intensity exercise improved spatial learning and
memory in aging rats (Aguiar et al. 2011). In rat pups subject-
ed to hypoxic ischemia, treadmill exercise (30 min/day) pre-
served spatial learning and sensory-motor function (Choi et al.
2013; Park et al. 2013). In addition, we found that exercise can
be neuroprotective, reducing the loss of dopamine neurons in
the 6-OHDA-lesioned rat model of Parkinson’s disease
(Tillerson et al. 2001; Mabandla et al. 2004; Howells et al.
2005; Mabandla et al. 2009; Zigmond et al. 2009). Similarly,
Park et al. (2013) showed that treadmill exercise (30 min/day)
in the early adolescent period (4–16 weeks of age) reversed
dopamine neuron loss in rats subjected to neonatal ischaemic
brain injury.

Interaction between stress and exercise

Exercise during pregnancy has been shown to increase hippo-
campal plasticity in the offspring postnatally (Bick-Sander
et al. 2006). We observed that mild prenatal stress (7-hour
shift in the light/dark cycle, food deprivation for 24 h, and
handling involving moving to new cage and back) reduced
resilience. Rats that had been subjected to mild prenatal stress
during the third week of gestation suffered an increased loss of
tyrosine hydroxylase-positive cells (dopamine neurons) in the
substantia nigra of the midbrain in response to unilateral
infusion of 6-OHDA (5 μg) into the medial forebrain bundle
(Mabandla et al. 2009). In addition, rats that had been sub-
jected to mild prenatal stress did not produce the adaptive
decrease in the number of tyrosine hydroxylase-positive neu-
rons in the contralateral substantia nigra seen in non-stressed
rats (Mabandla et al. 2009). The increased loss of dopamine
neurons in the lesioned hemisphere was accompanied by
greater impairment of forelimb function controlled by
the lesioned hemisphere. Prenatal stress also reduced
the beneficial effect of exercise on forelimb sensory-
motor function (Mabandla et al. 2009). A similar inter-
action between stress and exercise was observed in the
initiation of movement of the affected forelimb of rats
that had been subjected to the early postnatal stress of
maternal separation (dam removed from the litter for 3 h/day

from postnatal day 2 to 14) (Mabandla and Russell 2010).
Similar to prenatal stress, maternal separation reduced the use
of the affected forelimb in the limb use asymmetry test. In
contrast, maternal separation did not reduce the beneficial
effects of exercise in this test, nor did it exaggerate the loss
of dopamine neurons in the substantia nigra ipsilateral to the
6-OHDA-lesioned medial forebrain bundle, as was found
after prenatal stress. These findings provided evidence that
the timing and the nature of the stressors are critical in deter-
mining the beneficial and/or adverse effects of stress on the
individual.

The purpose of subsequent studies was to address the
critical question of how stress experienced during the early
stages of development could alter brain function in ways that
reduce the beneficial effects of exercise in later years. We had
shown that stress experienced early in life reduced not only the
exercise-induced changes in neuron survival and behaviour,
but also caused changes in brain neuroplasticity. We found
that voluntary exercise stimulated the mitogen-activated pro-
tein kinase/extracellular signal-regulated protein kinase 1/2
(MAPK/ERK1/2) signalling pathway in the rodent hippocam-
pus and that this stimulation was blocked in rats that had been
subjected to the early life stress of maternal separation
(Makena et al. 2012). We also showed that maternal separa-
tion altered protein levels in the ventral hippocampus and
decreased proteins involved in structure, energy metabolism
and signalling in the prefrontal cortex of adult rats, and
that these changes were mostly reversed by exercise or
the stress of constant light exposure for 3 weeks during
adolescence (Daniels et al. 2012; Dimatelis et al. 2013).
Adolescence has been identified as a critical period
during which stress can regulate hippocampal plasticity.
Maternal separation followed by forced swim stress
during adolescence has been shown to increase hippo-
campal neurotrophin levels (Faure et al. 2006; 2007).
Restraint stress in adulthood potentiated the effects of
maternal separation by increasing depression-like behav-
iour, evidenced as increased time spent immobile in the
forced swim test (Marais et al. 2008). We hypothesized
that identification of the critical period, intensity, and
duration of stressors, as well as the brain areas and the
molecular mechanisms affected by early life stress,
would lead to a better understanding of the effect of
stress on the risk of developing neuropsychiatric and
neurodegenerative disorders later in life. We therefore
explored this further.

