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Abstract Although cognitive dysfunction manifested by severe memory and attention
deficits has been reported in up to 70% of cancer patients undergoing chemotherapy, the
mechanisms of this serious side effect have not been defined. In particular, it has not been
decisively resolved whether the dysfunction is attributable to the chemotherapy or to the
malignancy itself. In the present study we tested whether cognitive dysfunction can be
induced in an experimental setting by the administration of commonly used chemo-
therapeutics to rats. Female 10 month old Sprague–Dawley rats were injected
intraperitoneally with a combination of 2.5 mg/kg of adriamycin (ADR) and 25 mg/kg
of cytoxan (CTX). A total of four doseswere given at weekly intervals. The control group
was treated with saline only. No mortality and no apparent morbidity were observed in
either group. However, the chemotherapeutic treatment severely impaired memory
function of rats as measured by a passive avoidance test. This memory deficiency was
fully prevented by the administration of an antioxidant,N-acetyl cysteine (NAC) injected
subcutaneously three times a week at 200 mg/kg in the course of chemotherapeutic
treatment. These results indicate that chemotherapeutic agents alone, i.e., in the absence
of malignancy, damage the brain resulting in memory dysfunction. Moreover, the
results strongly indicate that the damaging effect is mediated by oxidative stress, as
memory dysfunction is preventable by the co-administration of NAC.
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Introduction

Chemotherapy with the combination of ADR (or doxorubicin) and CTX (or
cyclophosphamide) is widely used as an adjuvant treatment in cancer patients
(Goldhirsch et al. 2003). Unfortunately, cognitive dysfunction manifested by severe
memory and attention deficits in up to 70% of patients is a serious side effect of
chemotherapy (Ahles et al. 2002; Brezden et al. 2000; Schagen et al. 1999; van Dam
et al. 1998; Wefel et al. 2004b). Moreover, only about half of affected patients show
long-term improvement (Wefel et al. 2004b). However, the mediators of cognitive
dysfunction have not been defined. In addition, it has not been decisively resolved
whether the dysfunction is a bona fide effect of chemotherapy or is instigated, at
least partially, by the malignancy itself (Meyers et al. 2005; Wefel et al. 2004a).

Oxidative stress is the chief candidate among several possible mechanisms for
chemotherapy-related cognitive dysfunction (for review see Ahles and Saykin 2007).
Different reports have shown decreases in antioxidant levels in patients after
chemotherapy treatment (Durken et al. 1995; Durken et al. 2000; Erhola et al. 1996),
as well as beneficial association between the plasma concentration of antioxidants
and response to chemotherapy (Kennedy et al. 2005). It has also been shown that
antioxidant supplementation can reduce chemotherapy related toxicities (Hu et al.
1997; Kennedy et al. 2004), lower recurrence rates (Lamm et al. 1994), and prolong
survival time (Jaakkola et al. 1992; Lockwood et al. 1994). Importantly, the efficacy
of chemotherapy appears not to be compromised by antioxidant supplementation
(Block et al. 2007; Simone et al. 2007a; Simone et al. 2007b).

The present study was undertaken to determine whether the cognitive dysfunction
observed in patients undergoing chemotherapy can be replicated in an experimental
setting by chronic administration of chemotherapeutics to rats. Furthermore, we
wanted to test whether such chemotherapy-induced cognitive dysfunction can be
prevented by antioxidant supplementation.

Materials and methods

Materials

ADR was from Bedford Laboratories (Bedford, OH) and CTX was from Bristol-
Myers Squibb Co. (Princeton, NJ). N-acetyl cysteine (NAC) and all other chemicals
were of the highest obtainable purity from Sigma Chemical Co. (St. Louis, MO).

Chemotherapy treatment

Because breast cancer patients undergoing chemotherapy are typically peri- and
postmenopausal women, we used retired breeder rats. Ten-month-old female
Sprague–Dawley rats were obtained from Hilltop Lab Animals Inc. (Scottdale,
PA), and were housed in the animal quarters under 12 h light/dark conditions with
free access to normal rat chow and water. After one week acclimatization animals
with no apparent pathologies were selected for the study. All procedures were
approved by the West Virginia University Animal Care and Use Committee, and
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conducted in compliance with the guidelines published in the NIH Guide for the
Care and Use of Laboratory Animals. The chemotherapy regimen consisted of
intraperitoneal injections of 2.5 mg/kg of ADR and 25 mg/kg of CTX (AC group). A
total of four doses were given at weekly intervals. In parallel, a group of rats was
injected three times per week for 4 weeks with 200 mg/kg of NAC (an antioxidant)
during the course of the chemotherapeutics treatment (AC+N group). The control
group (SAL) was treated with saline only.

Open field test

Locomotor activity of the rats was tested 4 days before and 7 days after the
chemotherapeutic treatment. The testing was performed in a designated room under
standard illumination. Individual rats were placed in an 80×80×40 cm black wooden
box. The floor of this box was divided into nine equal squares by white lines. The
number of line crossings and rears was recorded for 30 min by an unbiased observer.

