
Vol.:(0123456789)

Molecular and Cellular Biochemistry 
https://doi.org/10.1007/s11010-024-05096-9

Emerging insights into pulmonary hypertension: the potential role 
of mitochondrial dysfunction and redox homeostasis

Junming Zhang1 · Huimin Yan1 · Yan Wang1 · Xian Yue1 · Meng Wang1 · Limin Liu1 · Pengfei Qiao1 · Yixuan Zhu1 · 
Zhichao Li1

Received: 16 May 2024 / Accepted: 14 August 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerg-
ing evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their 
pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of 
mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including 
mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein 
response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic 
changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the 
initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
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Introduction

Pulmonary hypertension (PH) is characterized by exces-
sive obliterative pulmonary vascular remodeling defining 
an abnormal elevation in mean pulmonary arterial pressure 
(mPAP) to ≥ 20 mmHg and the need for pulmonary vascu-
lar resistance (PVR) to ≥ 3 Wood units (WU) to define the 
presence of pre-capillary PH [1, 2]. World Symposium on 
Pulmonary Hypertension (WSPH) further divides PH into 
five clinical categories based on the latent etiology, and the 
5-year survival rates of the first four types in newly diag-
nosed patients are 72.2%, 71.7%, 60.0%, and 43.8%, respec-
tively, in the Registry to Evaluate Early and Long-Term PH 
Disease Management (REVEAL) [3]. The delay in curing 
PH arising from virus infection, hypoxia, congenital anom-
aly, and secondary disease associations may be related to 
the undefined pathological mechanism [1]. Recently, several 
lines of evidence suggest that the dysregulation of mitochon-
drial redox status also contributes to the pathogenesis of 

PH. Moreover, current treatments cannot reverse or prevent 
pulmonary vascular remodeling and vasoconstriction, lead-
ing to a progressive elevation of pulmonary arterial pressure 
(PAP) and subsequent right ventricular (RV) heart failure 
and mortality. Therefore, it will be urgent to develop new 
treatments that will be capable of addressing orchestrate 
these different types of PH, which would further alleviate 
the stress caused by PH in clinical treatment.

Mitochondria, often referred to “the power factory of the 
cell”, are ubiquitous and crucial organelle in mammalian 
cells, driving reactions to produce core metabolites essential 
for the biosynthesis of fats, carbohydrates, nucleotides, and 
proteins [4, 5]. One of their primary functions is to facilitate 
the oxidative capacity of the electron transport chain (ETC), 
which consists of four linked membrane protein complexes, 
known as complexes I, II, III, and IV [6, 7]. Additionally, 
the release of reactive oxygen species (ROS) from mitochon-
dria (mROS) stimulates neighboring mitochondria to release 
more ROS, a phenomenon known as “Reactive Oxygen 
Species (ROS)-induced ROS-release” (RIRR), creating a 
closed-loop redox signal in the cell [8]. In the context of PH, 
its pathological manifestations are largely linked to mito-
chondrial dysfunction, including imbalance mitochondrial 
membrane potential, misfolded mitochondrial proteins and 
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changes in mitochondrial morphology [9–13]. Against this 
backdrop, persistent mitochondrial dysfunction contributes 
to dysfunction of various pulmonary vascular cells (PVCs), 
such as the apoptosis of pulmonary artery endothelial cells 
(PAECs) and the proliferation of pulmonary artery smooth 
muscle cells (PASMCs), which are inexorably linked to key 
pathogenetic mechanisms [14–16].

PH could lead to induce right heart failure and vascular 
remodeling, highlighting the importance of finely control-
ling mROS production, overload of calcium ions (Ca2+), and 
selective degradation and elimination of dysfunctional mito-
chondria through mitophagy. Simultaneously mitophagy 
could eliminate damaged misfolded mitochondrial proteins, 
or portions of the mitochondrial network, and updates com-
ponents by adding proteins and lipids through biogenesis, 
which together lead to mitochondrial turnover. The turno-
ver process led by mitophagy is also known as mitochon-
drial quality control (MQC). This means that MQC plays a 
crucial role in PH, and targeting their reversible functional 
suppression (Fig. 1) could be a therapeutic focus, improving 
energy deficits, tissue loss, and facilitating cell repair and 
cell replacement. In addition, clinical trials of antioxidant 
strategies against PH have been lackluster, which may be due 
to the uncontrolled involvement of mROS in cell signaling 

and reoxidation as the second messenger [17]. Therefore, the 
following sections will delve into discussions on mitochon-
drial biogenesis, mitochondrial fission/fusion, mitophagy, 
mitochondrial unfolded protein response and redox reactions 
related to mROS, elucidating the irreplaceable role of MQC 
and redox homeostasis in the lung vasculature as a potential 
cornerstone of novel PH treatments. By comprehending how 
PH leads to cell dysfunction and vasculopathy, researchers 
are uncovering the pathogenesis of PH and identifying new 
pathways in cell biology.

Mitochondrial biogenesis in pulmonary 
hypertension

Mitochondrial biogenesis adjusts mitochondrial mass, dis-
tribution, and phenotype involved a bi-genomic program of 
nuclear-and mitochondrial-encoded genes that are rapidly 
activated by decreased energy supply or augmented ATP 
demand [18]. This implies that mitochondrial biogenesis 
plays a key role in body homeostasis and proliferation, as 
well as acting as a rescue mechanism under stress condi-
tions. It’s demonstrated that mitochondrial biogenesis is 
served as an impetus for PAECs and PASMCs proliferation 
under ongoing stimulation of hypoxia in the pathological 

Fig. 1   Under oxidative stress conditions, mitochondrial dynamics 
could make mitochondria fragment, driving the change of mitochon-
dria morphology. Following, mitochondrial biogenesis, mitopahgy 
and mitochondrial unfolded protein response are activated to govern 

mitochondrial content and mitochondrial proteomics, respectively. 
Unrepairable mitochondria would induce PASMCs proliferation, thus 
promote the process of pulmonary artery vascular remodeling
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PH [19]. The widely regulated molecular in mitochondrial 
biogenesis is mainly the peroxisome proliferator-activated 
receptor γ coactivator-1 (PGC-1α) family. PGC-1α of tran-
scriptional co-activators play a major role in transducing and 
integrating pathophysiological signals controlling mitochon-
drial biogenesis that is followed by PASMCs proliferation, 
survival and pulmonary vascular remodeling [20]. Concep-
tually, therefore, PGC-1α related mitochondrial biogenesis is 
not only bonded up with energy production and compensated 
mitochondrial dysfunction dealing with the blows from the 
external.

PGC-1α-regulated mitochondrial biogenesis is gener-
ally accompanied by PASMCs proliferation phenotype and 
PAECs apoptosis phenotype, coming to regulate pulmonary 
arterial remodeling and right heart failure (Fig. 2). Coor-
dinately, PGC-1α, independent of its own transcriptional 
activity, could be enabled to combine with the coordinated 
transcription of the majority of mitochondrial genes in the 
nucleus, such as peroxisome proliferator-activated receptor 
γ (PPARγ) and nuclear respiratory factors (NRFs) [21–24]. 

PPARγ, a member of the nuclear hormone receptor super-
family of ligand-activated transcription factors, activates the 
promoter of PGC-1α to ameliorate mitochondrial biogenesis 
and reverse metabolism derangements [25, 26]. The follow-
ing scenarios by which reductions in PPARγ decreases the 
overall volume of mitochondria and increases fragmentation 
of existing mitochondria could contribute to the impaired 
mitochondrial biogenesis [23]. In addition, NRFs regulate 
the expression of proteins that make up the four respiratory 
complexes and regulate the expression of transcription factor 
A mitochondrial (TFAM), encoding mtDNA transcription 
and replication [27]. Although mtDNA only encodes certain 
mitochondrial proteins, fine-tuning the matching between 
mtDNA duplication and nucleus-encoded genes translation 
is contributed to mitochondrial biogenesis [28]. This means 
that the regulation of PGC-1α and its related factors could 
also control mitochondrial biogenesis and thus mitigate the 
pathological workload of PH.

