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Abstract
Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the 
world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to 
alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending 
these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can 
serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the 
pathophysiology of cancer whose levels are significantly altered while ‘reprogramming the energy metabolism’, a cellular 
condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has 
tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during 
the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from 
cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different 
metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. 
In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of 
this emerging field.
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Introduction—metabolites and their 
importance

Metabolites represent the ultimate downstream state in 
the central dogma exceeding the genome, transcriptome, 
and proteome. Their activity is connected with large, 
interweaved networks of biochemical pathways that help 
in understanding the physiology in healthy as well as in 
diseased conditions. Metabolites drive various cellular 
functions like energy production, signal transduction, and 
homeostasis. Interestingly, metabolism exhibits dynamicity, 
i.e., a change in physiological conditions can result in 
alterations in the metabolic pathways resulting in the 
formation of various metabolites which can be both essential 
and non-essential. For example, in aerobic glycolysis, the 
end product formed is pyruvate, which regulates the insulin 
release, and thus maintains the blood glucose levels, which 
seems to be more essential in nature. However, in anaerobic 
conditions, especially during intense workouts, wherein, 
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there is high energy demand and low oxygen availability, 
the pyruvate formed is catalyzed to lactate, with the help 
of the enzyme lactate dehydrogenase, which builds up in 
the bloodstream, which may not be much essential at that 
point. In disease conditions like cancer, the cancerous cells 
deliberately channel the pyruvate to anaerobic metabolism 
resulting in lactate production and acidic microenvironment 
[1]. It is estimated that about 3000 metabolites are essential 
for normal growth and 20,000 non-essential metabolites are 
known to date [2]. Metabolites are generally categorized 
into two types, namely primary metabolites, and secondary 
metabolites. Primary metabolites are essential for the 
growth of the organism. They are the intermediary products 
of crucial metabolic pathways and play a role in the 
generation of energy, and the formation of biomolecules 
such as amino acids, carbohydrates, and nucleic acids. 
The secondary metabolites are not required for metabolic 
activities and are formed in response to external stimuli such 
as pharmaceuticals, pollutants, or contaminants.

Alteration in the biochemical processes via genetic 
aberrations in critical genes can lead to the formation of 
intermediary metabolites which can be deleterious to the 
health of the organism [3]. These metabolic shifts can be 
investigated using diverse metabolomics strategies that 
aim to identify the specific metabolic changes in patients 
compared to healthy controls. Subsequently, these findings 
can be systematically analyzed and validated in larger 
cohorts for the development of biomarker panels to be used 
for the diagnosis of diseases [4–10].

It is now well-appreciated that metabolites play key 
roles in diverse disease pathophysiology including cancer, 
and understanding these metabolic alterations can aid 
in a better understanding of the disease mechanisms and 
would facilitate the development of biomarkers for early 
diagnosis. The current review is aimed at summarizing 
the metabolomic methods dedicated to understanding 
the alterations in cancer metabolism and the prospect of 
metabolomics for the development of reliable metabolite 
biomarkers for cancer diagnosis.

Metabolism and cancer

Cancer is a result of a complex interplay of epigenetic, 
genetic, and environmental factors that disrupt the orderly 
events of cell death and confer the cells with the ability to 
uncontrolled growth. The intricate regulation that directs 
the cells to undergo programmed cell death is lost and 
the cells start to proliferate seamlessly leading to cancer 
development and spread (metastasis). It is noteworthy to 
mention that cancer initiation, progression, and maintenance 
are closely linked to alteration in metabolism, and therefore 

‘reprogramming energy metabolism’ is recognized as one 
of the hallmarks of cancer [11].

Reprogramming energy metabolism as a hallmark 
of cancer

Deregulation of cellular energetics and metabolism is one 
of the critical hallmarks of cancer through which cancer 
cells manage to reprogram the metabolic pathways for their 
benefit and sustenance. Glucose is the primary source of 
energy in most mammalian cells, and it is metabolized 
into pyruvate via the glycolysis pathway. Under aerobic 
conditions, pyruvate embarks into the Krebs cycle where 
it is completely oxidized to generate ATP (oxidative 
phosphorylation), which fulfills the energy demands of 
the cell. Notably, in rapidly proliferating cancer cells that 
require a lot of ATP for their sustenance, the majority of 
the pyruvate is channeled to form lactate via the action of 
lactate dehydrogenase, a pathway typically active during 
anaerobic conditions. This aberrant phenomenon of lactate 
production under aerobic conditions is known as the 
‘Warburg effect’ or aerobic glycolysis [12]. Although a 
binary switch for the regulation of aerobic glycolysis and 
oxidative phosphorylation is non-existent, accumulating 
research indicates that these metabolic alterations in 
cancer cells are governed by genetic as well as epigenetic 
changes, and ultimately results in enhanced bioenergy 
production that supports tumor progression [13]. Along 
these lines, mutations in the mitochondrial DNA (mtDNA) 
that compromise the oxidative phosphorylation pathway 
drive aerobic glycolysis and the generation of reactive 
oxygen species (ROS) in cancer cells. In addition, several 
signaling pathways including mTOR, HIF1α, p53, PI3K/
Akt, Erk1/2 MAPK, AMPK, and ULK1 drive the metabolic 
reprogramming and contribute to the Warburg effect [14]. 
Moreover, cancer cells are characterized by an increase 
in glucose uptake which is meant to cope with the shorter 
aerobic glycolytic pathway (energy), as well as to feed the 
pentose phosphate pathway for the generation of nucleic acid 
precursors, and NADPH for fatty acid synthesis (biomass) 
and maintenance of redox homeostasis [15].

