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Synergistic tonic and phasic activity of the locus coeruleus
norepinephrine (LC-NE) arousal system is required
for optimal attentional performance
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Abstract A certain level of arousal is required for an indi-
vidual to perform optimally, and the locus coeruleus norepi-
nephrine (LC-NE) system plays a central role in optimizing
arousal. Tonic firing of LC-NE neurons needs to be held
within a narrow range of 1–3 Hz to facilitate phasic firing of
the LC-NE neurons; these two modes of activity act syner-
gistically, to allow the individual to perform attentional tasks
optimally. How this information can be applied to further
our understanding of psychiatric disorders has not been fully
elucidated. Here we propose two models of altered LC-NE
activity that result in attentional deficits characteristic of
psychiatric disorders: 1) ‘hypoaroused’ individuals with e.g.
attention-deficit/hyperactivity disorder (ADHD) have decreased
tonic firing of the LC-NE system, resulting in decreased cortical
arousal and poor attentional performance and 2) ‘hyperaroused’
individuals with e.g. anxiety disorders have increased tonic
firing of the LC-NE system, resulting in increased cortical
arousal and impaired attentional performance. We argue that
hypoarousal (decreased tonic firing of LC-NE neurons) and
hyperarousal (increased tonic firing of LC-NE neurons) are

suboptimal states in which phasic activity of LC-NE neurons
is impeded. To further understand the neurobiology of atten-
tional dysfunction in psychiatric disorders a translational ap-
proach that integrates findings on the LC-NE arousal system
from animal models and human imaging studies may be useful.

Keywords Hypoarousal . Hyperarousal . Attention-deficit
hyperactivity disorder . Anxiety

Background

It is commonly accepted that an individual who is ‘hypoar-
oused’ or ‘hyperaroused’ will not perform optimally in cogni-
tive and behavioural tasks. This view stems from the empirical
work of Yerkes and Dodson (1908) on a ‘dancing mouse’
model in which they determined the time it took for an animal
to demonstrate avoidance behaviour by varying the intensity of
an electrical pulse (Yerkes and Dodson 1908). These data were
subsequently developed into what is commonly known as the
Yerkes-Dodson theory (Winton 1987), in which performance is
a function of the level of arousal. The Yerkes-Dodson theory
states that for an individual to attain optimal performance on
cognitive and behavioural tasks, the individual’s level of arous-
al needs to be held within a narrow ‘range’ (Fig. 1a). There are
several central arousal systems which arise from nuclei in the
brainstem (Moruzzi and Magoun 1949), one of these being the
locus coeruleus-norepinephrine (LC-NE) system.

The LC-NE system is the sole source of norepinephrine
(NE) in the cortex (Aston-Jones et al. 1999; Bunsey and
Strupp 1995; Foote et al. 1980; Jentsch 2005; Southwick et
al. 1999). LC-NE neurons can be distinguished by their char-
acteristic tonic and phasic modes of firing. Tonic firing of LC-
NE neurons can in turn be identified by its diurnal variation of
activity, which is related to the state of cortical arousal of the
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individual (Aston-Jones et al. 2001). Thus during alert wake-
fulness the LC fires tonically in a range of 1–3 Hz and is
associated with increased cortical arousal, while during deep
sleep the LC does not fire tonically and there is decreased
cortical arousal (Aston-Jones and Bloom 1981a, b; Berridge
and Foote 1991; Foote et al. 1980; McCormick and Bal 1994).

Phasic firing of LC-NE neurons occurs during processes
that involve attention, such as those required to perform vol-
untary behavior. Attention was early on elegantly described by
William James as “taking possession by the mind in clear and
vivid form, from one out of what seems several simultaneously
possible objects or trains of thought” (James 1890). This
description of active attention has been further developed to
describe the individual processes that are required: (1) alerting,
(2) orienting, and (3) executive control (Coull 1998; Posner et
al. 2006). The LC-NE system plays a particularly important role
in alerting and orienting; for example when a new stimulus is
presented, the firing rate of LC-NE neurons changes from tonic
firing to phasic bursts of activity, which enhance the ‘signal’ to
‘noise’ ratio. The tonic activity of the LC-NE system is then
resumed after a refractory period (Aston-Jones and Bloom
1981a, b; Aston-Jones et al. 1991a, b; 1997; Bouret and Sara
2005; Grant et al. 1988; Rajkowski et al. 1994; Sara et al. 1995).