The following would overview the protective mechanism 
of PGC-1α on PASMCs that mainly focus on curtailing 

Fig. 2   The dysfunction of PASMCs and PAECs induced by vascular remodeling activate signaling cascades, leading to activate PGC-1α com-
pensated regulation
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proliferation properties. As an NAD+-dependent deacety-
lase, nucleoprotein sirtuin 1 (Sirt1) could alter the balance 
between acetylation and deacetylation under hypoxia, as the 
result that it have also been implicated in significant role 
in pulmonary arterial hypertension (PAH) [29]. Sirt1 is a 
negative regulator of PASMC growth extracted in human 
PAH as well as in rat. Sirt1 activation leads to the tendency 
of PASMC phenotype normalization, the augmentation of 
PGC-1α and its downstream targets involved in the patho-
genesis of PAH, which is essential for mitochondrial bio-
genesis and pulmonary arteries remodeling [30]. And Sirt1-
specific activator Stac-3, induces a concerted upregulation of 
various factors controlled by PGC-1a that would contribute 
to abolishing the proliferation of PASMCs in rat. Mechanis-
tically, as the center molecule of mitochondrial biogenesis, 
knockdown of PGC-1α could be also regulated by PI3K/
Akt signaling pathway and further inhibit hypoxia-induced 
DNA synthesizing, cell viability, and PCNA expression of 
PASMCs in response to hypoxia stress [22, 31]. Also, ormel-
oxifene treatment improves NOX4/HO1 axis and attempted 
to recover hypoxia-induced mitochondrial membrane hyper-
polarization, suggesting it has some positive effect on mito-
chondrial biogenesis in monocrotaline-induced PH in female 
rats [24]. Notably, PGC-1α appears to be as a potential bio-
marker of the progression of idiopathic pulmonary artery 
hypertension (IPAH), supporting its role in protecting pul-
monary arteries [32]. Once the cascade reaction PPARγ and 
PGC-1α is reversed by short interfering RNA, PASMCs pro-
liferation induced by mitochondrial function derangements 
could be improved [23], suggesting a feedback mechanism 
underlying PGC-1α-mediated mitochondrial biogenesis and 
hypoxia-stimulated pulmonary vascular relaxation.

Several potential operating mechanisms could be sum-
marized to explain the molecular contributions of PGC-
1α-mediated mitochondrial biogenesis to pulmonary artery 
endothelial protection (Fig. 2). This implies that regulated 
endothelial angiogenesis, vasoconstriction, inflamma-
tion, and energy relationships could ensure the opening 
of microvessels and provide anticoagulant action to avoid 
thrombosis. First, PGC-1α-related mitochondrial biogenesis 
controls angiogenesis and vascular integrity through multi-
ple signaling pathway. Bone morphogenetic protein receptor 
II (BMPRII) have plays an irreplaceable role in different 
animal models of PAH pathogenesis, such as monocrotaline 
(MCT) and the SuHx rat models [33]. As a known regu-
lator PGC-1α, P53 alters TFAM basing on the reduction 
of BMPR2, which mediates mtDNA replication as well as 
maintain and repair in PAECs from PAH patients [11, 34, 
35]. On the side, a YAP1 mutant construct, YAP1S127A, 
stimulates the overexpression of PGC-1α to maximize 
angiogenic ability and minimize the potential toxicity [36]. 
Second, inflammation response, as evaluated by NF-κB 
activation as well as endothelial cells dysfunction, seems to 

have rectified by enhanced PGC-1α, which confers resist-
ance to cellular derangements associated with mitochon-
drial biogenesis [37]. Third, vasodilator nitric oxide (NO) 
is initially identified as a vasodilator and inhibitor of SMC 
proliferation produced by NO synthetase (eNOS), but it has 
gradually been found to regulate mitochondrial biogenesis 
and function by binding to the mitochondrial respiratory 
chain [38–40]. It has been reported that excessive eNOS 
can improve mitochondrial dehydrogenase activity, number 
of pre-mitochondrial cells and mtDNA content in PH patho-
physiology whereas sustained PGC-1α decreases mitochon-
drial swelling and increases eNOS phosphorylation [41, 42]. 
Furthermore, overexpressing PGC-1α improves endothe-
lium-dependent relaxation and preserves eNOS coupling, 
suggested a feedback pathway between eNOS and PGC-1α 
[43]. Those would make to shed a new light on the link of 
eNOS, mitochondrial biogenesis and pulmonary vascular 
pathology. Fourth, the inter-cellular energy sensor AMP-
activated protein kinase (AMPK) could converge on PGC-1α 
mainly regulated mitochondrial biogenesis. Rana et.al have 
reported that decreased angiogenesis contributes to persis-
tent pulmonary hypertension of the newborn (PPHN), fur-
ther abrogating AMPK-PGC-1α cascade reaction and curtail 
mitochondrial biogenesis in PAECs [44]. Similar results are 
seen in the animal model of hypoxia pulmonary hyperten-
sion (HPH) that hypoxia induces AMPK phosphorylation 
and decreases in PGC-1α protein levels. In the end, mito-
chondrial biogenesis is also affected by mitochondrial pro-
teins. Artificially controlled upregulation of Tom70 level in 
PVECs results in the transfer of mitochondrial biogenesis 
marker TFAM to mitochondria, improving PVECs function 
and ultimately alleviated HPH. Given its fundamental role in 
mediating mitochondrial function and its ability to promote 
PVECs proliferation, abnormal mitochondrial biosynthesis 
represents an increasingly promising diagnostic and thera-
peutic target in PH.

It’s summarized that some drugs or compounds affect 
mitochondrial biogenesis by the target PGC-1α and then 
alter PH physiological and pathological progression 
(Table 1). 15-Hydroxyeicosatetraenoic acid (15-HETE) is 
a product of arachidonic acid catalyzed by 15-lipoxygenase 
(15-LO), which stimulates angiogenesis and pulmonary 
vascular remodeling through PGC-1α-mediated mitochon-
drial biogenesis in PAH [45]. Estrogen-17, one of natu-
rally occurring hormone in the human body, restores the 
expression levels of PGC-1α and fuels protective effects on 
mitochondrial density and oxidative capacity [46]. In the 
Sugen 5416/hypoxia rat model of severe PH, acetazolamide 
(ACTZ) treatment, similarity to chrysin, restores metabolic 
balance and improves RV function through the upregulation 
of PGC-1α [47, 48]. On the side, paeonol, a natural phe-
nolic compound with bioactive constituents isolated from 
cortex moutan, could inhibit mitochondrial injuries and 
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cause mitochondrion-dependent apoptosis through PGC-1α 
in PASMCs in vitro [49, 50]. In parallel, reversing pulmo-
nary hypertension and preventing RV failure are modified by 
pioglitazone, oxymatrine through the diversely underlying 
mechanism [51, 52]. And it’s well-documented that pyrrolo-
quinoline quinone (PPQ) improves integrative mitochondrial 
as well as metabolism by increasing mitochondrial PGC-1α 
and also prevent the development of PH in MCT treated 
rats [53]. It’s worth noticing that more preclinical studies 
are expected to test the feasibility of strategy of targeting 
PGC-1α-related mitochondrial biogenesis for therapy in PH.

The occurrence of PH is not only due to the imbalance of 
mitochondrial biogenesis, there are other factors that could 
accelerate the process of PH pathological scenarios, such 
as fine-tuning mtDNA, Ca2+ overloading, energy depletion 
and inflammation overload [54]. Pulmonary artery obstruc-
tion, hypoxia, heart failure and other causes of PH Further 
researches are needed to investigate the biological func-
tion of mitochondria biogenesis in PH. The PH caused by 
hypoxia, pulmonary artery obstruction, the right heart fail-
ure and so on forces the mitochondrial biogenesis disorder, 
and with resultant triggers the corresponding physiological 
and biochemical reactions. In the event of sustained dam-
age, the defense system briefly built up by mitochondrial 
biogenesis collapses after reaching the critical value. This 
means that mitochondrial biogenesis could partially reverse 
the impairment of right heart function from the direction of 
energy metabolism, control of key factors of vasoconstric-
tion, and the environment as a precise therapy. Although 
there are still many shortcomings in mitochondrial biogen-
esis research, we are committed to opening new chapters and 
providing emerging insights for the treatment of PH.