In addition to glucose, cancer cells also frequently 
rely on glutamine as a source of energy and precursor 
for other amino acids and lipids. This blood-borne amino 
acid is crucial for the replenishment of the Krebs cycle 
intermediates, pyruvate, and other building blocks that 
contribute to cancerous growth. Although glutamine 
primarily supplements glucose for the production of energy 
and biomaterials, in times of glucose deficiency, cancer cells 
can uptake and metabolize glutamine oxidatively to fulfill 
their energy needs [16].

Another key player in the metabolic reprogramming of 
cancer cells is lactate, an organic molecule secreted by 
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the cells that undergo anaerobic and aerobic glycolysis. 
Although lactate was long considered a toxic waste, 
recent developments point to its tumor-promoting 
capabilities [17, 18]. More specifically, lactate present in 
the cytosol of the tumor cells enters the mitochondria via 
the mitochondrial monocarboxylate transporters where 
it is converted to pyruvate, which serves as a source of 
ATP production [19]. In addition, lactate has also been 
established as a key player in promoting cell migration, 
metastasis, angiogenesis, immune evasion, cancer cell self-
sustenance, and shaping the tumor microenvironment [1]. 
Furthermore, the accumulation of huge amounts of lactate 
produced by aerobic glycolysis results in acidification of 
the tumor microenvironment and it has been found that this 
acidosis supports angiogenesis, metastasis, and immuno-
suppression of tumor cells [20].

Deregulation of optimal metabolic functioning of a cell, 
especially that of mitochondrial metabolism, may favor 
tumor development and progression. In 2020, a team of 
Italian researchers reported that the production of reactive 
oxygen species (ROS) within a cellular environment may 
set off various causative factors that may activate different 
oncogenes within a cell leading to cancer development, 
an observation that contradicts the general hypothesis 
which states that oncogenes are involved in abnormal 
ROS production [21]. In another recent study, the level of 
Acotinase 2 (ACO2), an enzyme found in mitochondria, 
was observed to be diminished in MCF7 breast cancer cells 
[22]. Moreover, its overexpression leads to impaired cellular 
proliferation and the deregulation of the pyruvate metabolism 
pathway by rerouting pyruvate into the mitochondria that 
erode the Warburg effect-like bioenergetics characteristics, 
suggesting that cancers with downregulation of ACO2 levels 
are effectively rewired through metabolic reprogramming 
[22]. Notably, mitochondrial metabolism not only provides 
the necessary amounts of ATP but also caters to the 
requirement of building blocks for anabolism (anaplerosis) 
of the rapidly dividing cancer cells. Citrate, one of the key 
Krebs cycle intermediate, is positioned at a critical juncture 
between the anabolic and catabolic pathways. Apart from 
fulfilling the needs of oxidative phosphorylation for energy 
production, citrate can also be converted back to acetyl-
CoA by the action of the enzyme ATP-citrate lyase (ACLY) 
that can participate in fatty acid synthesis (to meet the 
requirements of membrane precursors) in the cytoplasm. 
Moreover, when transported to the nucleus, acetyl-CoA 
can also take part in acetylation reactions for regulating 
gene transcription and other cellular processes including 
autophagy [15].

Overall, it is well-established and evident that metabolic 
reprogramming offers proliferative advantages to cancer 
cells, and understanding these metabolic alterations 
contributes to a better understanding of the disease.

Metabolic diseases as comorbidities in cancer

The co-existence of disorders in addition to a primary 
disease of interest is defined as comorbidity [23]. 
Considering the importance of metabolic rewiring in 
cancer development, it is not surprising that there is a 
significant association between cancer and other diseases, 
particularly metabolic disorders such as diabetes, obesity, 
chronic kidney disease (CKD), and liver cirrhosis. These 
associations are complex and draw commonalities so that 
the mechanistic insights into this interdependence can 
be of significant relevance to widening the therapeutic 
prospect for cancer [24]. From the disease pathology 
point of view, this metabolic overlap between cancer and 
metabolic diseases is often responsible for the occurrence 
of comorbidity among cancer patients, which is seemingly 
increasing and affecting the diagnosis, treatment, and 
prognosis of the patients. Unfortunately, cancer patients 
with comorbidities have poor survival, worse quality of 
life, and increasing healthcare expenses [23].