Passive avoidance test

Cognitive function of the animals was examined by the step-through passive
avoidance test essentially as described by Zhang et al. (2004). The test was
performed using a Shuttle box ENV-010 from Med Associates Inc. (St. Albans, VT)
that consisted of an illuminated and a darkened compartment connected by a
guillotine door. The floor of the darkened compartment consisted of stainless steel
rods through which electric shock could be delivered to the feet. Briefly, 2 days after
treatment cessation, rats were habituated to the apparatus by allowing free
exploration of both compartments for 5 min. The next day (the training day) a rat
was placed in the illuminated compartment facing away from the closed guillotine
door for 1 min. Then, the door was raised and the latency of entering into the
darkened compartment was recorded by an unbiased observer. As soon as the rat
entered the darkened compartment the door was closed and an electric shock of
0.5 mA was administered for 3 s. Twenty four hours later (the testing day), the rat
was again placed in the illuminated compartment with the door opened, and the
latency of entering into the darkened compartment was recorded for up to 180 s.

Statistical analysis

Results are presented as mean values ± SDs and analyzed by t-test with p<0.05
considered to be statistically significant.

Results

We used a schedule consisting of four weekly injections with the combination of
ADR and CTX at a 1:10 ratio to simulate clinical regimen for patients undergoing
breast cancer chemotherapy. In the initial experiments we tested a spectrum of
dosages of the chemotherapeutics, and found that dosages as high as 2.5 mg/kg of
ADR and 25 mg/kg of CTX produced no apparent morbidity and/or mortality in rats
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during the four week-treatment. Also, no adverse effects were seen in the rats within
a few weeks after the cessation of the treatment. For example, as seen from Fig. 1
(vide infra) the treatment did not affect locomotor activity of the animals. A
decreased locomotor activity is an index of the sickness behavior. However,
doubling this dosage led to overt pathology and death during and soon after the
treatment. Consequently, in the present study we used the schedule of four weekly
injections of 2.5 mg/kg of ADR and 25 mg/kg of CTX to assess the effect of chronic
administration of these chemotherapeutics on cognitive function.

The step-through passive avoidance test was deemed to be well suited to assess
short-term memory of rats as it is a well-established, non-invasive, relatively simple
and highly reproducible procedure. However, one has to be cognizant of the fact that
locomotor activity of the animals, which represents an entirely different behavioral
entity, may significantly skew the latency measured in the passive avoidance test.

Fig. 1 Locomotor activity. Rats
were subjected to the open field
test before and after the 4-week
treatment with the combination of
ADR and CTX (AC), with the
chemotherapeutics and NAC
(AC+N) or with saline only (SAL)
as described in “Materials and
methods.” The locomotor activity
was assessed by the open field
test before and after the treatment.
The results show the total number
of line crossings (upper panel)
and rears (lower panel) during
30 min of testing. Bars represent
averages ± SDs. The numbers of
animals in each group were 7, 4
and 8 for AC, AC+N and SAL,
respectively
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Therefore, we tested the animals by the open field test to measure their locomotor
activity. This observational, non-invasive test was performed before the chemother-
apeutic treatment to assure that there was no significant variability in the locomotor
activity among groups. We also performed this evaluation at the end of the
experiment to exclude the possibility that changes in the latency of entering the dark
compartment during the passive avoidance test resulted from altered locomotor
activity caused by the treatment. Figure 1 shows that there was no significant
difference among the three groups before the treatment as seen from either the
number of line crossings or the number of rears. Neither the 4-week treatment with
the chemotherapeutic drugs (AC) nor the treatment with the chemotherapeutic drugs
plus NAC altered locomotor activity as compared to the control group that was
injected with saline only (SAL). However, there was an overall 60% reduction in the
locomotor activity of all animal groups after the treatment as compared to animals
before the treatment. This significant decrease likely reflects behavioral differences
in the novel (before the treatment) vs. the familiar (after the treatment) environment
of the testing box. The recognition of familiar environment after 5 weeks represents
a type of long-term memory. Consequently, the open field test also revealed that
long-term memory was not significantly affected by the AC-treatment.

As seen from Fig. 2 the passive avoidance test revealed a profound dysfunction of
short-term memory induced by the chemotherapeutic treatment. Thus, on the training
day rats in all groups rapidly (the average latency of 10 s) hid in the darkened
compartment of the apparatus. Once in the darkened compartment the animals
experienced an electric shock. On the testing day the control rats (SAL) remembered

Fig. 2 Cognitive function. Rats were treated with the combination of ADR and CTX (AC), with the
chemotherapeutics and NAC (AC+N) or with saline only (SAL) as described in Materials and Methods.
Subsequently, their memory function was evaluated by the passive avoidance test. The latency of entering
the dark compartment was recorded on the training day and on the testing day (24 h later). Bars represent
averages ± SDs. The numbers of animals in each group were 7, 4 and 8 for AC, AC+N and SAL,
respectively. Asterisk denotes significant differences within each group between the latency on the training
and testing day; pound sign denotes significant differences in latency from SAL group on the testing day
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the electric shock, and consequently, either avoided the darkened compartment or
entered it with a long delay. On the average the latency time was 136 s. On the other
hand, the memory of the electric shock in the rats subjected to chemotherapeutic
treatment (AC) was impaired, and the animals entered the darkened compartment
with the average latency of 16 s. Supplementation of chemotherapeutic-treated rats
with NAC (AC+N) prevented the drug-induced memory impairment. Thus, the
average latency for this group was 110 s, which is significantly longer than the
latency for the AC group and comparable to the latency for the SAL animals.