Mitophagy in pulmonary hypertension

The mitochondria are regarded as “good actors” to keep 
the cellular metabolism and physiology running, and its 
components, subjected by oxidative damage, are eventu-
ally recycled through a specialized autophagic pathway 

known as mitophagy [55]. Mitophagy, a kind of selective 
autophagy, refers to the process that once mitochondria are 
damaged, intracellular signals would be activated to induce 
autophagy-related proteins to gather in the damaged mito-
chondria and form autophagosomes with bilayer membrane 
[56]. Subsequently, the autophagic membrane specifically 
recognizes and envelops the mitochondria that are energy-
impaired or damaged and transports them to lysosomes for 
catalytic degradation, reducing the release of mitochon-
drial contents. During this process, damaged or redundant 
mitochondria in cells are removed, and intracellular ROS 
generation is reduced, which maintains intracellular mito-
chondrial homeostasis, normal physiological functions and 
mitochondrial fidelity. But this is only in the modest range, 
and once induced excessive mitophagy, its following effects 
could be devastating before intervention in PH. Three main 
mechanisms in PH have been summarized to explain the 
association between mitophagy and pathological characteris-
tics of cells. First, some proteins inside and/or outside mito-
chondria coordinately or independently regulate mitophagy 
under oxidative stress. Second, mitophagy is linked with 
other related cellular biological activities to regulate PAECs 
apoptosis and PASMCs proliferation. Finally, mitophagy, 
as the opposite of mitochondrial biogenesis, could control 
mitochondrial mass, causing the broken oxidative respira-
tory chain and ATP exhaustion. Recent advances have led to 
the unraveling of characteristic of mitophagy, which could 
be divided mainly into receptor-dependent and non-recep-
tor-dependent mitophagy in the ballpark (Fig. 3). Here, we 
discuss the inter-association between mitophagy and pul-
monary vascular remodeling in PH, identifying those under-
lying molecular mechanisms of PH sensing mitochondrial 
damage and specific targets for clinical treatment.

Nonreceptor‑dependent mitophagy in pulmonary 
hypertension

As for non-receptor-dependent mitophagy, it’s mainly 
regulated by the phosphatase and tensin homologue 

Table 1   Drugs or compounds regulate mitochondrial biogenesis altering PH lesion by the target PGC-1α

Name Target Functions References

15-Hydroxyeicosatetraenoic acid Increase PGC-1α Stimulate angiogenesis [45]
Estrogen-17 Increase PGC-1α Fuel protective effects on mitochondrial density and oxidative capacity [46]
Acetazolamide Increase PGC-1α Restore metabolic balance and improves RV function [47]
Paeonol Increase PGC-1α Inhibit mitochondrial injuries and cause mitochondrion-independent apopto-

sis
[50]

Pioglitazone Increase PPARγ Normalize epigenetic and transcriptional regulation primarily related to dis-
turbed mitochondrial function in the failing RV

[51]

Oxymatrine Increase Nrf-2 Activate the cellular endogenous antioxidant protection system [52]
Pyrroloquinoline quinone Increase PGC-1α Attenuate cellular proliferation and promoted apoptosis via a mitochondrial-

dependent pathway
[53]
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(PTEN)-induced putative kinase 1 (PINK1), which codes 
for a mitochondrially localized kinase, and Parkin, whose is 
a cytosolic E3 ubiquitin ligase (Fig. 3). PINK1 phosphoryla-
tion recruits Parkin and accumulates on the OMM, making 
to ubiquitinate many membrane proteins such as VDAC1, 
mitofusin-1, mitofusin-2, TOM20, MIRO and hexokinase 
[57]. Signal connector proteins P62/SQSTM1, as the bridge 
between Parkin and autophagosome, recognize the phos-
phorylated polyubiquitin chain on the mitochondrial pro-
tein, which binds to autophagy-associated marker proteins 
LC3 with another specific area, initiating the formation of 
mitophagy [58]. In addition, there is also a way of PINK1 
recruitment of Parkin that directly phosphorylates Thr175 
and Thr217 within Parkin’s linker region, making Parkin to 
locate on the mitochondria [59].

What’s more, Parkin-mediated mitophagy requires the 
participation of autophagy core proteins such as ATG3, 
ATG5, ATG7, ect [60]. Recent studies have elucidated that 
both PINK1 and Parkin have the direct interaction with PI3K 
and Beclin-1 [61]. While mitochondria are depolarized, 
Ambral, an activator of Beclinl relied on Parkin, is recruited 
to the mitochondria, which may lead to the activation of the 
Beclin-1. Thus, Parkin’s functions mainly contain ubiquitin 
of mitochondrial outer membrane proteins and the recruit-
ment of Ambral, promoting mitophagy of damage mito-
chondria under oxidative stress. The role of PINK1/Parkin, 
belonged to the classical pathway of mitophagy, has not been 
thoroughly studied, but previous studies have shown PINK1/

Parkin-related mitophagy is linked to the pathogenesis of 
cell proliferation and pulmonary vascular remodeling [62].

The above conclusion is further supported in knocking 
out PINK1−/−and/or Parkin−/− from PASMCs, which is 
turned out to induce the excessive proliferation of PASMCs 
and promote the progression of pulmonary vascular remod-
eling in HPH [63]. In accordance with the aforementioned 
point, the model of PINK1−/− mice attenuates the degree 
of pulmonary vascular remodeling and ameliorates RV 
dysfunction after hypoxic exposure [64]. In addition, Asish 
et al. have certified that “protective mitophagy” during 
PAH is mediated by the commitment step of PINK1/Mfn2 
[65]. Phosphorylated Mfn2 at Ser442 by PINK1 promotes 
the dissociation of its proteasomal degradation and make 
normal PASMCs resent to a hyper-proliferative phenotype. 
Increased mitophagy and disruption of mitochondrial bio-
genesis are verified in PAECs isolated from PH patients. 
Meanwhile, Parkin-induced mitophagy also plays a tangle-
some role in hypoxia-induced pulmonary vasculature injury 
model. Utilizing the donor of si-Control and si-Parkin reveal 
an intriguing process that Parkin may regulate remodeling 
phenotypes, which assesses for the correlation of mitophagy 
and proliferation in PAH PASMCs [66]. Regulated in 
Development and DNA Damage Responses 1 (REDD1), 
an important transcription factor regulating mitochondria 
homeostasis, impresses hemodynamic changes effectively in 
significant measure, by which Parkin prompts the increasing 
of mitochondrial membrane potential and mROS-release in 

Fig. 3   Mitophagy can be 
divided into receptor-independ-
ent and receptor-dependent 
forms in general. When healthy 
mitochondria are stimulated, 
mitochondrial function is 
dysfunctional and mitophagy is 
initiated, forming mitophago-
some and degradation by lyso-
some. Receptor-independent 
mitophagy is mainly mediated 
by PINK/Parkin. Meanwhile, 
Parkin itself binds to LC3 
and P62/SQSTM1 initiating 
mitophagy. The latter activates 
mitophagy by binding with 
LC3 and/or Parkin through 
mitophagy receptors such as 
BNIP3, NIX and FUNDC1
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chronic hypoxia model of PH [67]. Simultaneously, certain 
OMM proteins, including VDAC and mitochondrial Rho 
GTPase (MIRO) could be ubiquitinated through activating 
Parkin, which subsequently initiate expression of multiple 
target genes to regulate pathological characteristics of PH 
[68, 69]. To some extent, mitophagy, via a compensatory 
increase of PINK1/Parkin-mediated mitophagy, may be a 
pathological manifestation from accumulation of dysfunc-
tional mitochondria, but it may also select hyperpolarized 
mitochondria [70]. This offers a plausible explanation 
for seemingly paradoxical expression of mitochondrial 
dynamics and death factors in PH. Those suggest that, act-
ing together, PINK1/Parkin-mediated mitophagy plays an 
important role on PH.

Receptor‑dependent mitophagy in pulmonary 
hypertension

In setting of mitophagy, numerous experiments have inves-
tigated which receptors, located at the mitochondrial outer 
membrane, are involves in mitophagy including FUN14 
domain-containing protein 1 (FUNDC1), BCL2/adenovi-
rus E1B 19 kDa protein-interacting protein 3 (BNIP3) and 
its homolog Nix. In addition, mitochondrial E3 ubiquitin 
protein ligase 1 (Mul1), prohibitin 2 (PHB2), NLR fam-
ily member X1 (NLRX1) and recombinant FK506 binding 
protein 8 (FKBP8) have been gradually found to mediate 
mitophagy [71–74]. And the effect of mitophagy is partly 
mediated by those receptors to accommodate upstream oxi-
dation stimulation in an ubiquitinated independent man-
ner [75]. However, in PH, the regulation of mitophagy is 
mainly concentrated in the former part (Fig. 3). The BH3 
domains of BNIP3 and Nix, as two protein members of the 
BH3-only subfamily of the Bcl-2 family, could inhibit the 
anti-apoptotic function of Bcl-2 protein and transform it 
into pro-apoptotic proteins [76]. BNIP3 and Nix have the 
same LIR domains that help BNIP3 and Nix bind LC3 on 
the mitophagosome. And phosphorylation of serine residu-
ing 17 and 24 on both sides of LIR promotes to bind to 
specific LC3B and GATE-16, resulting in the phosphoryla-
tion state of LIR of BNIP3 triggers mitophagy [77]. That is, 
the mitochondrial perturbations triggered by BNIP3 gene 
activation is mainly manifested as the opening of the mito-
chondrial permeability transition pore and the loss of mito-
chondrial membrane potential in the RV remodeling of MCT 
rat model [78]. In addition, studies have shown that NIX 
is involved in mitophagy under hypoxia conditions. HIF-lα 
could increase the level of NIX mRNA, making phospho-
rylated at Ser81, thus mediate linear particle mitophagy 
under hypoxia conditions [79, 80]. NIX, as a substrate of 
Parkin, is also involved in Parkin-dependent mitophagy that 
could collect NBR1 into mitochondria, while knockouting 
Parkin and NIX synergistic decreases mitophagy [80, 81]. 