Diabetes, the most prevalent metabolic disease, is 
closely associated with an increased risk of several cancers 
including endometrial, colorectal, breast, pancreatic, and 
liver cancers [25]. Although specific signaling pathways 
have been implicated in connecting diabetes to cancer, the 
most relevant mechanism for this association is related to the 
circulation of higher levels of insulin and insulin-like growth 
factors in the blood that regulate cell proliferation and 
apoptosis, thereby increasing the risk of cancer prevalence 
[26]. In addition, higher circulating levels of glucose have 
also been found as a risk factor for breast and pancreatic 
cancer occurrence. Mechanistically, hyperglycemia 
promotes O-GlcNAcylation modification of ribonucleotide 
reductase resulting in an imbalance in the nucleotide pools 
that subsequently drives oncogenic KRAS mutations to 
support cancerous growth [27].

Obesity, a condition resulting from an excessive 
amount of fat accumulation in the body, increases the risk 
of diabetes, cardiovascular diseases, and cancer. Recent 
epidemiological reports have revealed associations between 
obesity and several cancers including breast, kidney, 
colorectal, liver, esophageal, endometrial, thyroid, bladder, 
and pancreatic cancers [28]. In particular, a study conducted 
by Calle and co-workers on a cohort of U.S. adults suggested 
that 19.8% of cancer mortalities in women and 14.2% in men 
are directly linked to obesity [29]. The metabolic alterations 
during the development of obesity are potent enough to 
induce epigenetic as well as genetic changes that support 
cancer growth and maintenance. More specifically, obesity-
mediated insulin resistance developed due to the secretion 
of leptin, cytokines, free fatty acids, and triglycerides from 
adipocytes promotes oncogenic alterations that drive cancer 
development [30].
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Chronic kidney disease (CKD) is a medical condition 
characterized by steady but continuous loss of kidney 
function over time. Notably, CKD and cancer are linked 
in a complex way; while CKD can be a risk factor for 
malignant transformation, cancer therapies are also shown 
to contribute to CKD development. In particular, end-stage 
CKD patients undergoing kidney transplantation and dialysis 
are at a higher risk for some cancers such as melanoma, renal 
carcinoma, Kaposi sarcoma, and thyroid cancer. Conversely, 
several cancer subtypes, in particular prostate, lung, breast, 
and colorectal cancers are also frequently implicated as risk 
factors for the development of CKD [31].

Hypertension has also been recognized as one of the 
most common comorbidities in cancer patients which 
results from the use of angiogenesis inhibitors, alkylating 
agents, and immunosuppressants as chemotherapeutic 
agents [32, 33]. Cancer treatment with angiogenesis 
inhibitors such as tyrosine kinase inhibitors (sorafenib, 
pazopanib, and sunitinib) and anti-vascular endothelial 
growth factor antibody (bevacizumab) leads to the 
development of hypertension, although the mechanism is 
still under investigation. Further, alkylating agents cause 
vasoconstriction and arterial endothelial dysfunction 
that significantly contribute to chemotherapy-induced 
cardiotoxicity [34].

Therefore, it is evident that several metabolic disorders 
develop as comorbidities in cancer, or they can drive cancer 
development, and affect the overall survival of the patients. 

Nevertheless, sufficient data and mechanistic studies on 
the specific comorbid conditions are warranted for better 
management and treatment of cancer patients.

Oncometabolites and their mechanism of action 
in cancer and metastasis

Alterations in the metabolic pathways during tumor 
development primarily result from the gain of function or 
the loss of function mutations in genes encoding enzymes 
that are involved in the respective metabolic pathway. 
Subsequently, this leads to changes in metabolite turnover in 
the cell and some of the metabolites aberrantly accumulate 
in the cancer cells. Such abnormally accumulated 
metabolites are termed oncometabolites [35, 36]. Although 
several metabolic intermediates were initially proposed as 
oncometabolites, only a handful of them including succinate, 
fumarate, and 2-hydroxyglutarate have been well-established 
(Fig. 1). Notably, these oncometabolites share significant 
structural similarity and they operate in the metabolic 
proximity of the Krebs (TCA) cycle [37].