Discussion

Clinical studies showed that up to 33% of breast cancer patients exhibited cognitive
dysfunction before the commencement of chemotherapy (Wefel et al. 2004a). After
chemotherapy treatment 61% of the same cohort exhibited a decline relative to
baseline. These results clearly indicate that although the carcinoma by itself may
cause brain dysfunction, the chemotherapeutics also have a negative effect on the
integrity of higher-order brain function. Other studies have also reported chemo-
therapy-related cognitive dysfunction with frequencies ranging from 17–70% (Ahles
et al. 2002; Brezden et al. 2000; Schagen et al. 1999; van Dam et al. 1998; Wefel et
al. 2004b). Moreover, this chemotherapy-induced effect seems not to be related to
the neoplasia (Ahles et al. 2002). Our present studies in rats demonstrate that chronic
administration of commonly used chemotherapeutics, i.e., the combination of ADR
and CTX, impairs short-term (24 h) memory function (Fig. 2). This is an important
finding because it proves that chemotherapeutic agents alone, i.e., in the absence of
malignancy, can instigate higher-order brain dysfunction, and thus, supports clinical
observations. Interestingly, the chemotherapeutics do not seem to affect long-term
(five weeks) memory as seen from the recognition of the box environment in the
open field test (Fig. 1).

The mechanisms of chemotherapeutic action of ADR and CTX are complex as
these drugs affect a multitude of cellular processes. For example, ADR disturbs
chromosomal replication by inhibiting DNA synthesis (Cummings et al. 1991;
Gewirtz 1999; Tanaka and Yoshida 1980) and topoisomerase II (Chuang and
Chuang 1979; Tewey et al. 1984), and thus, targets malignant cells. However, ADR
can also generate free radicals, such as the superoxide radical and lipid peroxides
(De Beer et al. 2001; Goodman and Hochstein 1977; Olson and Mushlin 1990;
Singal et al. 2000), which are responsible for the non-targeted cytotoxicity of ADR.
CTX requires metabolic activation by the cytochrome P450 mixed function oxidase
system to form phosphoramide mustard (Sladek 1971; Sladek 1972a; Sladek 1972b),
the principal alkylating anti-neoplastic metabolite (Friedman et al. 1976). However,
this oxidative conversion also generates free radicals (Bhattacharya et al. 2003;
Stankiewicz et al. 2002). In addition, another CTX metabolite, acrolein, is a very
reactive compound that binds to and depletes intracellular GSH (Kehrer and Biswal
2000). Consequently, antioxidants have been used during chemotherapy treatments
to offset the non-targeted effects of these drugs. Nevertheless, it has been cautioned
that the oxidative stress may also contribute to the eradication of neoplastic cells and
that antioxidants may diminish the effectiveness of the chemotherapeutics. However,
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recent comprehensive clinical reviews demonstrate no alterations in the effectiveness
of chemotherapeutic treatment when antioxidants are co-administered (Block et al.
2007; Simone et al. 2007a; Simone et al. 2007b).

Although the exact mechanisms by which ADR and CTX mediate cognitive
dysfunction have not been defined, oxidative stress seems to play a causative role.
Thus, systemic administration of either chemotherapeutic agent has been shown to
augment the level of oxidative stress indicators in the brain, and this effect can be
mitigated by antioxidants (Bhatia et al. 2006; Joshi et al. 2005; Joshi et al. 2007).
Glutathione (GSH) is of a particular interest as it is a major component of the
antioxidant armamentarium of cells. Decreased levels of GSH have been reported in
brains of animals treated with ADR (Joshi et al. 2007; Julka et al. 1993) and CTX
(Bhatia et al. 2006). Joshi et al. (2007) also found that the administration of γ-
glutamyl cystein ethyl ester, which elevates intracellular GSH concentration,
ameliorated brain oxidative stress induced by acute ADR toxicity in mice. In the
present study we used NAC that also replenishes intracellular GSH and showed that
this antioxidant prevented memory dysfunction induced by chronic administration of
the combination of ADR and CTX in rats. This protective effect of NAC buttresses
the notion that oxidative stress mediates the cognitive dysfunction caused by these
chemotherapeutics. Taken together, the aforementioned studies indicate clinical
potential of GSH boosters to ameliorate chemotherapy-related brain dysfunction.

In conclusion, our experimental paradigm provides a convenient model system to
study the mechanisms of brain dysfunction elicited by chemotherapy and for testing
the potency of putative preventive agents. The well tolerated antioxidant, such as
NAC and/or other GSH boosters may provide efficient ways to combat the cognitive
dysfunction associated with ADR/CTX chemotherapy observed in clinical settings.
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