So Ning et al. have demonstrated the expression of BNIP3 
and NIX is upregulated by hypoxic stress in the injured 
pulmonary arterial endothelial cells [82]. Therefore, NIX 
may mainly regulate mitophagy under hypoxia conditions. 
For FUNDC1, its dephosphorylation regulates non-Parkin-
dependent mitophagy by binding to LC3 under hypoxia con-
ditions. Intriguing, casein kinase II (CK2) phosphorylates 
FUNDC1 at Tyrl8 via SRC and Serl3, thereby inhibiting 
its interaction with LC3 in the presence of sufficient oxy-
gen [83]. Under hypoxia, FUNDC1 is dephosphorized by 
phosphoglycerate mutated enzyme 5 (PGAM5) at Serl3 and 
phosphorylated by ULK1 at Serl7 [83]. Recently, Liu et al. 
have revealed that FUNDC1 per se could mediate sensing 
hypoxic PH through dephosphorylating FUNDC1 at Tyr18 
combined with LC3B-II [84]. As for ubiquitination of HIF-α 
and proliferation-promoting feature of ROS, multiple experi-
ments have offered further evidence that the phosphorylation 
of FUNDC1 places a premium on PASMCs proliferation 
through ROS-HIF1α pathway, leading to thickening of the 
medial layer of the pulmonary blood vessels and right heart 
failure of PH.

Other factors‑mediated mitophagy in pulmonary 
hypertension

Several studies have proposed that mitophagy has the inti-
mate correlation with certain mitochondrial membrane 
proteins and/or circulation cures, which mentioned the 
above, thus convey malignant revascularization-promoting 
signaling to pulmonary vascular. However, these proteins 
or factors are largely dependent on the mitophagy recep-
tors described above. Mitochondrial Uncoupling protein 
2 (Ucp2), a family of anion transporters, is attributed the 
target molecule to mitochondrial dysfunction and ER stress 
(ERs) in PASMCs, such as mitochondrial calcium influx 
imbalance, mitochondrial hyperpolarization and inade-
quate mitochondrial clearance by mitophagy [14, 85, 86]. 
Mouse lung endothelial cells transfect with Ucp2 siRNA 
sensing chemical hypoxia, leading to excessive PINK1-
induced mitophagy in PAECs [87]. At the meantime, the 
effects of Ucp2 silencing on mitochondria and apoptosis 
may be calcium and mitophagy mediated. Similar results 
are obtained in Ucp2 endothelial knockout mice, illustrating 
that Ucp2-PINK1 axis has an important potential target for 
future clinical therapeutic progress of PH. This also pro-
vides favorable evidence for the association of mitophagy 
with the surrounding environment to induce apoptosis of 
PAECs. Meanwhile, mitophagy induced by various factors 
is closely related to energy metabolism. Apoptosis-inducing 
factor (AIF) is anchored to the mitochondrial membrane 
space under normal physiological conditions, and performs 
its oxidoreductase and electron transport functions to main-
tain cell survival [88]. Ma et al. validated that mitochondrial 
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homeostasis is bust via the ubiquitinated AIF, giving rise 
to deranged PASMCs proliferation by PINK-associated 
mitophagy and mitochondrial complex I lesions in PH [89]. 
Also, Rats with mitochondrial Tu translation elongation fac-
tor (TUFM) silence or overexpression in model MCT of PH, 
which is implicated in protein translation elongation, onco-
genesis, oxidative stress, and mitophagy [90, 91], suggest 
that TUFM mediates mitophagy through the verification of 
LC3II/I and BECN1 levels and impact the imbalance prolif-
eration/apoptosis of PASMCs sensing hypoxia condition by 
AMPK/mTOR pathways controlled anabolism and catabo-
lism [92]. Gradually, β-arrestins (ARRBs), as originally 
known as negative adaptors of G protein-coupled recep-
tors (GPCRs), might be an optimal target to suppress the 
development of PH and the detailed molecular mechanism 
through inducing to upregulate BNIP3/Nix and perturb-
ing Akt/mTOR signaling pathway treated with si-ARRBs 
[82]. Although the regulation of key factors on mitophagy 
and PASMCs proliferation was described in these articles, 
the relationship between mitophagy and proliferation is not 
clearly expounded, and it’s still hotly debated.

Unfortunately, few drugs or derivatives have examined 
the involvement of underlying biology effect of mitophagy 
in PH and inhibit excessive mitophagy induced by various 
pathways. One of the endogenous derivatives of NO, named 
S-nitroso-L-cysteine (CSNO), inhibited excessive ERS and 
mitophagy induced by AngII and IL-6 in a concentration-
dependent manner that attenuates PAP and improves RV 
hypertrophy in vivo [93]. Also, it has been proved experi-
mentally in PH rat model using monocrotaline to trigger 
PINK1/Parkin-dependent mitophagy injects Qiliqiangxin 
(QLQX) to retain cytochrome c in the mitochondria, upreg-
ulates the expression of SOD2 and triggers metabolism 
shift, which means that symptomatic relief and metabolic 
reprogramming [94]. Broadly speaking, all the above con-
clusions suggest that mitophagy could further aggravate 
PH pathological features in both PAECs and PASMCs. In 
some sense, mitophagy induced by some stimulus provides 
“corresponding protection” for PASMCs to inhibit mito-
chondrial-dependent apoptosis in PH, whereas its subse-
quent outcomes differ from tumor cells manifestations [95, 
96]. Despite these efforts to understand the contribution of 
mitophagy in PH, there are still potential problems that have 
not been thoroughly delineated. Increasing mitophagy and 
decreased apoptosis at PASMCs are contrary to the rela-
tionship in tumor cells, and what is the correlation between 
increased mitophagy and proliferation of PASMCs? Also, 
it’s still unknown whether the temperate mitophagy could 
provide shelter for PH within a range, and the threshold for 
switching between these two states is unclear. Hence, further 
experiments are required to determine the interacting factors 
involved in mitophagy, providing a fresh perspective for the 
treatment of PH.

Mitochondrial dynamics in pulmonary hypertension

The complex and dynamic behavior of mitochondria in cells 
has been known for more than a century, but the function of 
mitochondrial homeostasis is poorly understood because of 
the limitation of scientific research. It was not until the late 
1990s that the first molecule mediating mitochondrial fusion 
and fission was discovered, indicating that the molecular 
basis of mitochondrial homeostasis was gradually revealed. 
Mitochondria are highly dynamic organelles that constantly 
move and shuttle in tissues and cells, following their mor-
phology also are changed to be balanced to support normal 
mitochondrial function and prevent disease. Mitochondrial 
fission, mitochondrial fusion and cristae remodeling events 
are collectively referred to as mitochondrial dynamics. In a 
narrow sense, mitochondrial dynamics refers to the process 
of mitochondrial fission and fusion. Mitochondrial fusion is 
the fusion of two mitochondria into one mitochondrion; and 
mitochondrial fission is when one mitochondrion splits into 
two smaller mitochondria. Mitochondrial fission and fusion 
are inseparable as a whole. Dysfunctional mitochondria are 
isolated by dynamic mitochondrial fission, and the fluctua-
tion of mitochondrial fission is determined by the metabolic 
demand of cells. The connections between mitochondria are 
the home field of mitochondrial fusion through mtDNA, 
mitochondrial protein, metabolites and lipids. In normal 
cells, they maintain a dynamic equilibrium, which affects 
the morphological changes of the cellular mitochondrial sys-
tem to adapt to different cellular functional states such as 
cell cycle, proliferation and apoptosis [97, 98]. Taking cues 
from those characteristics, data demonstrated that mitochon-
drial motility has a non-negligible effect on PH pathogenesis 
mediated mitochondrial morphology. Here, mitochondrial 
fission and mitochondria fusion are discussed synthetically 
the correlation with PH.