2-Hydroxyglutarate was the first oncometabolite to be 
identified and subsequently, the two other structurally similar 
members were included. There are two stereoisomeric 
forms of this oncometabolite—D-2-hydroxyglutarate and 
L-2-hydroxyglutarate, and they are generated via discrete 
metabolic pathways. Overproduction and accumulation 
of D-2-hydroxyglutarate are linked to a gain of function 

Fig. 1   Mechanism of action of the oncometabolites (fumarate, succinate, L-2-hydroxyglutarate and D-2-hydroxyglutarate) that are generated 
from the Krebs cycle due to mutations in fumarate hydratase (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) enzymes
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mutations in IDH1 or IDH2 genes encoding the enzyme 
isocitrate dehydrogenase that catalyzes the reversible 
conversion of isocitrate to α-ketoglutarate. Mutated isocitrate 
dehydrogenase attains a neomorphic activity that drives the 
reduction of α-ketoglutarate to D-2-hydroxyglutarate instead 
of isocitrate, thereby leading to abnormal accumulation of 
the oncometabolite [38]. On the contrary, the accumulation 
of L-2-hydroxyglutarate is a result of the nonspecific activity 
of malate dehydrogenase that catalyzes the reduction of 
α-ketoglutarate to L-2-hydroxyglutarate [39]. Similarly 
the accumulation of succinate and fumarate results from 
mutations in succinate dehydrogenase and fumarase 
hydratase enzymes, respectively [40, 41].

Although the oncometabolites produce distinct 
downstream effects in cancer cells, they also share a few 
common targets due to their structural similarity. Along these 
lines, all these oncometabolites can inhibit 2-ketoglutarate-
dependent dioxygenases including prolyl hydroxylase 
domain proteins (PHDs), lysine demethylases (KDMs), 
and ten-eleven translocation (TET) enzymes [37]. In 
normal cells under normoxia, PHDs promote hydroxylation 
of proline residues of hypoxia-inducible factors (HIFs), 
which are subsequently ubiquitinated and degraded by the 
ubiquitin–proteasome system. However, in cancer cells, the 
accumulated oncometabolites inhibit the function of PHDs 
thereby leading to the stabilization of HIFs that promote 
transcription of genes responsible for angiogenesis and 
cancer cell growth. In addition, succinate can also promote 
angiogenesis in an HIF-independent manner by upregulating 
the expression of vascular endothelial growth factor [42]. 
Moreover, fumarate can promote the stabilization of HIF-1α 
by non-canonical activation of NFκ-B signaling [43]. 
KDMs are responsible for demethylating lysine residues in 
histones, whereas TET enzymes catalyze the hydroxylation 
of 5-methylcytosine in DNA CpG dinucleotides. Therefore, 
inhibition of KDMs and TET enzymes results in aberrant 
histone and DNA methylation, respectively, that promotes 
epigenetic modifications in the cancer cells [44].

A growing volume of literature suggests that 
mitochondrial oncometabolites alter distinct biological 
pathways in cancer and therefore, in-depth mechanistic 
insights into their involvement in cancer are still required 
for a comprehensive understanding of disease progression 
and the development of diagnostic and therapeutic 
interventions. Notably, mitochondrial metabolism plays 
a crucial role in cancer, and therefore, targeting altered 
mitochondrial metabolites can lead to the development of 
novel strategies for cancer therapy and personalized cancer 
therapy [45]. Apart from the above oncometabolites, a 
wide range of metabolomics studies have also identified 
several metabolites that are altered in different cancers 
(see Section "Data processing and preprocessing tools"). 
However, the metabolic pathways associated with this 

metabolite alteration and its involvement in cancer 
progression still warrant a deeper investigation. In particular, 
the enzymes positioned upstream or downstream of the 
metabolic defects can be investigated to get an insight into at 
least the cause of the metabolic alterations. For instance, the 
knockdown of genes encoding Fatty acid synthase (FASN) 
and Acetyl-CoA carboxylase (ACC), the two important 
enzymes involved in the fatty acid synthesis, promotes 
apoptotic cell death of cancer cells. Similarly, inhibition of 
the enzyme ATP-citrate lyase (ACLY), which catalyzes the 
conversion of citrate to acetyl-CoA, leads to growth arrest 
in cancer cells via the inactivation of the Akt pathway [46]. 
Stearoyl-CoA desaturase 1 (SCD) is a crucial metabolic 
enzyme involved in the conversion of saturated fatty acids 
to mono-unsaturated fatty acids. A study by Rueda-Rincon 
and co-workers demonstrated that the knockdown of SCD 
leads to the accumulation of saturated phospholipids of 
the phosphatidylinositol headgroup class, as revealed by 
targeted lipidomics analysis that could attenuate the Akt 
pathway [47].

Further, the metabolic regulation of cancer cells during 
metastasis is a complex and dynamic process that currently 
lacks complete understanding. Despite extensive research 
in the field of cancer metabolomics, a comprehensive 
understanding of this process remains an open investigative 
genre. Being a complex process, metastasis involves the 
spread of cancer cells from the primary tumor site to other 
distant organs of the body including unrelated organs as 
well. Metastasis, involving several biochemical reactions and 
cascades, is metabolically highly inefficient, as most cancer 
cells do not survive throughout. However, some cancer cells 
undergo metabolic adaptations to optimize their survival in 
such inhospitable environments. Cancer cells experience 
the complex process of dysregulating intrinsic metabolic 
pathways at different stages of the metastatic cascade to 
optimize their survival in specific microenvironments [48].