Attentional processes are reflected in electrophysiological
recordings of electroencephalographic (EEG) event-related
potentials (ERPs), specifically the P300 wave component.
The production of the P300 is considered to reflect phasic
activity of the LC-NE system (Nieuwenhuis et al. 2005).
Lesions of the LC have been shown to decrease the amplitude
of the P300 (Pineda andWesterfield 1993). The P300 is one of
the distinct positive wave components, occurring approxi-
mately 300 msec post stimulus presentation, in the ERP wave-
form. The P300 is in turn comprised of fronto-central P3a and
the parietal P3b components. The P3a has been strongly
associated with ‘orientating’ responses, i.e. occurs predomi-
nantly in response to novelty and infrequent stimuli. The P3a
then dissipates leaving the P3b component (Courchesne et al.
1975; Yamaguchi and Knight 1991), which has been strongly
associatedwith ‘cortical updating’, i.e. the cortical representation

of a task is updated continuously during each trial (Donchin and
Coles 1988; Sokolov 1960; 1963).

Although the production of the P300 wave component
reflects phasic activity of the LC-NE system, it is also affected
by tonic activity of this system. Thus, the extent to which an
individual updates the cortical representation of a task is de-
pendent not only on changes in level of arousal over a time
scale of seconds to minutes (phasic), but also on changes in
arousal over a time scale fromminutes to hours (tonic) (Hockey
1986; Hockey 1983; Polich and Kok 1995) The intensity of
phasic LC firing has been related to cortical updating when
valuable information and novelty are being processed (Aston-
Jones et al. 1997; Foote et al. 1980). These data support the
requirement for synergy between tonic and phasic modes of
LC-NE firing for optimal performance, during tasks that require
attention.

HYPOTHESIS 1: Balance between tonic and phasic
firing of the LC-NE system permits optimal
performance during tasks that require attention

From the above data we propose the following: (1) Optimal
performance occurs when arousal is optimal, as per Yerkes
and Dodson’s theory (Winton 1987) (Fig. 1a). (2) Tonic firing
of the LC-NE arousal system needs to be held within the range
of 1–3 Hz to facilitate optimal arousal (Fig. 1b). (3) Phasic
firing of the LC-NE neurons occurs when tonic firing of the
LC is held within the 1–3 Hz range, this results in optimal
attentional performance (Fig. 1c). The release of NE in the
cortex, through phasic activity of LC-NE neurons has been
shown to enhance the ‘signal’ to ‘noise’ ratio (Berridge and
Foote 1994; Moxon et al. 2007; Waterhouse and Woodward
1980). Thus, orientation to a new stimulus requires suppres-
sion of non-informative information and enhancement of rel-
evant information processing, which is achieved through
synergistic tonic and phasic firing of LC-NE arousal system.

Despite the extensive empirical evidence relating the LC-
NE system to arousal and attention in electrophysiological

Fig. 1 Diagrammatic representation of the first hypothesis a Yerkes
and Dodson theory that relates performance to the level of arousal, as
an inverted-U. b Tonic firing of LC-NE neurons needs to be held
within the 1–3 Hz range, which marks the range of arousal that will

allow optimal performance. c Phasic firing of the LC-NE system
occurs optimally when the tonic firing of the LC is within the 1–
3 Hz range
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experiments in animals and humans, the application of these
data to models of psychiatric disorders that present with
dysfunction in arousal and attention has not yet been fully
undertaken. Here we develop the hypothesis that integration
of tonic and phasic firing of the LC-NE system is needed for
optimal performance, by considering empirical evidence on
the activity of the LC-NE system in the context of dysfunc-
tional arousal and attention.

HYPOTHESIS 2: Attention-deficit/hyperactivity
disorder is a model of ‘hypoarousal’ resulting
from decreased tonic activity of the LC-NE system

Attention-deficit/hyperactivity disorder (ADHD) is one of the
most common childhood psychiatric disorders (Skounti et al.
2007). The main characteristics of ADHD include inability to
sustain attention, impulsivity, and hyperactivity (Barkley 1997;
Maedgen and Carlson 2000). ADHD has also been associated
with conduct disorder and oppositional defiant disorder
(Maedgen and Carlson 2000; Solanto et al. 2009). ADHD
has been associated with decreased arousal, as measured pe-
ripherally by decreased skin conductance (Beauchaine et al.
2001; O'Connell et al. 2004). ADHD has also been associated
with conduct disorder and oppositional defiant disorder
(Maedgen and Carlson 2000; Solanto et al. 2009). There is
much controversy regarding the diagnosis/subtyping of
ADHD, including the under diagnosis of childhood post-
traumatic stress disorder which presents with similar behav-
ioural attributes, however the individual suffering from post-
traumatic stress disorder is ‘hyperaroused’ and presents with
avoidance behaviours, a key feature of anxiety disorders
(Weinstein et al. 2000). Furthermore, cortical hypoarousal in
ADHD is reflected in increased low frequency/decreased high
frequency spontaneous cortical activity (i.e. increased cortical
theta (θ, 4–7 Hz) band power and decreased cortical beta (β,
15–30 Hz) band power) (Clarke et al. 2001, 2002, 2007).