Mitochondrial fission in pulmonary hypertension

Mitochondrial fission is an intricate process involving a 
variety of proteins and molecules. Although some of the 
mechanisms have not yet been elucidated, the present study 
could be given us a rough outline (Fig. 4). At the molecular, 
mitochondrial fission mainly involves the both basic patho-
mechanism, one is the restriction of mitochondria by the 
endoplasmic reticulum (ER) and the other is the recruitment 
of dynamic-related protein 1 (Drp1). As for the former, the 
ER-associated Actin regulators INF2 and Spire1C, located 
at the interface between ER and mitochondria, cooperate 
to realize the polymerization process of Actin and bind the 
mitochondria into tubes at the site of mitochondrial fission 
[99–101]. In addition to Actin binding proteins, Cofilin, 
Cortactin, and actin-related protein 2/3 (Arp2/3) complexes 
may also be involved in this process [102]. The latter is the 
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main regulator of mitochondrial fission and the Drp1 recep-
tors mainly include mitochondrial fission factor (Mff), mito-
chondrial dynamics protein of 49 kDa/51 kDa (Mids) and 
mitochondrial fission 1 protein (Fis1) on the mitochondrial 
surface [103, 104]. Under physiological conditions, Drp1 
is free in the cytoplasm, and once stimulated by oxidative 
stress, the above mitochondrial fission receptors would 
attract Drp1 to bind with them that activating the progres-
sion of mitochondrial fission [105]. Therein, Fis1 alone 
cannot recruit Drp1 to the mitochondrial surface, but Fis1 
can form as a whole with Drp1 or Mff to participate in the 
process of mitochondrial dynamics, whereas Mff and Mids 
could recruit Drp1 independently, and the loss of Mff has the 
most striking impact on the process of mitochondrial fission, 
suggesting that Mff plays a major role in the recruitment of 
Drp1 to mitochondria [106, 107].

Against this background, Drp1 would undergo confor-
mational changes to modulate the direction of it through 
post-transcriptional phosphorylate modifications including 
Ser616 and Ser637, yet the coordinate ending is at oppo-
site poles. In PASMCs, under hypoxia-inducible factor-1α 
(HIF-1α) activation, phosphorylation at Ser616 of Drp1 
would monitor the cell cycle checkpoint to fuel PASMCs 
proliferation and perturb exercise capacity, right ventricular 

function and hemodynamics [108]. Mitochondrial divi-
sion inhibitor-1 (Mdivi-1), as an inhibitor of Drp1, phos-
phorylation at Ser616 of Drp1 is relieved in lung tissues 
after injecting Mdivi-1 [109]. And in the context of chronic 
thromboembolic pulmonary hypertension (CTEPH), WNT 
family member 5B (WNT5B) induces mitochondrial fission 
mediated higher phosphorylation of Drp1 Ser616 comparing 
to the control group, contributing to vascular smooth mus-
cle cell (VSMC) phenotype switching [110]. With insight 
into research, Feng et al. elucidate that HMGB1 is couple 
with the activating ERK1/2 signaling pathway to change the 
Drp1 expression and phosphorylation of Drp1 at Ser616, 
resulting in vascular remodeling progress of PAH [111]. 
The phosphorylation of Drp1 at Ser637 has the opposite 
effect of impairing Drp1 oligomerization and subsequently 
restrains mitochondrial fission [112, 113]. With the in-depth 
study, phosphorylated Drp1 Ser600 is deemed to be stim-
ulus-dependent, regulating mitochondrial fission through 
concomitant binding with Mff and Arp3, ultimately making 
F-actin and Drp1 to accumulate on the mitochondria [114].

As with all such correlations, post-transcriptional modi-
fication of mitochondrial fission receptor proteins is bound 
up with Drp1 phosphorylation and per se. Therein, Fis1 with 
a native N-terminus could block access to the Drp1 binding 

Fig. 4   Potential mechanism of mitochondrial dynamics; mitochon-
drial fission is regulated by dynamic-related protein 1 (Drp-1) and 
its receptors. Also, Drp-1 itself can also be phosphorylated at differ-
ent sites and have different effects on the PASMCs proliferation and 

vascular remodel. For mitochondrial fission, it’s mainly regulated by 
Mfn2 and OPA1. Once reversion of decreasing mitochondrial fusion, 
mitochondrial function would ameliorate mtDNA replisome deple-
tion, calcium process and PH progress
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site, whereas Fis1 phosphorylating of this N-terminal arm 
binds tightly to Drp1 [115]. Lian et al. attempt to evalu-
ate the role of Drp1-Fis1 direct interaction in MCT-induced 
pulmonary arterial hypertension (PAH), but they just verify 
that RV fibrosis, RV vascular rarefaction, and RV vascu-
lar rarefaction increases Drp1-mediated mitochondrial fis-
sion [116]. After that, they explore mitochondrial fission 
mediated Drp1-Fis1 using Mdivi-1 and a competing poly-
peptide P110 that regulates the Drp1-Fis1 interaction, but 
it just stops here [117]. And phosphorylation at Ser146 of 
Mff enhances its affinity for Drp1, in turn finally initiated 
mitochondrial fission, which causes damage to the structure 
and function of vascular endothelial mitochondria leading to 
endothelial apoptosis [118]. With activating the pro-fission 
mode of the Mid49/51, recruitment of Drp1 is enhanced, 
but there is also exaggerated inhibitory phosphorylation of 
Drp1 on Ser637 [119]. And once the presence of external 
stressors, Drp1-Mid51 binding is decreased underlying 
Drp1-dephosphorylation at Ser637, which is coordinated to 
mediate mitochondrial fission [120]. Following supra-cor-
onary aortic banding (SAB) caused group 2 PH, mitochon-
drial fission and expression of MiD51 are increased, which 
associated with impaired RV function and RV fibrosis, but 
they don’t find the phosphorylation of Drp1 at Ser616 and it 
may be degraded during the tissue harvesting process[121]. 
This is different from previous findings, but the concrete 
reasons for this have yet to be confirmed, suggesting that 
the subtle regulation between PH and mitochondrial fission 
needs further excavation.

The increasing mitochondrial fission under PH is known 
to induce other pathological alterations, such as the forma-
tion of a positive feedback loop of ROS/mROS, metabolic 
shift towards non-mitochondrial ATP generation, the afresh 
translocation of mitochondrial Ca2+ and the disturbance of 
mitochondrial membrane potential; those stress responses 
are applied jointly to mitochondria and pulmonary vascula-
ture [122–124]. Underlying these responses are controlled 
by several microRNAs (miRNAs) to reinforce the down-
regulation of fragmentation of the mitochondrial network 
and cause to cell cycle arrest in some lectures[125, 126]. Mff 

silencing by miR-340-5p significantly perturbs excessively 
ROS supplementation and ameliorates mitochondrial func-
tion to sustain proliferation-apoptosis balance of hypoxia-
treated PAMSCs through the regulation on Sirt1/3 pathway 
[127]. Of note, autophagy, a procedure that maintains nor-
mal cell homeostasis and baseline function of the body, is 
reported to be coordinately activated by mitochondrial fis-
sion under hypoxia condition, which further led to BMPR2, 
lysosome degradation and DNA binding 1 down-regulation 
[111]. Moreover, PASMCs proliferation induced by hypoxia, 
as caused by the excessive production of ROS derived from 
mitochondria, promote the oxidation of lipids and produc-
tion of toxic aldehydes [128]. Aldehyde dehydrogenases 
(ALDHs), as the detoxifier of aldehydes, regulate mitochon-
drial fission and PASMCs proliferation via 4-hydroxynon-
enal/HIF/Drp1 signal pathway to attenuates the development 
of HPH [129]. Nevertheless, the additional effect of ALDH2 
on mitochondrial function is needed to be explored.