Numerous scientific research sheds evidence that 
cancerous neoplastic cells in primary tumors frequently 
reside within a hypoxic tumor microenvironment (TME), 
where they utilize anaerobic glycolysis pathways to support 
cellular growth and proliferation [49–51]. Significant 
intratumoral heterogeneity lets some cancer cells, capable 
of metastasizing, detach from the primary tumor and 
encounter elevated oxidative stress levels, necessitating 
various metabolic and transcriptional adaptations to endure 
the hostile milieu of the bloodstream [52–54]. Following 
migration and implantation in remote organs, cancer cells 
manipulate and reconfigure their metabolic pathways for 
survival and propagate using the available nutrients and 
oxygen at non-primary sites termed metastatic sites. At the 
onset of the metastasis phenomenon, cancer cells primarily 
attempt to invade the tumor-associated stromal regions and 
undertake the epithelial-to-mesenchymal transition (EMT) 
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process, resulting in loss of their polarity and substantial 
increase in the invasive, stress-resistant potential, eventually 
disseminating into a mesenchymal-like phenotype [55]. In 
metastatic cancers, several studies have reported metabolites, 
like 2-hydroxyglutarate to regulate and moderate EMT via 
the regulation of several transcription factors [56–58].

Importance of metabolite fluxes in cancer and its 
metastasis

Several critical intermediate steps in various biochemical 
pathways of a living system are frequently perturbed and 
impaired in various diseases, which contributes to their 
complexity. The metabolism at a cellular level is highly 
dynamic and coordinated wherein the metabolite nutrients 
are perpetually utilized towards energy production. 
Metabolic biochemical reactions can be described in terms 
of the rate of these reactions, technically known as metabolic 
flux. Metabolic flux refers to the rate of transformation 
of a substrate to product metabolites in units of moles 
per unit of time per cell in complex networks of several 
biochemical reactions [59]. One or more metabolite fluxes 
may be altered as the overall result of metabolic disorders 
and tumorigenesis at the organ and organism levels [60, 

61]. Metabolic flux is governed by several components of 
the living organism such as genotypic and environmental 
features and is decisive in determining the disease or healthy 
phenotypes [62–64]. Isotope tracing is the method of choice 
widely used in metabolic flux analysis and primarily uses 
nutrient metabolites labeled either with stable isotopes (like 
13C, 2H, and/or 15N) or radioactive isotopes (like 18F, 3H, 14C) 
[65]. Broadly, there are two categories of metabolic fluxes, 
namely, intracellular metabolic fluxes and extracellular 
metabolic fluxes. Intracellular metabolic fluxes are those in 
which the fluxes are limited within the cell and do not cross 
the cell membrane, while extracellular metabolic fluxes 
are the fluxes that are not limited within the cell and can 
cross the cell membrane facilitating intercellular metabolic 
crosstalk. The impacts of extracellular metabolic flows or 
fluxes, for instance, affect the rate at which amino acids or 
carbohydrates like glucose are taken up or the rate at which 
cellular biomass grows, which can be easily evaluated in the 
extracellular environment (Fig. 2). As a result, it is possible 
to directly assess these fluxes by monitoring alterations in 
the change in concentration of extracellular metabolites 
or biomass with respect to progressing time. However, a 
similar strategy can’t be applied to the measurement of the 
intracellular fluxes. These measurements can be achieved 

Fig. 2   A representation of metabolic flux during cellular metabolism where metabolic nutrients are constantly consumed, utilized for cellular 
biomass and energy production, and ultimately secreted out (Figure was created with BioRender under a paid subscription)
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through the incorporation rates/ blueprints of isotopically 
labeled metabolites like 13C-Glucose etc. within a biological 
cell or organism [66]. The labeled metabolites are consumed 
within the cells to carry out the physiological functions and 
in turn, the biochemical reactions get traced with these 
labeled isotopic metabolites, eventually helping in the 
measurement of the metabolic fluxes within a system [67]. 
Biologists always strive to understand the perturbations 
and intricacies of various molecular events playing a 
role in oncological diseases. One of the research goals 
in metabolomics of cancer and metastasis is to deduce 
the complex metabolic rewiring of the cancer cells /
tumors supporting their extensive demands in terms of 
biosynthetic and energetic demand. Metabolic flux analysis 
tends to be one such analysis pipeline that provides cancer 
biologists the answers to the complex metabolic cascades 
in various cancers. In cancer research, comprehending the 
changes in metabolic flux that are specific to tumors can 
aid in identifying the reliance on particular enzymes that 
can eventually be selectively targeted by pharmacological 
inhibition to combat cancer cells [61, 68]. Several 
researchers have used the power of metabolic flux analysis 
and reported the intricacies of altered metabolism in cancer 
cells when they metastasize to various distant organs. Using 
human and mouse models across several cancers, researchers 
have studied metabolic flux as a comparative evaluation of 
the metastatic tumors when compared to non-metastatic 
localized primary tumors [54, 69–77]. In a study, utilizing 
isotope tracing, Labuschagne et al. reported the clustering 
capability of cancer cells to be highly impacted by the 
metastatic potential of the detached cancer cells as these 
cells get protection from reactive oxygen species (ROS) that 
exist in the circulation through alterations in the metabolism 
towards buffering the oxidative stress developed in cancer 
cells [78]. Similarly, using in  vivo 13C tracer analysis, 
Christen et al. assessed the pyruvate carboxylase-dependent 
anaplerosis process in breast-cancer-derived lung metastases 
and the primary breast tumors and found that lung 
metastases possess superior pyruvate carboxylase-dependent 
anaplerosis levels compared to primary breast cancers [71]. 
Such studies have shed light on the possibilities of isotope 
tracing methods in unraveling the deeper understanding of 
the metabolism switchovers in cancer and metastasis.

