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Abstract Evidence from the literature indicates that mito-
chondrial dysfunction occurs in schizophrenia and other
psychiatric disorders. To produce an animal model that
simulates psychotic symptoms analogous to those seen in
schizophrenic patients, sub-anesthetic doses of N-methyl-D-
aspartate (NMDA) receptor antagonists (such as ketamine)
have been used. The aim of this study was to evaluate
behavioral changes and mitochondrial dysfunction in rats
administered ketamine for 7 consecutive days. Behavioral
evaluation was performed using an activity monitor 1, 3 and
6 h after the last injection. The activities of mitochondrial
respiratory chain complexes I, II, I-Ill and IV in multiple
brain regions (prefrontal cortex, striatum and hippocampus)
were also evaluated. Our results showed that hyperlocomo-
tion occurred in the ketamine group 1 and 3 h after the last
injection. Stereotypic movements were elevated only when
animals were evaluated 1 h after receiving ketamine. In
addition, we found that ketamine administration affects the
respiratory chain, altering the activity of respiratory chain
complexes in the striatum and hippocampus after 1 h, those
in the prefrontal cortex and hippocampus after 3 h and those
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in the prefrontal cortex and striatum 6 h after the last
administration of ketamine. These findings suggest that
ketamine alters the behavior of rats and changes the activity
of respiratory chain complexes in multiple brain regions at
different time points.

Keywords Mitochondrial respiratory chain - Behavior-
Ketamine - Schizophrenia

Introduction

Schizophrenia is a heterogeneous neuropsychiatric disorder
that consists of positive symptoms (delusions and halluci-
nations), negative symptoms (blunted affect and social
withdrawal) and cognitive impairments (Bowie and Harvey
2006). It typically manifests in adolescence or early
adulthood and continues to produce symptoms to varying
degrees throughout the patient’s lifetime (Tien and Eaton
1992). The estimated prevalence of this disease is 1.0-1.5%
of the world population, and only half of those patients are
likely to obtain treatment (De Padua et al. 2005).

The complete pathophysiology of schizophrenia remains
unknown, but it is clear that anatomical and biochemical
brain alterations are present during its genesis (Swerdlow et
al. 1998). The disorder usually appears due to a combina-
tion of genetic and environmental factors, such as neuro-
development, environmental stresses/stimuli and the age at
which such stimuli are received, resulting in a complex
nervous disorder (Farber et al. 1995; Lewis and Lieberman
2000). The clinical manifestations of schizophrenia include
delusions, hallucinations and agitation, which are caused by
changes in sensory perception; as well as cognitive impair-
ments such as difficulties in attention, memory and
behavior, which interfere with interpersonal relationships
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and work. Lack of motivation, social isolation, blunted
affect, impulsivity and a low sense of responsibility may be
involved in this disorder, creating a negative impact on the
patient’s quality of life (Bowie and Harvey 2006; Robertson
et al. 2000).

Previous studies have demonstrated an imbalance in
several neurotransmitter systems in the pathophysiology of
schizophrenia (Marcotte et al. 2001; Wood et al. 2009). The
dopaminergic system is the oldest pathway studied in
schizophrenia, and a hypothesis of dopaminergic hyper-
function has arisen wherein the positive symptoms (delu-
sions and hallucinations) are triggered by the increased
occupancy of D, receptors by dopamine (Bressan and
Pilowsky 2003). This theory also derives from the fact that
the first antipsychotic drugs were dopaminergic antagonists
that demonstrated efficacy against the positive symptoms of
schizophrenia, as well as against amphetamine-induced
psychotic symptoms (dopamine release inducers). It has
been observed that the chronic use of antipsychotic drugs is
very effective at treating the positive symptoms, but not the
negative cognitive and affective symptoms (Meltzer et al.
1989; Meyer 2007; Nikam and Awasthi 2008).

In addition to dopamine, glutamate has been widely
studied in schizophrenia because it is well-known as one of
the main neurotransmitters involved in its pathophysiology.
Among the scientific evidence concerning the involvement
of glutamate in the pathophysiology of schizophrenia is the
finding of decreased levels of glutamate in the cerebrospinal
fluid of schizophrenic patients and the fact that phencyclidine
(PCP) and ketamine, two N-methyl-D-aspartate (NMDA)
glutamatergic receptor antagonist drugs, cause severe symp-
toms similar to those observed in schizophrenia (Hitri et al.
1993; Park and Holzman 1992).