On the other hand, some pharmacologic pathways could 
block mitochondrial fission and restore the balance of mito-
chondrial motility (Table 2). Trimetazidine (TMZ), a partial 
inhibitor of lipid oxidation, renders mitochondrial fusion and 
further ameliorates mitochondrial function to antagonize the 
establishment of a proliferative phenotype, which is one of 
the critical events associated with PH onset and progres-
sion [123]. Ru360 is the specific mitochondrial Ca2+ uni-
porter inhibitor, reduced the DNA fragmentation, inhibited 
the caspase-3 activation, and prevents from apoptosis via 
Drp1-dependent pathway in PAECs leading to pulmonary 
angiogenesis [124]. Treprostinil, a commonly used prostacy-
clin analog in patients with PH [130, 131], has been shown 
to stimulate the phosphorylation of Drp1 via either the IP 
or EP2 prostanoid receptors, resulting in the inhibition of 
phosphorylate Drp1 and recover mitochondrial fusion and 
elongation in PASMCs [132, 133]. Drp1-Fis1 interaction 
could be regulated by P110 that also reduces mitochondrial 
fission and improves RV diastolic function ex vivo in both 
normal and PH rats [117], however, that's opposite what 
Tian et al. found as the fact that P110 can only be activated 
at high doses [116]. The glucagon-like peptide-1 (GLP-1) 

Table 2   Drugs or compounds regulate mitochondrial fission improve PH pathological changes

Name Target Functions References

TMZ Decrease Drp1 Preclude the establishment of a proliferative phenotype [123]
Ru360 Decrease Drp1 Prevent apoptosis in PAECs [124]
Treprostinil Phosphorylation of Drp1 Restore mitochondrial function [132]
P110 Reduce mitochondrial fission Improve RV diastolic function [117]
Liraglutide Influence mitochondrial fis-

sion–fusion imbalance
Inhibit PDGF-BB-induced PASMC proliferation, migration and improve disturbed 

mitochondrial function in the failing RV
[134]

Mdivi-1 Decrease Drp1 Relieve PVR and PFVP, and attenuate mitochondrial fragmentation-mediated ER 
stress

[109, 135]
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receptor agonist, liraglutide, inhibits PDGF-BB-induced 
PASMC proliferation and phosphorylation of Drp1 at 
Ser616, making mitochondrial homeostasis tilted towards 
mitochondrial fusion, those suggest GLP-1 holds the prom-
ise as a drug through a mitochondrial dynamic-dependent 
mechanism against PH [134]. And Mdivi-1 treatment, as 
Drp-1 inhibitors, can be used as a control group for pharma-
cological treatment, which directly explains the feasibility 
of pharmacological treatment and relieves mitochondrial fis-
sion dysfunction. Also, Mdivi-1 treatment could relieve PVR 
and PFVP (Peak Flow Velocity of Pulmonary Artery) after 
the administration of Mdivi-1, improving hyperoxia-induced 
obstruction of pulmonary microvascular development [109]. 
Mdivi-1 treatment could attenuate mitochondrial fragmen-
tation-mediated ER stress and improve PASMCs function 
as well [135].

Although Drp1 has been systematically studied, the 
mechanism by which mitochondrial fission is closely related 
to cell fate has not been described thoroughly. Recently, 
Rajarshi et al. conducted careful analysis of the ways of 
mitochondrial fission from different angles, and the role of 
mitochondrial fission on cell proliferation/apoptosis was 
analyzed in detail [136]. Using super-resolution microscopy, 
they found two special forms of mitochondrial fission, called 
peripheral division and midzone division. Peripheral divi-
sion mainly occurs at the end of mitochondria, accompanied 
by changes in mitochondrial membrane potential, increase 
in ROS and damage to mtDNA, while midzone division 
mainly occurs in the middle of mitochondria, resulting in 
the increase of mitochondria and continuous proliferation 
of cells. Different ways of dividing mitochondria lead to 
different cell fates. Although this division pathway has been 
found, it is uncertain whether it exists in PH. If so, whether 
these two divisions exist simultaneously or independently to 
regulate cell fate that needs further investigation.

Mitochondrial fusion in pulmonary hypertension

The opposite of mitochondrial fission is mitochondrial 
fusion, which promotes the mixing of mitochondrial mem-
branes, inter-membrane spaces, and mitochondrial matrix. 
Fusion between the inner mitochondrial membrane (IMM) 
and outer mitochondrial membranes (OMM) occurs in a 
coordinated and nearly simultaneous manner, meaning 
that fusion of mitochondrial inclusions initiates as soon as 
the outer membrane of the mitochondria touch (Fig. 4). In 
some degree, regulating mitochondrial fusion of proteins 
have been highly conserved during evolution that medi-
ated by large guanosine triphosphatases (GTPase) [137]. 
Among them, mitochondrial fusion proteins Mfn1 and Mfn2 
are transmembrane GTPases situated in the OMM that is 
dependent on transmembrane domains (TMs) and complete 
mitochondrial membrane binding through GTP dimerization 

[97, 138, 139]. Optic atrophy 1 (OPA1) is a dynein-related 
GTPase, which is related to the fusion of OMM and inter-
membrane space [140, 141]. OPA1 as a precursor requires 
complex process hydrolysis in mitochondria to produce the 
OPA1 long-anchored form. Under various stress conditions, 
including mitochondrial membrane potential decline and 
dysfunction, long-anchored form of OPA1 was significantly 
processed to short-anchored form of OPA1 [142]. Is it pos-
sible that knockdown of any of these GTPases in PH would 
lead to a substantial reduction in mitochondrial fusion?

The primary mechanism of mitochondrial fusion is to 
regulate mitochondria related apoptosis of HPH through 
those steps. First, mitochondria fusion is also necessary to 
maintain the stoichiometry of the protein components of 
mtDNA replisome, a following effect by mtDNA depletion 
that caused occurrence of disease [143]. Impaired mito-
chondrial DNA (mDNA) double-strand further reduces the 
relative activity of ETC, and thus causes the increasing of 
proton leak, which is given rise to overall mROS produc-
tion [144]. The boom of mROS and mitochondrial damage 
form a positive feedback loop within compartments to signal 
downstream targets, some of which include signal transduc-
ers and transcription factors that regulate apoptosis, cellular 
proliferation, angiogenesis, and even gene expression [145]. 
Subsequently, the overexpression of Mfn2 could activate 
PASMCs apoptosis-induced factors, involving cytochrome 
C release from mitochondria to cytoplasm, activation of 
pro-caspase 9 or PARP, and the other caspase downstream 
cascade [146, 147]. Second, the descend of fusion proteins 
may influence the mitochondrial morphology and ER-mito-
chondrial interactions by largely reducing the mitochondria 
surface area, bringing about vascular injury and severe PH 
[148]. Epigallocatechin-3-gallate (EGCG), as the most abun-
dant bioactive component of green tea, has been previously 
identified as an inhibitor of the vascular cells proliferation 
and interferes with mitochondrial morphology of several 
diseases [149–151]. In the model of hypoxia-induced PH 
rats and PASMCs, injecting EGCG dose-dependently atten-
uates adaptive hypertrophy and normalizes mitochondrial 
morphology and network through KLF-4/MFN-2/p-Erk 
signaling pathway [152]. Also, adiponectin, an important 
adipocyte‑derived hormone involving lipid and glucose 
metabolism and insulin sensitivity, modulates mitochondrial 
function with the consequences ranging from upregulation 
of Mfn-2 to inhibition of PASMCs proliferation via Ras-
Raf-Erk1/2 signaling pathway [153]. And, the deficiency 
of Mfn2 could impairs the calcium-replenishing process of 
store-operated calcium entry (SOCE), eventually has effect 
on mitochondrial homeostasis and activates ERS after intra-
cellular Ca2+ store depletion [154]. Similarly, Robert et al. 
have reported that mitochondrial OPA1 provides protection 
for mitochondrial function and its communication with ER, 
and subsequently to attenuate mROS production during 
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hypertension [155]. Although OPA1 could be an important 
determinant in regulating vasculature, its upstream regula-
tory mechanism is not clearly defined, which would be inter-
esting to characterize in future studies.

Recent studies reveal that miRNAs play an important role 
in the pathogenesis of pulmonary hypertension by regulating 
PASMC proliferation and vascular remodeling [156, 157]. 
It’s reported by Ma et al. that miR-125a could protect pulmo-
nary artery vessels and mitochondrial homeostasis through 
the direct target of Mfn1 on hypoxia-mediated PASMCs 
and animal models [158]. In addition, miR-17 expression 
is upregulated in PASMCs treated by hypoxia that acceler-
ates the pathogenesis of PH [159]. Consistent with the find-
ings of research by Ma et al., aberrantly expressed miR-17 
alters the intrinsic apoptotic state of PASMCs by targeting 
Mfn2, thereby activating caspase-3 [156]. MiR‑31 plays 
a similar role to the above mentioned miR-17 that targets 
the down-regulation of Mfn2 expression performing with 
neointimal lesions in rats [160]. Moreover, another study 
using sugen5416/hypoxia-induced PH demonstrates micro-
RNA-140 directly targets Mfn1 and negatively regulates its 
expression [161]. This negative regulation is correlated with 
increased RV systolic pressure and hypertrophy that plays a 
role in the pathogenesis of PH-associated RV dysfunction.