OMICS approaches in cancer research 
and biomarker discovery

The omics approaches consist of the study of genes 
(Genomics), mRNAs (Transcriptomics), proteins 
(Proteomics), and metabolites (Metabolomics) using high 
throughput techniques such as next-generation sequencing, 
RNA-Seq, liquid chromatography-mass spectrometry 

(LC–MS), nuclear magnetic resonance (NMR), etc. The 
omics approach aims to achieve a holistic view of various 
biomolecules involved in disease conditions such as cancers 
and other disorders in comparison to healthy individuals. 
Notably, an integrated omics strategy is crucial for a 
deeper understanding of the initiation, progression, and 
maintenance of cancer. In addition, omics technologies are 
competent enough to identify the cellular, biochemical, or 
molecular alterations during cancer development that can 
be measured in biological media such as tissues, cells, or 
biofluids.

Genomics, the pioneer omics technology, deals with the 
identification of alterations such as deletions, mismatches or 
transitions, and single nucleotide polymorphisms between 
nucleotide base pairs of the DNA in genes. Several gene 
mutations implicated in cancers have been identified using 
techniques like PCR, microarray, whole genome sequencing 
(WGS), and next-generation sequencing (NGS). Despite 
great advancements in genomics, genetic information is 
not sufficient to predict the outcome of the disease [79]. 
Transcriptomics involves the study of transcription products 
such as mRNA of the whole cell. The main advantage of 
studying a transcriptome over a genome is that the transcript 
or mRNA in a cell reflects the expression of the active genes 
under the given conditions. Therefore, understanding the 
transcriptome is necessary for elucidating the functional 
part of the genome that is active during cancer or normal 
conditions. Transcriptomic analysis employs a wide variety 
of techniques right from northern blotting, RT-PCR, and 
microarrays, to high throughput RNA-Seq. Largely with the 
advent of RNA-Seq, the detection of differentially expressed 
genes has become more robust compared to microarray 
techniques [80].

The proteome, which encompasses the complete set of 
proteins, is the most complex component that reflects the 
dynamics of the cell. Proteins drive the cellular processes 
and pathways promoting growth, proliferation, and apoptosis 
(or evading cell death), and the proteome significantly 
varies in healthy and disease states. The altered expression 
of proteins and unwanted post-translation modifications 
(PTMs) affect the protein structure and thereby their 
function and such events have been reported in diverse 
malignancies. These factors cannot be evaluated solely by 
genomic and transcriptomic approaches. The introduction of 
a wide array of techniques, for example, 2D electrophoresis, 
MALDI, SELDI, Electrospray ionization, reverse phase 
protein array, etc., to the field of clinical proteomics has 
helped to understand the mechanism of carcinogenesis as 
well as to discover biomarkers for diagnosis and therapeutic 
targets, thus making proteomics an essential tool to bridge 
the gap between genomics and cellular physiology [81, 82].

Metabolomics is currently an evolving field that deals 
with extracting information about all the metabolites 
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present in a biological sample. Metabolites are the 
downstream products of central dogma; in other words, 
metabolites are the continuation of central dogma after 
proteins. Slight perturbations in the gene, transcript, or 
protein level prominently influence the metabolism of 
the organism which indicates a highly dynamic behavior 
of the metabolome. Numerous studies have revealed 
alterations in metabolism during malignant disorders. 
With the advancement of high throughput technologies 
such as Nanostructure-Initiator Mass Spectrometry 
(NIMS) that can detect metabolites in the concentration of 
yoctomole range within tissues and biofluids in a matrix-
free desorption ionization mode, metabolomics provides 
a unique opportunity to understand cancer pathogenesis 
and to identify biomarkers for cancer diagnosis [83]. In 
addition, the evolution of robust computational tools has 
also broadened the ability to collect data at various levels 
[84, 85]. Figure 3 depicts a schematic representation of the 
metabolomics-based cancer biomarker discovery pipeline.