Indirect evidence of disrupted tonic and phasic activity of
the LC-NE system in ADHD comes from ERP studies show-
ing reduced amplitude of the P300 component of the EEG
(Alexander et al. 2008), specifically over the parietal cortex
(Johnstone and Barry 1996; Lazzaro et al. 2001) during per-
formance of a cognitive (auditory odd-ball) task. In addition,
individuals with ADHD showed increased fronto-central P300
amplitudes in response to a novel target (e.g. in response to no-
go targets) (Wild-Wall et al. 2009). Similar findings have been
reported for individuals with schizophrenia or individuals who
are psychopathic (Kiehl et al. 2000). Both studies assigned the
increased fronto-central P300 amplitude to decreased cortical
inhibition of frontal attentional networks (Kiehl et al. 2000;
Wild-Wall et al. 2009), which similarly suggests dysfunctional
regulation of frontal neurons by the LC-NE system. This may
account for the variability in performance by these individuals

resulting from their increased fronto-central P3a amplitude
(associated with ‘orientating’ responses) during experience of
the novelty of the task to the decreased parietal P3b amplitude
(associated with cortical updating) due to the monotony of the
task and an inability to maintain a cortical representation
required from the task.

Reduced tonic activity of the LC-NE system as measured
by decreased cortical arousal may result in ineffectual phasic
firing of the LC-NE system. Decreased synergy between tonic
and phasic firing of LC-NE neurons may account for the
impulsivity in individuals with ADHD, as measured by their
inability to withhold or inhibit a response (Aron and Poldrack
2005). Individuals with ADHD appear to respond reflexively
(Beauchaine et al. 2001; O'Connell et al. 2004) and are unable
to expend sufficient effort or increase the level of cortical
arousal necessary to reduce impulsivity and maintain attention
through enhancement of their level of arousal (Beauchaine et
al. 2001; Howells et al. 2010; O'Connell et al. 2004).

Awidely used animal model of ADHD is the spontaneously
hypertensive rat (SHR). SHR was initially developed from the
Wistar-Kyoto rat (WKY) for the study of adult hypertension
(Okamoto and Aoki 1963). This adult hypertension is a per-
sistent characteristic of the strain (152±6 mmHg) in compar-
ison to its ‘standard’ normotensive control, Wistar-Kyoto rat
(WKY, 102±4 mmHg) (Kaehler et al. 2004; Singewald et al.
2000). In later years the SHR was found to exhibit character-
istics of ADHD-C (Howells et al. 2009; Kaehler et al. 2004;
Knardahl and Sagvolden 1979; Rogers et al. 1988; Wultz et al.
1990). These characteristics include poor sustained attention,
as measured by errors in commission and omission, and high
levels of impulsivity, as measured by increased exploratory
behaviour and decreased anxiety-like behaviours. In addition,
SHR have increased locomotor activity, particularly during
pre-adolescence, comparative with the presentation of ADHD
in children (Howells et al. 2009; Marti and Armario 1996; van
den Bergh et al. 2006).