Given this clinical and neurobiological diversity, the use
of animal models is appropriate for studying intracellular
changes and behavior alterations that may be involved in
schizophrenia. The NMDA receptor antagonist model is
being used as an animal model for schizophrenia, generally
by the administration of substances such as PCP and
ketamine (Krystal et al. 1994). Ketamine is an anesthetic
drug that acts as an antagonist of NMDA. Several reports in
the literature indicate that sub-anesthetic doses of ketamine
can produce hallucinations and paranoia in humans, effects
that are similar to the positive symptoms characteristic of
schizophrenia; some reports have also demonstrated that
this model reproduces both the positive and negative
symptoms of this disorder, as well as its cognitive impair-
ments (Hunt et al. 2006; Littlewood et al. 2006; Takeyama
et al. 2000).

Along with the imbalance in neurotransmitter systems,
some lines of evidence indicate a role of mitochondrial
dysfunction in schizophrenia, which also contributes to
neurodegenerative diseases such as Alzheimer’s, Huntington’s
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and Parkinson’s disease (Di Donato 2000). This is due to the
fact that high-energy-demand tissues such as the brain
contain a greater number of mitochondria and therefore are
more vulnerable to energy metabolism impairment (Boekema
and Braun 2007). In this context, Reddy (2008, 2009) has
already shown that mitochondria are an important target in
the treatment of Alzheimer’s and other neurodegenerative
diseases.

Mitochondria are responsible for several essential
processes in the development and normal function of
the body, including energy production, apoptosis, and the
generation of reactive oxygen species. Therefore, mito-
chondrial dysfunction can lead to a failure in one or
more of these factors and thus to abnormal cellular
activity or death (Ben-Shachar 2002).

Mitochondrial pathology resulting from biochemical
cascade dysfunction and the associated damage to the
electron transport chain has been suggested to be an
important factor in the pathogenesis of a range of
neuropsychiatric disorders such as bipolar disorder,
depression and schizophrenia (Fattal et al. 2006; Rezin
et al. 2008).

Considering that mitochondrial dysfunction may be
involved in the pathophysiology of neuropsychiatric dis-
orders, this study aimed to induce a chronic animal model
of schizophrenia in order to assess both the mitochondrial
respiratory chain and the resulting behavioral changes.

Materials and methods

This study was approved by the Ethics Committee (Ethics
Committee in Animal usage of the Universidade do
Extremo Sul Catarinense), and it was performed in
accordance with the Brazilian Society for Neuroscience
and Behavior’s (SBNeC) recommendations for animal care.

Animals

Adult male Wistar rats weighing 250-300 g were
obtained from our breeding colony. The animals were
housed five to a cage with food and water available ad
libitum and were maintained on a 12-h light/dark cycle
(lights on at 7:00 am).

Animal model of schizophrenia

Symptoms of schizophrenia were induced by chronic sub-
anesthetic doses of 25 mg/kg of ketamine (Hunt et al. 2006;
Van Den Buuse et al. 2005). Ketamine was administered
once a day over seven consecutive days. The animals were
evaluated on the 7th day of treatment using the behavioral
tests described below and were divided into 4 groups:
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control (saline); 1, 3 and 6 h after the last injection. With
this chronic treatment we hoped to observe whether the
animals have cellular alterations even when their behavior
has returned to normal.

The rats were killed by decapitation after the behavioral
evaluation, and brain structures such as the prefrontal cortex,
striatum and hippocampus were dissected and rapidly frozen
at —80°C until the biochemical analysis. The animals were
evaluated at three times (1, 3 and 6 h) (Fig. 1); each time
included two groups of 10 animals each (Table 1).