Voluntary exercise increased phospho-ERK1/2 (p-ERK1/
2) levels in both dorsal and ventral hippocampus in non-
separated rats. This effect of exercise was not observed in rats
that had been subjected to maternal separation in early life
(Makena et al. 2012), possibly due to upregulation of the
MAPK phosphatase, MKP-1 (also known as dual specificity
protein phosphatase 1), which removes the phosphate from p-
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ERK1/2 to inactivate it in stressed rats (Akbarian and Davis
2010). It is well established that exercise increases brain
derived neurotrophic factor (BDNF) in the brain, including
striatum and hippocampus (Cotman and Berchtold 2002;
Marais et al. 2009; Bechara et al. 2013; Fang et al. 2013).
Similar to our findings, Fang et al. (2013) showed that stress
(2 h/day immobilization for 7 days) in young adult rats,
reduced the increase in BDNF expression normally elicited
by 3×10-min bouts of 15 m/min treadmill exercise per day for
5 days and also decreased phosphorylation of the BDNF
receptor, Trk, and its target proteins in the PI3K/Akt pathway
(Akt, glycogen synthetase kinase-3 (GSK-3), mammalian tar-
get of rapamycin (mTOR)) leading to translation initiation and
protein synthesis. Immobilization stress also caused a reduc-
tion in the synaptic markers, synaptophysin, PSD-95,
neuroligin 1, andβ-neurexin, which was reversed by treadmill
exercise (Fang et al. 2013). Insulin-like growth factor-1 and
VEGF have also been associated with exercise ameliorating
the damaging effects of stress evidenced by improved cogni-
tion and increased hippocampal cell proliferation (Ding et al.
2006; Yau et al. 2012).

Exercise has been shown to increase hippocampal dendritic
spine density in adulthood possibly as a result of increased
negative feedback regulation of the HPA axis, decreasing
circulating corticosterone levels (Stranahan et al. 2007;
Wosiski-Kuhn and Stranahan 2012). Voluntary exercise
(4 weeks of wheel running) has been shown to protect the
hippocampus from the damaging effects of elevated cortico-
sterone by increasing hippocampal glucocorticoid receptor
levels and decreasing the sensitivity of mineralocorticoid re-
ceptors (Droste et al. 2003; 2007). Stress had the opposite
effect of reducing glucocorticoid receptor levels. The stress of
forced swimming increased corticosterone levels in the
exercising rats (Droste et al. 2007). In contrast, if exercised
rats were exposed to a novel environment, they showed a
much lower corticosterone response to acute stress than con-
trol animals (Droste et al. 2007). It appeared that in exercising
rats physically demanding stressors enhanced the glucocorti-
coid response to stressors while mild stressors, such as a novel
environment, gave rise to a blunted glucocorticoid response
(Droste et al. 2007). The blunted corticosterone response
corresponded with the exercising rats showing less anxious
behaviour in a novel situation (Droste et al. 2007). It is evident
that the health-promoting effects of exercise are mediated by
neural networks that are shaped by prior experience and which
lead to altered regulation of corticosterone release in response
to future stress. In support of mild stress being beneficial and
high-intensity exercise being stressful, mild-intensity (5–
10 m/min) treadmill exercise (30 min/day for 7 days) was
more effective than heavy-intensity (10–16m/min) exercise in
reducing prenatal stress-induced impairment of spatial learn-
ing in the MorrisWater Maze test (Kim et al. 2013). Similarly,
mild-intensity (8 m/min) exercise (30 min/day for 14 days)

improved spatial memory performance and hippocampal syn-
aptic plasticity in transient brain ischemic rats whereas high-
intensity (20 m/min) treadmill exercise had no effect on spatial
memory, hippocampal BDNF, synapsin-1, PSD-95, or den-
dritic arborization in rats subjected to transient middle cerebral
artery occlusion (Shih et al. 2013). Importantly, plasma corti-
costerone levels were elevated in the high-intensity exercise
group, suggesting that excessive exercise overstimulates the
HPA axis giving rise to the deleterious effects of glucocorti-
coids, while mild exercise, being a lesser stressor, is beneficial
to brain function (Shih et al. 2013).