The above data indicate that mitochondrial dynamics is 
a complex and progressive process involving either posi-
tive or negative feedback signals between various signal-
ing pathways. However, more work remains to be done for 
mitochondrial dynamics to attain their full potential as a 
target for PH treatment. Physiologically, pulmonary vascu-
lar damage caused by elevated mitochondrial fission can be 
mitigated by reducing its abnormal division and increasing 
mitochondrial fusion. Therefore, the balance of mitochon-
drial fusion and fission is essential for homeostasis. Once the 
balance is destroyed, it brings varying degrees of damage to 
all layers of vessel wall in PH, especially depending on the 
various functions of mitochondria. Based on this informa-
tion, intervening or activating mitochondrial dynamics is 
critical when designing protective pulmonary vasculature 
therapies for PH injury.

Mitochondrial unfolded protein response (UPRmt) 
in pulmonary hypertension

Mitochondria are made up of more than 1000 proteins, of 
which only 13 are made up of respiratory chains, or ATP 
synthases, encoded by the mitochondrial genome [162]. All 
remaining mitochondrial proteins are encoded by nuclear 
genes, synthesized on cytoplasmic ribosomes, and then 
introduced into mitochondria across one or both mitochon-
drial membranes [163]. Mitochondrial protein homeo-
stasis can only be maintained through proper folding and 
assembly of newly translated proteins, as well as efficient 

transportation and turnover of those proteins that fail to fold 
properly. Perturbations to mitochondrial proteostasis induced 
by a diverse number of stressors, which are contained oxida-
tive stress, the shift of energy focus, and the expression of 
abnormal proteins encoded by mtDNA and nuclear genome, 
may activate the UPRmt to mitigate the secretory load of mis-
folded proteins and temporarily restore mitochondrial func-
tions [164, 165]. Among inordinate mitochondrial proteosta-
sis, those components mainly include molecular chaperones 
and quality control proteases, both belonging to the inducer 
of UPRmt. For example, hypoxia-induced PH by treatment 
with 4-phenylbutyric acid (4-PBA), a chemical chaperone, 
stimulates the all branches of UPR [166]. Hsp90 regula-
tory network, a ubiquitous and essential molecular chaper-
one, is inhibited by specific inhibitor 17-AAG suppressing 
PDGF-stimulated proliferation and migration of PASMCs, 
is involved in UPR-mediated therapeutic strategy against PH 
[167, 168]. Also, Boucherat et al. have confirmed that the 
main actor of regulating PASMC proliferation and vascular 
remodeling through mtDNA damage in PH is the mtHSP90 
[169]. Taken together, chaperones are potentially therapeutic 
agents on the basis of UPRmt of pathogenic mechanisms and 
histological features in PH. In addition, the description of 
HSP60 and HSP70 in PH was mainly concentrated in cells 
as the whole, and the homeostasis and mechanism of HSP60 
and HSP70 in mitochondria are not explored, wishing you 
could fill in this blank later.

Mitochondria‑to‑nuclear communication 
in pulmonary hypertension

Evidence in the model organism of C. elegans implicates the 
mitochondrial inner membrane peptide transporter HAF-1 
and the bZip transcription factor activating transcription fac-
tor associated with stress-1 (ATFS-1) in UPRmt signaling. 
In addition to containing a nuclear localization sequence 
(NLS), the UPRmt transcription factor ATFS-1 also has mito-
chondrial targeting sequence (MTS) of N-terminus, which 
is essential for trafficking objective proteins. The MTS is 
a positively charged, facilitating ATFS-1 passage into the 
mitochondria. Once entering mitochondria, MTS is cleaved 
and the other degrades by the Lon protease, presuming that 
mitochondrial import efficiency is a key negative regula-
tor of UPRmt activation [170]. Under stressful conditions, 
ATFS-1 reduces input to mitochondria causing that a frac-
tion of the transcription factors are trapped in the cytosol 
under the action of NLS [170]. In a way, the presence of 
NLS and MTS in a single transcriptional activator allows 
the cell to monitor global mitochondrial input efficiency and 
determine the level of mitochondrial dysfunction at some 
degree. With the increase of mitochondrial dysfunction, the 
efficiency of mitochondrial input decreases, which facilitates 
the translocation of ATFS-1 to the nucleus and the activation 
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of UPRmt. Thus, mitochondrial homeostasis is maintained 
through a stress-dependent allocation of transcriptional acti-
vators between the inactive state of the mitochondria and the 
active state of the nucleus.

As ATFS-1 is transported to the nucleus during oxidative 
stress, how do mitochondria make the recovery of protein 
transport to equilibrium? Primarily, the nature characteristic 
of ATFS-1 labeling mitochondria is determined by MTS, 
in which case the characteristic of MTS is weakened under 
stress, ATFS-1 would be transferred to the nucleus [171]. 
Subsequently, mitochondrial membrane potential is weak-
ened, which activated UPRmt [172]. It could be inferred from 
the above results that a relatively weak MTS will have a 
relatively strong MTS. According to bioinformatics analy-
sis, HSP60 or SPG-7 has a stronger activity of MTS than 
ATFS-1, which would also make it transfer to dysfunction 
mitochondria to reestablish proteostasis and promote orga-
nelle recovery [173]. Another possibility is that certain heat 
shock proteins or proteases, such as mtHsp70, could fill in 
for protein disturbances in perturbative mitochondria, which 
also play a part in transporting substances and folding pro-
teins. At long last, it remains to be discussed whether the 
departure of ATFS-1 from mitochondria would activate the 
isomerization of some mitochondrial proteases to change 
the efficiency of the input pathway. However, there are few 
descriptions of UPRmt in PH, mainly focusing on the role 
played by UPR. For UPR, vascular remodeling has been 
shown to activate UPR and mediate macrophage recruit-
ment in IPAH patients, MCT and hypoxic rat models, and 
UPR is a novel therapeutic target associated with athero-
sclerotic plaque formation [174, 175]. Does this mean that 
UPRmt also plays an indispensable role in PH, but it has not 
been explored yet? This may provide a potential direction 
for exploring the role of UPRmt in PH and the precision 
treatment in the future.

UPRmt regulation and inter‑cellular integrated stress 
response in pulmonary hypertension

In addition to the above ATFS-1 regulation of UPRmt, there 
is just an importantly homologous factor named ATF5 that 
also regulates the UPRmt and controls the transport effi-
ciency of mitochondrial proteins. ATF5 has a bZIP tran-
scription factor similar to ATFS-1 that means it could up-
regulate inter-mitochondrial proteases and chaperones after 
being subjected to stimulation [176]. Synchronously, the 
regulation of UPRmt is also subject to two additional bZIP 
proteins at least, ATF4 and CHOP [176, 177]. The three 
transcription factors are related to a conserved adaptive 
response, named integrated stress response (ISR), which is 
controlled by kinases that respond to specific stressors and 
phosphorylate serine 51 of the translation initiation factor 
subunit eIF2α [178]. The ISR kinases are consist of PERK, 

HRI, PKR, and GCN2, but their responsive criterion are 
completely discrepant that, respectively, are unfolded protein 
accumulation in the ER, cytoplasmic double ribonucleic acid 
chains, heme depletion, and mitochondrial stress. In short, 
ISR activation during stress causes eIF2α phosphorylation, 
which promotes activation of the transcription factors ATF4, 
CHOP, and ATF5.

Chronic hypoxia may induce the generation of ROS in 
mitochondria, promote ERS, cytoplasmic disorder and result 
in the ISR in the PH and uteroplacental tissues in a way. 
18β-Glycyrrhetinic acid (18β-GA) has been found effica-
cious for attenuating PH through the inhibition of PERK/
eIF2α/NF-κB signaling pathway [179]. It has been demon-
strated that mTOR could act as the upstream of eIF2α to 
regulate hypoxic vascular remodeling in PH rat model [180]. 
Besides, intermittent hypoxia-induced PH could alleviate 
the proliferation of PASMCs and reverse the mitochondrial 
damage by inhibiting ATF4 [181]. Although UPRmt has not 
been described in detail in these researches, the main regu-
latory factors of UPRmt play an important role, suggesting 
that UPRmt plays a non-negligible role in the occurrence and 
development of PH.