Behavioral evaluation
Open-field task

The open-field evaluation was performed in a 50%25x
50 cm arena. Locomotor activity was measured for 60 min
using a computerized system (Activity Monitor—Insight
laboratory equipment, Ribeirdo Preto, SP). This equipment
monitored locomotor activity via the distance traveled (cm)
by the animal, dividing the evaluation time into blocks of
5 min. Locomotor activity was constantly monitored by a
system installed in the arena containing six parallel bars,
each of which contained 16 infrared sensors that detect the
rat’s exact position and movement, enabling a detailed
analysis of each animal’s behavior. Information detected by
the sensors is transmitted to a computer in which the
animal’s activity is recorded each 5 min by a dedicated
program (database: Open Source version Interbase 6.01).
The distance covered by the animal is considered to be the
sum of the changes in position monitored by the activity
arena; the software calculates the distance between two
locations, plus the previously traveled distances.

Stereotypy

Stereotypy is defined as rapid, repetitive, forward move-
ments (Battisti et al. 2000; Krystal et al. 1994). This

Fig. 1 Experimental design

parameter was analyzed at the same time and place as
hyperlocomotor activity. Stereotypy is considered by the
software as an unstable movement any time when repetitive
movements are recorded in sequential readings without
alterations in the animal’s mass center. The possible units of
measurement to be considered are mm (millimeters), cm
(centimeters) and in (inches).

Tissue and homogenate preparation

The animals were killed by decapitation 60 min after the
behavioral analyses. Brains were removed and prefrontal
cortex, cerebellum, hippocampus, striatum and cerebral cortex
were homogenized (1:10, w/v) in SETH buffer, pH 7.4
(250 mM sucrose, 2 mM EDTA, 10 mM Trizma base, 5
0 IU/ml heparin). Homogenates were centrifuged at 800 x g
for 10 min and the supernatants were kept at —70°C until
they were used for enzyme activity determination.

Respiratory chain enzyme activity

Complex I, or NADH dehydrogenase, was evaluated
using the method described by Cassina and Radi (1996)
by the rate of NADH-dependent ferricyanide reduction at
A=420 nm. Complex II activity was determined by the
method described by Fischer and colleagues (1985), and it
was measured by following the decrease in absorbance
due to the reduction of 2,6-DCIP at A=600 nm. Complex
I-III activity was measured as cytochrome c reduction
from succinate at A=550 nm and 37°C according to the
method of Birch-Machin and colleagues (1994). The
activity of cytochrome c oxidase (complex IV) was
assayed according to the method described by Rustin and
colleagues (1994), in which the decrease in absorbance
due to the oxidation of previously reduced cytochrome c at
A=550 nm is followed. The activity of the mitochondrial
respiratory chain complexes were calculated as nmol/min.
mg protein.

Evaluation of mitochondrial respiratory chain
activity
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Table 1 Subdivision of animals

3 h-time 6 h-time

according to time in the saline Times
and ketamine groups
1 h-time
Groups
1 (n=30) control (saline)
2 (n=30) ketamine (25 mg/kg)

control (saline) control (saline)

ketamine (25 mg/kg) ketamine (25 mg/kg)

Protein content

Protein content was determined by the method described by
Lowry and colleagues (1951) using bovine serum albumin
as a standard.

Statistical analysis

Data were analyzed by Student’s #-test using the program
SPSS (Statistical Package for the Social Sciences). In all
comparisons, the statistical significance was set at p<0.05.

Results

Animals that received ketamine injections for seven
consecutive days and were then evaluated at 1 h after the
last injection (7th day) presented a significant increase in
locomotor activity when compared to animals that received
saline. The evaluation period (1 h) was divided into blocks
of 5 min, as shown in Fig. 2. Animals in the ketamine
group that were evaluated 3 h after the last injection
presented a significant increase in locomotor activity in 5
and 15 min of monitoring compared to the saline group.
When the locomotor activity of the rats was evaluated 6 h
after the last injection, no significant differences were
detected between the saline and ketamine groups.

Stereotypic movements were significantly enhanced in
the ketamine group rats when evaluated at 1 h; however, no
difference was detected between the groups when the
animals were evaluated at 3 and 6 h (Fig. 3).