Integration of multi‑layered omics data integration

Metabolites exhibit close association with several biological 
processes that are linked to a multitude of variables, such 
as genetic variation, environmental influences, and altered 
enzyme levels or kinetic activity. Recent studies have shown 
that the integration of multi-omics data provides a better 
understanding and vivid picture of the system under study. 
For instance, integrative analysis of metabolomics and 
transcriptomics data of human prostate cancer tissues showed 
molecular perturbations associated with prostate cancer. 
More specifically, the authors found impaired sphingosine-1-
phosphate receptor 2 signaling (associated with sphingosine 
metabolism) in cancer patients, representing a loss of tumor 
suppressor gene and a potential key oncogenic pathway for 
therapeutic targeting [86]. Therefore, integration of multi-
omics data is essential to comprehend the interrelationship 
among biomolecules and understand the flow of information 
from one omics level to the other. Meaningful biological 
insights from high throughput metabolomics analysis can 
be interpreted through network-based data integration 

Fig. 3   A schematic representation of untargeted metabolomics-based cancer biomarker discovery workflow for developing novel candidate 
biomarkers (Figure was created with BioRender under a paid subscription)
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tools such as MetaCoreTM, InCroMAP, 3Omics, and 
MetaboAnalyst. These platforms offer varying degrees of 
data integration, from visual representation of multi-omics 
data networks to specific modules for integrated pathway 
analysis. MetaboAnalyst, for instance, allows users to 
map genes and metabolites onto KEGG pathways thereby 
reflecting changes in both gene expressions and metabolite 
concentrations to identify implicated pathways [87–89]. 
Several reviews are available that discuss the methodologies 
and analytical frameworks for multi-layered omics data 
integration techniques [90–94].

Of note, integrating multi-omics datasets to gain 
comprehensive insights into biological processes and 
diseases presents numerous challenges. These hurdles 
encompass the inherent heterogeneity within individual 
omics data, the computational intensity necessitated by 
the substantial dataset sizes, and the absence of definitive 
studies guiding the selection of appropriate analytical tools. 
Multi-omics data are acquired on a wide range of platforms, 
leading to considerable variation in data storage and formats. 
Consequently, most integrative analysis tools accept specific 
data formats, typically requiring preprocessing of individual 
omics datasets. This preprocessing phase includes data 
filtering, systematic normalization, batch effect removal, 
and rigorous quality assessments. The careful application 
of these preprocessing steps is vital, given their profound 
impact on subsequent integrative analyses. Notably, data 
filtering plays a pivotal role in noise reduction and feature 
selection, a critical aspect of computational-intensive 
integrative models. Nevertheless, establishing appropriate 
filtering criteria remains challenging, underscoring the 
absence of universal standards in the field. Addressing 
these challenges is essential for realizing the full potential 
of multi-omics data integration in elucidating complex 
biological phenomena and disease mechanisms [89, 94, 95].

Mapping cancer metabolism: global 
and targeted strategies

Metabolic alterations in cancer can be investigated 
using diverse analytical approaches, and each of these 
strategies has its advantages and disadvantages [96]. 
These metabolomics approaches can be broadly classified 
under untargeted (global) and targeted categories [97]. 
Generally, biomarker discovery or hypothesis generation 
studies are performed in an untargeted manner in 
which metabolites from healthy individuals and cancer 
patients are identified, and the relative abundances of 
the metabolites are compared. Subsequently, a panel of 
biomarkers containing significantly altered metabolites 
in the cancer samples is identified which can be further 
validated in a separate larger cohort (Fig. 3). In addition, 

global metabolomics studies also aim to map the 
metabolic dysregulation in terms of altered metabolic 
pathways during cancer progression and provide a better 
understanding of the disease pathology. Furthermore, 
such untargeted approaches can be extended to map the 
metabolic alterations during response to chemotherapy, 
chemoresistance as well as cancer prognosis [96]. On 
the other hand, targeted approaches are employed for 
hypothesis testing or validation experiments. These studies 
concentrate on a specific set of metabolites intending 
to measure them in a quantitative or semi-quantitative 
manner across the samples under investigation (Fig. 4). 
Notably, findings from a global metabolomics approach 
are usually validated using chemically characterized 
standard metabolites in a targeted approach [97]. 
Currently, the metabolomics platforms that are widely 
used for investigating alterations in cancer metabolism 
either rely on mass spectrometry (MS) or nuclear magnetic 
resonance (NMR) spectroscopy [98]. However, matrix-
assisted laser desorption/ionization mass spectrometry 
imaging (MALDI-MSI) and NMR-based in vivo imaging 
techniques have found restricted applications in cancer 
research [99, 100].