Mitochondrial redox homeostasis in pulmonary 
hypertension

On account of redox homeostasis stress related treatment 
options in animal models have not been successful in clinical 
trials, it realizes that redox homeostasis is not just an imbal-
ance between oxidants and antioxidants, but that ROS, a key 
signaling molecule, dominate the balance of oxidative stress, 
including hydroxyl radicals, superoxide, and H2O2. As a 
primary source of ROS, mROS produced by the mitochon-
drial electron transport chain Rieske iron-sulfur protein in 
complex III could enter the cytoplasm through the voltage-
dependent anion channel (VDAC) through the mitochon-
drial outer membrane and participate in more intracellular 
transfer events, which is one of the main sources of cyto-
plasmic ROS [182]. Knockdown Rieske iron-sulfur protein 
could inhibit PASMCs hypoxic-induced mROS and Ca2+, 
whereas overexpressing Rieske iron–sulfur protein reverses 
this circumstance [183]. In particular, review of research 
has found that oxidase AOX could simulate the function of 
electron transport chain complexes III and IV in a mouse 
model ubiquitously expressing Ciona intestinalis AOX, it 
could prevent mitochondrial membrane hyperpolarization, 
increased superoxide production, and consequent hypoxic 
signaling, ultimately inhibiting the development of hypoxic 
pulmonary vasoconstriction (HPV) [184]. In addition, sub-
type 2 of mitochondrial electron transport chain complex IV 
subunit 4 (Cox4i2) has also been found to be an important 
site for the production of mROS, which plays a crucial role 
in acute hypoxic perception [185].
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mROS exert an essential role in PAH due to their involve-
ment in metabolism, cell signaling, mitochondrial dynam-
ics and mtDNA damage. Aberrant antioxidants and mROS 
production are present in the pathological scenarios of 
PAH upon the transformation to aerobic glycolysis [186]. 
It’s found that mROS could amplify the stimulus signal of 
glycolysis by inhibiting HIF-1α hydroxylation, promoting 
PASMCs hyperproliferation [187]. Meanwhile, ROS/mROS 
mediate mitochondrial fission of PASMCs contributing to 
pulmonary vascular remodeling, which is targeting on the 
positive feedback of ROS/mROS-DRP1 for the treatment 
of PAH [122]. And in PAs and PASMCs of fawn hooded 
rat (FHR)-PH, down-regulated mROS activates HIF could 
inhibit oxygen-sensitive voltage-gated K+ channel, lead-
ing to PAH. However, striking discrepancy with research 
results may mainly present due to the influence of species 
variation, different treatment conditions and the integrative 
correlation between PH and pathogenic factor. Intriguingly, 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 
like 2 (NDUFA4L2), as part of the electron transport chain 
(ETC) complex I (complex I) subunit, could also be used as 
downstream targets of HIF-1α, destroying the redox homeo-
stasis and producing more ROS [188]. It’s the realization 
that synergy of mROS, HIF and ROS stimulate oxidation, 
inducing mitochondrial function damage, energy deficiency 
and accompanying pathological manifestation.

Under physiological conditions, Ca2+ accumulation in 
mitochondria stimulates oxidative metabolism by activating 
TCA circulating enzymes, which can cause PASMC contrac-
tion, proliferation and migration, leading to pulmonary vaso-
constriction and vascular remodeling [189]. In the mecha-
nism of PH induced by mROS, there is increasing evidence 
that mROS can increase intracellular Ca2+ concentration 
through different intermediate mechanisms, and ultimately 
promote PH pathological process. For example, mROS can 
directly or indirectly interact with L-type calcium channels 
located on the cell membrane to open them and eventually 
lead to Ca2+ inflow [190, 191]. In addition, TRPC, as a 
non-selective cation channel, plays an important role in the 
regulation of Ca2+ [192]. The mRNA and protein expression 
of TRPC6 in IPAH patient PASMCs is much higher than 
that in control patients. When the level of TRPC6 protein is 
inhibited by small interfering RNA, the proliferation effect 
of PASMCs is significantly reduced [193]. At the same time, 
TRPC6 can be activated by second messenger diacylglycerol 
(DAG), and DAG production can be regulated by ROS. Fur-
thermore, DAG can also activate protein kinase C (PKCs), 
which motivate the activity of NADPH oxidase, and ulti-
mately positively up-regulate ROS levels, resulting in HPV 
[194]. In both MCT-PH rat models and PAH-PASMCs, the 
mitochondrial calcium mono-transporter (MCU) complex is 
a core component of the mitochondrial Ca2+ uptake system, 
and restoration or inhibition of its function could alter the 

mitochondrial Ca2+ and PAH-related PASMC phenotype 
[125]. Elevated Ca2+ levels induced by MCU have been 
shown to be the primary cause of mitochondrial reactive 
oxygen species (mROS) production, resulting in disrupted 
cellular metabolic patterns [195]. Collectively, Mitochon-
drial Ca2+ uptake and mROS production are interdepend-
ent phenomena, which contribute to the “mutual crosstalk” 
of cellular function with mitochondrial Ca2+ concentration 
representing the key to deciphering mROS signals (Fig. 5).

Current challenges and concluding remarks

In most cases, mitochondrial dysfunction is a pathological 
feature that appears early and persistently in cells involved 
in the development of acute and chronic lung diseases. This 
is one of the reasons why mitochondria are currently con-
sidered important targets for the design and development of 
drugs for lung diseases. Mitochondria have now discovered a 
variety of quality control pathways to maintain normal basic 
function and response to stress, which target individual pro-
teins as well as measure the entire mitochondrial network, 
including different scales of MQC and redox homeostasis. 
These studies open up new areas of research to understand 
how mitophagy, mitochondrial dynamics, metabolic trans-
formation, mitochondrial biogenesis, mitochondrial redox 
modifications are induced during these physiological pro-
cesses and whether the same molecules and mechanisms 
are at work. Meanwhile, the function of mitophagy shown 
in PASMCs is different from the conventional “apoptosis is 
proportional to mitophagy”, and the relationship between 
mitophagy and mitochondrial dynamics is also different 
from other diseases. In addition, the current detection meth-
ods for mitochondria also have certain limitations. The most 
direct and effective method to evaluate mitochondria is tis-
sue biopsy, which has certain tissue damage. We still lack a 
comprehensive understanding of the relative contributions 
and dynamics of these processes after mitochondrial dam-
age. Over the past few years, the field has gained significant 
mechanistic understanding of mitochondrial quality control 
as well as the redox homeostasis pathway. Although we are 
only in the early stages of understanding how these pathways 
work together to produce the functional mitochondrial net-
work, therapeutic techniques based on mitochondrial quality 
control and redox homeostasis pathway of PH are promising. 
It is necessary to give further exploration and development.

For MQC, a compensatory molecular mechanism for 
improving mitochondrial function, its defects are often 
accompanied by mitochondrial damage, abnormal prolif-
eration of PASMCs and even death of PAECs in the devel-
opment of PH. In-depth studies have revealed complex 
mitochondrial quality control and redox homeostasis per-
turbations of PH vasoconstriction-vascular remodeling cir-
cuits in PH. These findings suggest that the development of 
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drugs and targets that promote mitochondrial biogenesis, 
maintain mitochondrial dynamics, balance UPRmt, and 
improve redox homeostasis may be an effective strategy 
to mitigate or treat PH. In this paper, deep studies reveal 
the complex reprogramming and perturbation of MQC 
and redox homeostasis mechanisms in PH, and explore 
their regulatory mechanisms in PASMCs and PAECs, and 
prove that MQC could protect pulmonary vascular walls 
and relieve duct stenosis. Although mitochondrial regula-
tion of lung disease is a complex turnover process, we 
expand understanding of the characteristics of mitochon-
drial differences in specific pulmonary vascular diseases, 
which may help elucidate new pathological mechanisms 
and understand the clinical implications of various disease 
phenotypes. Therefore, we also hope to find more mecha-
nisms to achieve targeted drugs that accurately control PH, 
and further realize the transformation basic research into 
clinical practice.
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Fig. 5   In oxidative stress status, the mitochondrial respiratory 
chain acts as the central oxygen sensor of mitochondria to induce 
the explosive of mitochondrial ROS, which is also one of the main 
sources of intracytoplasmic ROS, thus activating HIF. At the same 
time, HIF could further amplify the intracellular oxidative stress 
signal by acting on ROS/mROS. Concurrently, the transfer between 
the ER and mitochondria is mediated by a multiprotein complex 
composed of IP3R in the ER or GRP75 and VDAC1 in OMM, and 
MUC in IMM. Mitochondrial Ca2+ uptake affects the production of 

mROS and affects pulmonary vascular remodeling by stimulating 
Krebs circulation. Loss of MCU in PAH reduces mitochondrial Ca2+ 
while increasing cytoplasmic Ca2+, promoting ER stress and promot-
ing pulmonary vasoconstriction. I, II, III, IV: complex I, II, III, IV; 
ER endoplasmic reticulum, MCU mitochondrial calcium uniporter, 
VDAC1 voltage-dependent anion-selective channel protein 1, IP3R 
inosit1,4,5-trisphosphate receptor, SERCA​ sarco/endoplasmic reticu-
lum calcium transporting ATPase
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