In the biochemical assays, we observed in the prefrontal
cortex that the activities of the mitochondrial respiratory
chain complexes II, I-III and IV did not differ 1 h after the
last ketamine administration, while different results were
found with complex I, which showed a statistically
significant increase. At the same time, in the striatum, the
data showed a significant increase in the activities of
complexes I, I-III and IV in rats that received ketamine
compared to those that received saline. In addition, in the
hippocampus, there was a statistically significant increase
in the activities of complexes [ and IV in animals from the
ketamine group. The other complexes of the respiratory
chain did not show any changes in this structure at this time

(Fig. 4).
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Fig. 2 Locomotor activity at 1, 3 and 6 h. Distance traveled (cm) by
rats subjected to behavioral evaluation was measured for 60 min using
a computerized system (Activity Monitor) following the last ketamine
administration. Comparison between the saline and ketamine groups.
Bars represent means + standard deviation (10 animals each group)
*p<0.05 according to Student’s z-test
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Fig. 3 Stereotypic evaluation at 1, 3 and 6 h. The number of
stereotypic movements by rats subjected to behavioral evaluation was
measured for 60 min using a computerized system (Activity Monitor)
following the last ketamine administration. Comparison between the
saline and ketamine groups. Bars represent means =+ standard
deviation (10 animals each group) *p<0.05 according to Student’s z-
test. Stereotypic movements at 1 h (F=3,252 dF=18), 3 h (F=1,34
dF=8), 6 h (F=0,05 dF=18)

In rats evaluated 3 h after the last ketamine administra-
tion, the prefrontal cortex presented a decrease in the
activities of complexes I and II in the ketamine group
relative to the saline group; however, there was no
alteration in the other complexes in this structure. In the
striatum, the activity of these complexes remained un-
changed, and there was no difference between the groups
(Fig. 5). The hippocampus also presented a decrease in the
activities of complexes I and II in rats from the ketamine
group.

The evaluation at 6 h after the last ketamine administration
indicated a decrease in the activities of complexes I and I-III in
the prefrontal cortex and an increase in the activity of complex
IV in animals in the ketamine group, while complex II

remained unchanged. In both the striatum and the prefrontal
cortex, we observed a decrease in the activities of complexes |
and I-1II in rats treated with ketamine; on the other hand, there
was an increase in the activity of complex IV. The activities of

Striatum
2000 - g
> £ l
=3
=% 1500 N
=5
= o
= E 1000
2 E
E2 500-
cs
0 - I_II
Saline Ketamine
Hippocampus
2000
. *
= £
23 i
= 5 1500
- 0 *
=0
= E 1000 -
s £
g 2 500-
Oe
0 =]
Saline Ketamine
Prefrontal Cortex
2000 *
> E
— £ 1500 l
3
= O
= g 1000 -
©
500
S E
0 - l'_'ll
Saline Ketamine
1 Complex | = Complex I-111
1 Complex Il B Complex IV

Fig. 4 Activities of mitochondrial respiratory chain complexes I, II, I-III
and IV (nmol/min.mg protein) in brain structures at the 1-h time point.
Comparison between the saline and ketamine groups. Bars represent
means + standard deviation (8 animals each group). *p<0.05 according to
Student’s #-test. Striatum: complex 1 (F=1,166 dF=7); complex II (F=
14,973 dF=8); complex III (F=3,842 dF=8); complex IV (F=4,248 dF=
8). Hippocampus: complex I (F=3,025 dF=8); complex II (#=0,388 dF=
8); complex III (F=1,613 dF=8); complex IV (F=3,782 dF=10).
Prefrontal cortex: complex I (F=11,177 dF=8); complex II (F=4,677
dF=10); complex III (F=2,148 dF=8); complex IV (F=7,743 dF=8)
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complexes II, I-III and IV in the hippocampus were not
significantly different between the saline and ketamine
groups, although there was a significant decrease in these
complexes in both groups (Fig. 6).
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Fig. 6 Activities of mitochondrial respiratory chain complexes I, I1, I-I1I
and IV (nmol/min.mg protein) in brain structures at 6 h. Comparison
between the saline and ketamine groups. Bars represent means + standard
deviation (8 animals each group) *p<0.05 according to Student’s z-test.
Striatum: complex 1 (F=1,281 dF=8); complex II (F=1,267 dF=10);
complex III (F=1,331 dF=12); complex IV (F=7,933 dF=8). Hippo-
campus: complex I (F=3,026 dF=8); complex Il (F=0,146 dF=10);
complex III (F=1,778 dF=14); complex IV (F=0,565 dF=10).
Prefrontal cortex: complex I (F=0,143 dF=8); complex II (F=2,370
dF=10); complex III (F=0,120 dF=10); complex IV (F=0,363 dF=10)
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leagues (2006) demonstrated that acute sub-anesthetic
doses of ketamine (10 and 25 mg/kg) produce dose-
dependent and specific localized changes in blood-
oxygenation-level-dependent regions such as hippocampal,
limbic and cortical areas. They also found that rats
subjected to a sub-anesthetic dose of 25 mg/kg presented
an increase in locomotor activity for up to 1 h and 50 min.