Empirical evidence supports dysfunctional regulation of
tonic and phasic modes of firing of the LC-NE system in
SHR. Attentional performance in SHR is improved by psy-
chostimulant treatment, which increases the extracellular con-
centration of NE (Sagvolden et al. 1992; Wultz et al. 1990).
Furthermore α2-adrenoreceptor (presynaptic autoreceptors that
attenuate the release of NE) function is reduced in SHR (Russell
et al. 2000; Russell and Wiggins 2000; Tsuda et al. 1994), and
expression of α2-adrenoreceptors is reduced (Olmos et al.
1991). Drugs that are effective in improving attentional perfor-
mance either primarily increase extracellular NE concentrations
(Sagvolden et al. 1992) or improve autoreceptor function, such
as was found after treatment with anα2-adrenoreceptor agonist,
guanfacine (Sagvolden 2006). Decreased autoreceptor function
has been related to the behavioural characteristics of SHR
(Howells et al. 2009; Leibowitz et al. 1989; Reyes et al. 2006;
Valentino and Van Bockstaele 2008). These data indicate that
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SHR have decreased extracellular concentrations of NE and
suggest low tonic LC-NE firing. This may account for poor
attentional performance as locally released glutamate-stimulated
release of NE, through either direct infusion of glutamate or a
behavioural stressor, is greater in SHR than in several control rat
strains and for several brain areas (Howells and Russell 2008;
Howells et al. 2009; Kaehler et al. 2004; Kawasaki et al. 1991;
Leibowitz et al. 1989; Reyes et al. 2006; Russell et al. 2000;
Russell andWiggins 2000; Singewald et al. 2000; Valentino and
Van Bockstaele 2008). This increased stimulated release of NE
is possibly compensatory; we suggest that it is a result of low
tonic firing of LC-NE neurons.

From the above data we propose: (1) Individuals who are
‘hypoaroused’ (i.e. individuals with ADHD and the SHR a
widely accepted animal model of ADHD) will perform poorly
in tasks that require attention. (2) Tonic firing of the LC-NE
arousal system in such individuals is low or decreased, not
held within the optimal range of 1–3 Hz, during wakefulness.
This results in a low level of cortical arousal. (3) When phasic
firing of the LC-NE neurons occurs, enhancement of the
‘signal’ is achieved with high levels of novelty and acute
stressors; however maintenance of the ‘signal’ is not achieved.
This results in poor attentional performance as well as related
deficits in inhibitory processes and reflexive responding
(Fig. 2).

HYPOTHESIS 3: Anxiety disorders as a model
of ‘hyperarousal’ resulting from increased tonic
activity of the LC-NE system

Anxiety disorders are the most prevalent psychiatric disorders
in community studies (Kessler et al. 2007; Wittchen and

Jacobi 2005). The anxiety disorders share a common clinical
characteristic; they all present with excessive avoidance
behaviours (Mineka and Zinbarg 2006). Excessive avoidance
behaviours are in turn reflected in deficits in attention, as
measured by increased arousal in response to target stimuli
that overwhelms attentional networks and leads to errors of
omission (Castaneda et al. 2008; Li et al. 2011; Waters et al.
2009). Cortical hyperarousal in individuals with anxiety dis-
orders can be identified by decreased low frequency/increased
high frequency spontaneous cortical activity (i.e. decreased
cortical theta (θ, 4–7 Hz) band power and increased cortical
beta (β, 15–30 Hz) band power) (Buchsbaum et al. 1985;
Grin-Yatsenko et al. 2009, 2010; Matousek 1991).

Indirect evidence of altered tonic and phasic modes of LC-
NE activity is derived from ERP studies of individuals with
anxiety disorders which show reduced amplitude of the pari-
etal P300 component (Bauer et al. 2001; Boudarene and
Timsit-Berthier 1997). Individuals with anxiety disorders
show deficits in the P300 wave component (decreased P300
amplitude) during presentation of target stimuli, but increased
P300 amplitude during non-target information processing.
The level of information processing is greater than the response
to target stimuli (increased P300 amplitude) (Li et al. 2011).
Peripheral information is given greater importance than the
‘signal’, with ineffectual suppression of the ‘noise’ and
decreased attentional performance.

A range of findings points towards dysfunction of the LC-
NE system in the anxiety disorders. Disrupted ultrastructure
of the LC-NE nucleus, decreased neuron counts, increased
α2-adrenoreceptor expression and sensitivity, and down-
regulation of NE re-uptake transporters have for example
been reported in post-mortem studies of individuals with
anxiety disorders (Arango et al. 1996; Baumann et al. 1999;
Bracha et al. 2005; Issidorides 1990; Klimek et al. 1997;

Fig. 2 Diagrammatic representation of the second hypothesis. Indi-
viduals that are ‘hypoaroused’ do not perform optimally (left side of
inverted-U), tonic firing of the LC-NE system is low or decreased and
not held within the 1–3 Hz range during wakefulness (left pointing
arrows), when phasic firing of the LC occurs, optimal behavioural
performance is not possible and the individuals appear inattentive and
impulsive

Fig. 3 Diagrammatic representation of the third hypothesis. Individu-
als that are ‘hyperaroused’ do not perform optimally (right side of
inverted-U), tonic firing of the LC-NE system is higher or increased
and not held within the 1–3 Hz range during wakefulness (right
pointing arrows), when phasic firing of the LC occurs optimal behav-
ioural performance is not possible and the individuals appear inatten-
tive and display avoidant behaviours
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Ordway et al. 2003; Southwick et al. 1999). These data
suggest that the LC-NE system may have been down-
regulated in an attempt to compensate for the lack of negative
feedback required to re-establish synergy between the tonic
and phasic modes of firing of LC-NE neurons by decreasing
tonic activity.