Exercise also increased neurogenesis in adult rodent hip-
pocampus (Bechara et al. 2013; Gebara et al. 2013; Kim et al.
2013). Aging is associated with reduced neurogenesis, chron-
ic inflammation and increased microglial proliferation that can
be attenuated by exercise, thus suggesting that exercise can be
beneficial in old age (Kohman et al. 2012; Gebara et al. 2013).
Glucocorticoids have been shown to directly affect hippocam-
pal neuroplasticity, since corticosterone, administration to
older rats (at levels found in younger rats) that had undergone
adrenalectomy, reinstated hippocampal neurogenesis
(Cameron and McKay 1999).

Not only the intensity but also the duration of exercise
needs to be defined in order to realize the full structural and
functional benefit of exercise for brain function. Patten et al.
(2013) evaluated the effects of different periods of voluntary
running (3, 7, 14, 28, and 56 days) on both structural (cell
proliferation and maturation) and functional (in vivo LTP)
changes in the dentate gyrus of adult male Sprague–Dawley
hippocampus. They found that both short and long-term pe-
riods increased cell proliferation in the dentate gyrus of the
hippocampus. However, increases in neurogenesis required
longer-term exercise protocols. Increases in immature neurons
were not observed until animals had been running for a
minimum of 14 days. Similarly, short-term periods of wheel
running did not facilitate LTP in the dentate gyrus of adult
animals, and reliable increases in LTP were only observed
after 56 days of exercise. These results provided a greater
understanding of the duration of exercise needed to enhance
hippocampal dentate gyrus function. Furthermore, the results
indicated that the new neurons produced in response to exer-
cise do not contribute significantly to synaptic plasticity until
they mature (Patten et al. 2013).

Mild stressors are health-promoters

Mild repeated stressors have been suggested to be health-
promoting (Rothman and Mattson 2013) and there is some
evidence that the repeated mild stress of maternal separation
can have beneficial effects on cognitive function in rats
(Makena et al. 2012). A mild stressor that is frequently
overlooked in animal studies is the stress of handling.
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Silveira et al. (2011) showed that early handling increases the
ability to cope with chronic variable stress in adulthood.
Neonatally-handled rats were less susceptible to developing
depression-like behaviour. Intermittent energy restriction has
been suggested to be central to the beneficial effects of exer-
cise on the brain.

Rothman and Mattson (2013) proposed that intermittent
dietary energy restriction, exercise, and cognitive challenges
would increase BDNF production with subsequent activation
of the PI3K/Akt signalling pathway, leading to DNA transla-
tion and increased synthesis of neuroprotective trophic fac-
tors, protein chaperones, anti-apoptotic proteins, anti-oxidant
enzymes, and DNA repair enzymes on the one hand, and
neuroplasticity resulting from increased synthesis of trophic
factors, glutamate receptors, and calcium-binding proteins on
the other. All of these effects resulting from increased BDNF
levels were suggested to protect the brain from developing a
range of neurological disorders including depression, anxiety,
stroke, Parkinson’s and Alzheimer’s disease (Rothman and
Mattson 2013).

Conclusion

In this brief summary of recent literature on the impact of
stress and exercise on the normal and abnormal brain we have
focused in large part on work performed in South Africa. We
showed that mild pre- or postnatal stress can increase the
vulnerability of dopamine neurons to toxic insult. We also
showed that stress experienced in the early stages of develop-
ment reduced not only the exercise-induced changes in neuron
survival and behaviour, but also the exercise-induced changes
in brain neuroplasticity. We found that voluntary exercise
stimulated the MAPK/ERK1/2 signalling pathway in the ro-
dent hippocampus and that this stimulation was blocked in
rats that had been subjected to the early life stress of maternal
separation. We have argued that a full appreciation of the
effects of stress and exercise – as well as their interactions –
requires a consideration of the characteristics of both condi-
tions, including their nature, duration, intensity, and the age at
which exposure takes place. We have also pointed out that
exercise and particularly stress can either promote or impair
health. Further research, including the translation of studies in
laboratory animals to humans, will be required to fully under-
stand these critical variables.
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