In this study, hyperlocomotion in rats that received
ketamine was verified by behavioral evaluation at 1 h after
the last injection, as well as in the first 15 min of the
evaluation at 3 h after the last injection. Thus, we observed
that ketamine-induced locomotor activity was present for up
to 3 h and 15 min after the last administration of ketamine.

According to the neurodevelopmental animal model of
schizophrenia, the administration of an NMDA receptor
antagonist alters the behavior of adult rats. Behavior
manifestations in rats that are related to the symptoms and
neurobiological markers of this model include aspects such
as hyperlocomotion, stereotypy, deficiency in information
processing, and impairment of cognitive functions and
social interactions (Bubenikova-Valesova 2008; Lipska and
Weinberger 2000).

This study showed that stereotypic movements, which
are rapid, repetitive, forward movements such as balancing
the head and rotational activities, were elevated only in the
evaluation at 1 h after the last injection. Ketamine has a
relatively short effect that lasts between 20 and 45 min. It is
distributed through tissues such as the heart, lungs and
brain, and it has an elimination time of 2-3 h (Maxwell
2005). This information may explain the finding that
hyperlocomotion was present in the more acute evaluation
period, as were the stereotypic movements.

Examination of the post mortem brain tissues of
schizophrenic patients has indicated that there are abnor-
malities in the functionality of the enzyme complexes of the
mitochondrial respiratory chain (Maurer and Moller 1997).
Mitochondrial dysfunction in schizophrenia includes
mitochondrial hypoplasia, dysfunction of the oxidative
phosphorylation system and altered mitochondrial-related
gene expression (Karry et al. 2004). Abnormal mitochon-
drial morphology, proportion and density have been
observed in the brains of schizophrenic individuals (Ben-
Shachar 2002).

These mitochondrial abnormalities of schizophrenia
were classified by Ben-Shachar and colleagues (2003) into
three categories: mitochondrial morphological aberrations,
oxidative phosphorylation dysfunction and genetic abnor-
malities (Ben-Shachar and Laifenfeld 2003). It is known
that ketamine can be used to reproduce an animal model of
schizophrenia (Bubenikova-ValeSova et al. 2008). One
study showed that ketamine administered for 5 days caused
changes in dopaminergic, glutamatergic and serotoninergic
neurotransmission. These changes produce an increase in

the D, hippocampal receptors, a decrease in glutamatergic
receptors in the prefrontal cortex, and increases in the
density of dopamine and serotonin transporters in the
striatum, hippocampus and prefrontal cortex (Becker et al.
2003).

Our results show that 1 h after the last ketamine
injection, the prefrontal cortex presented a change in the
activity of complex I. Karry and colleagues (2004) assessed
schizophrenic patients and controls in parallel for three
parameters, including mRNA and protein levels and
enzymatic activity in platelet mitochondria. The results
showed a significant correlation among complex I activity
and mRNA level, as well as among protein levels of the 24-
and 51- kDa subunits in the prefrontal cortex.

Acutely, ketamine produces an increase in positive
symptom expression, which may indicate a correlation with
increases in complex I. According to these results, Ben-
Shachar and colleagues (2007) observed that patients with
high positive symptoms demonstrated an increase in
complex I within their platelets.