The Wistar Kyoto rat (WKY/NCrl) has been proposed as a
model of anxiety disorders (Jiao et al. 2011; McAuley et al.
2009). Indeed this strain has been used for several years as the
comparator strain for SHR (Okamoto and Aoki 1963). How-
ever, when WKYanimals were compared to other rat strains it
became apparent that they also had deficits in attentional per-
formance (Roessner et al. 2010; Sagvolden et al. 2009). Atten-
tional performance deficits, or errors of omission, in WKY rats
are, however, related to increased avoidance behaviours, as
measured by decreased exploratory behaviour, increased
anxiety-like behaviours, and decreased locomotor activity
(Armario et al. 1995; Baum et al. 2006; Braw et al. 2006;
Howells et al. 2009; Lahmame et al. 1997; Malkesman et al.
2005; Marti and Armario 1996; Pardon et al. 2002; Ramos
et al. 1997; Sagvolden et al. 1993; Sukhanov et al. 2004;
Tejani-Butt et al. 2003).

Empirical evidence supports dysfunctional regulation of
tonic and phasic modes of firing of LC-NE neurons in
WKY. Attentional performance of WKY is improved by en-
hancing extracellular concentrations of NE by blocking NE
reuptake and stimulating α2-adrenoreceptors (Tejani-Butt et
al. 2003). NE release from LC-NE neurons stimulated by
either direct infusion of glutamate or a behavioural stressor
is decreased in WKY (Pardon et al. 2002).

From the above data we propose (1) individuals who are
‘hyperaroused’ (i.e. individuals with anxiety disorders and the
WKYa promising model of anxiety disorders) perform poorly
on tasks of attention. (2) Tonic firing of the LC-NE arousal
system in such individuals is high or increased, not being held
within the optimal 1–3 Hz range during wakefulness. This
results in a high level of cortical arousal and perpetuation of
hypothalamic pituitary axis activity. (3) When phasic firing of
the LC-NE neurons occurs, enhancement of the ‘signal’ and
suppression of ‘noise’ is not effectual, as high tonic levels of
NE may have down-regulated postsynaptic β-adrenoceptors.
Poor attentional performance is evidenced in part by avoidance
behaviours, and there is an absence or attenuated response of
the LC-NE system to novelty and stressors (Lukaszewska and
Niewiadomska 1995) (Fig. 3).

Conclusions and implications

In the present paper, we propose a model of the LC-NE
arousal system that explains deficits in attentional perfor-
mance in individuals with different psychiatric disorders.
The LC-NE system fires in twomodes, tonic and phasic. These

two modes of firing need to work synergistically. We propose
that ADHD, a disorder of ‘hypoarousal’, presents with low
tonic firing of the LC-NE system while anxiety disorders,
conditions characterized by ‘hyperarousal’, present with high
tonic firing of the LC-NE system. Either low or high tonic
firing of the LC-NE system results in ineffectual phasic activity
of the LC-NE system and results in attentional deficits and
poor performance.

We would argue that these hypotheses allow an integration
of data from multiple studies, including both human and
animal research. The implications of the proposed hypotheses
address several methodological aspects that have been negat-
ed in attempts to understand the attentional dysfunctions in the
psychiatric disorders. (1) The neurophysiology of psychiatric
disorders including the electrical signatures and neurochemi-
cal signatures should not be looked at in isolation. (2) We are
now able to conceptualize the interactions between state (tonic)
and trait (phasic) aspects of electrical and neurochemical prop-
erties of these systems, afforded by brain imaging techniques
in humans and with the use of well characterized animal
models of the disorder in study.We suggest that this integrative
approach, albeit non-linear, is capable of providing greater
insight to psychiatric disorders, and may serve as the next step
in moving forward our understanding of the neurobiology of
psychiatric disorders, including their attentional dysfunction.
We hope that this paper provides some impetus for that work to
succeed.
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