In the striatum, we detected increases in the activities of
complexes I and IV in the 1 h- evaluation. A study of
postmortem tissue investigating the possibility of brain
alterations in schizophrenia also showed that there was
mitochondrial dysfunction within the striatum, and it
additionally showed that schizophrenic patients presented
a decrease in energy metabolism in this structure (Kung and
Roberts 1999). We suggest that a compensatory mechanism
mediated by respiratory chain complexes I and IV may
have been activated to supply the energetic demand in this
structure. In the hippocampus, complexes I and IV also
showed a significant increase; however, in contrast to this
result, Cavelier and colleagues (1995) showed that the
activity of complex IV was significantly reduced in
postmortem brain tissue, suggesting that this decrease may
be due to a specific deficit in the subunits of complex IV or
it may reflect a general decrease in mitochondrial capacity
in oxidative phosphorylation. We suggest that the enhanced
activity of the mitochondrial respiratory chain complexes
1 h after the last administration of ketamine reflects the
necessity of increasing the electron transporters to supply
the energetic demands of cellular function.

In the prefrontal cortex and hippocampus, the enzymatic
activity of complex II at 3 h was significantly lower in the
ketamine group than in the saline group. This suggests the
possibility that a late effect of the ketamine due to chronic
treatment and impairment may have been imparted to these
structures. A study using neuroimaging techniques showed
a decrease in the volume and number of mitochondria in
schizophrenic patients (Uranova et al. 2001). Studies have
also indicated that mitochondrial dysfunction may increase
levels of calcium, thereby inducing pro-apoptotic stress,
and that this dysfunction can also influence the apoptotic
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mechanisms present in schizophrenia (Karry et al. 2004).
Complex I showed a significant increase compared with the
control group, which suggests that the effect of ketamine
persists in the hippocampus and the prefrontal cortex 3 h
after its administration.

Considering that brain energy metabolism is altered in
schizophrenia, Duncan and colleagues (1998) demonstrated
that ketamine administration at 30 mg/kg increases metabo-
lism, as evidenced by a significant increase of 2-
deoxyglucose (2-DG) uptake in some brain areas including
the medial prefrontal cortex, frontal cortex, hippocampus,
nucleus accumbens and other areas. In this context, Bubber et
al. (2010) recently published a paper showing a reduction in
enzymes from the tricarboxylic acid cycle but an increase in
succinate dehydrogenase (SDH), which is a part of complex
II. This finding corroborates our results regarding increased
complexes from the respiratory chain, and it suggests that
there may be a compensatory effect caused by this primary
decrease. Our results showed that in the setting of chronic
ketamine administration, energy metabolism remained altered
3 h after the last injection, as evidenced by changes in
mitochondrial respiratory chain complexes I and II.

This study showed that 6 h after the last ketamine
administration, the prefrontal cortex, striatum and hippo-
campus showed changes in the transport of electrons in
complexes I, I-III and IV. Our results also indicate that in a
6 h-time frame, there was an increase in the activity of
complexes I and IV in the prefrontal cortex and striatum.
This increased activity of complexes I and IV has been
observed in neurodegenerative diseases (Strazielle et al.
2003), acting as a compensatory mechanism to promote
cellular and neuronal survival. Some studies have reported
changes in certain components of the mitochondrial
oxidative phosphorylation system in schizophrenia, such
as in the activities of complexes I and I-III in the
postmortem brain (Maurer and Moller 1997), the activity
of complex IV (Cavelier et al. 1995) and the activity of
complex II in the postmortem brain (Prince et al. 1997).

These alterations in the main enzymatic complexes of the
mitochondria in schizophrenia may be caused by cellular
reactions that result in hypoxia or by primary dysfunction of the
mitochondria in schizophrenic patients (Prabakaran et al. 2004).

In conclusion, our results show that the ketamine
treatment alters the behavior of animals and changes the
activity of the respiratory chain complexes in multiple
regions at different times. Chronic administration of ket-
amine triggers a number of alterations in rats that may be
compared to those seen in schizophrenic patients. An
animal model can be used to study the alterations and the
pathophysiological mechanisms of this disease. However, it
is important to conduct further studies aiming to investigate
other parameters of energy metabolism that may be
involved in the pathogenesis of schizophrenia.
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