The chemical composition of the atoms present in 
metabolites can be studied using NMR spectroscopy. In 
principle, during NMR acquisition, the metabolites are 
subjected to a strong magnetic field and subsequently pulsed 
with radiofrequency waves of the order 3 to 300 GHz. This 
results in the generation of radiofrequency energy that leads 
to the transient excitation of nuclei of the constituent atoms 
(for example 15N, 1H, 31P, and 13C) present in the metabolites. 
The nuclei of most of the atoms have an inherent spin state 
and electrical charge. Therefore, once the transiently excited 
nuclei of the constituent atoms are under the influence of 
an external magnetic field, the spin states of the atoms 
are reversed. Subsequently, when the nuclei return to the 
ground state, they emit radiofrequency waves of discrete 
spectroscopic patterns (also known as the NMR spectrum). 
Analysis of such spectrum can provide information on the 
type of electromagnetic environment and the position of the 
excited atoms, and therefore the identity of the metabolite 
(Fig. 5). The major advantage of this method is that it can 
be used to study metabolites in any form of biological 
samples, either in solid, liquid or gaseous phases. As a 
result, it doesn’t demand any elaborate sample processing 
strategies and therefore it enables rapid acquisition of 
data and analysis. However, the major limitation of NMR 
spectroscopy is its sub-optimal sensitivity of detection, 
which is usually in the micromolar range. And since there 
is a wide distribution of low-abundant metabolites in 
biological samples, capturing a comprehensive metabolic 
snapshot with this platform becomes quite challenging [98, 
101]. In addition, peak overlapping and peak shifting (due 
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to pH or metal ions) in NMR spectroscopy can also affect 
the accuracy of biomarker identification and validation in 
biological samples [102–104].

In addition to NMR, MS-based platforms are most widely 
used for metabolomic investigations due to their superior 
sensitivity and increased metabolome coverage [98]. 
MS-based approaches involve the determination of the mass-
to-charge ratio (m/z) of the ionized metabolites (precursor 
ion) as well as their fragment/daughter ions which are distinct 
to each metabolite. The metabolites present in a biological 
specimen are ionized upon introduction to the mass 

spectrometer in a gaseous or liquid phase and thereafter, they 
are separated based on their m/z values under the influence 
of an electromagnetic field of the mass analyzer. Notably, 
the complexity of the samples can be reduced by introducing 
an initial chromatographic separation of the sample before 
acquiring MS measurements. This significantly enhances 
the resolution and aids in the identification of low-abundant 
as well as isobaric (same mass) metabolites in a given 
biospecimen. The two most frequently used platforms 
for achieving an initial chromatographic separation for 
metabolomics studies are gas chromatography (GC) 

Fig. 4   A schematic representation of MS-based targeted metabolomics strategy used for subsequent validation of the findings of untargeted 
metabolomics approach

Fig. 5   A schematic depiction of NMR-based metabolomic profiling for candidate biomarker discovery
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and liquid chromatography (LC). In addition, capillary 
electrophoresis (CE) has also been employed in a few recent 
metabolomics studies. Initial separation by GC followed by 
MS (GC–MS) analysis has found tremendous applications 
in cancer metabolomics, including biomarker discovery 
studies. Furthermore, the development of universal fragment 
ion libraries of diverse metabolites has rendered relatively 
easy identification of metabolites present in any biological 
sample [105]. However, GC–MS relies on the chemical 
derivatization of metabolites so that they can be converted 
into volatile forms for ease of separation along the gaseous 
phase. Therefore, while it can efficiently analyze most 
types of metabolites, including polar, non-polar, organic, 
or inorganic metabolites, it is limited by the detection of 
phosphorous-containing metabolites that are often tedious 
to derivatize [106]. Besides GC, LC setups can also be 
employed for the initial separation of metabolites before MS 
measurements (LC–MS). In fact, due to the limitations of 
GC–MS in analyzing phosphorous-containing metabolites, 
the application of LC–MS platforms is now more prevalent 
in metabolomics studies as they do not rely on chemical 
derivatization, and thus can efficiently detect phosphorus-
containing compounds. In these platforms, the separation 
of metabolites is achieved using a solid-phase column that 
has variable affinities to different types of metabolites. 
Thereafter, the bound metabolites are sequentially eluted 
by gradually changing the chemical nature of the flowing 
liquid phase. Although having several advantages, MS-based 
platforms are limited by throughput. The introduction of 
initial chromatographic separation techniques enhances 
the resolution and coverage of the metabolome, however, 
it significantly reduces the rate of sample analysis (number 
of samples analyzed per day or hour) [107]. On the other 
hand, if the samples are directly introduced into the mass 
spectrometer, a method known as Direct-infusion mass 
spectrometry (DIMS), can affect the metabolome coverage 
[98].

A major challenge associated with the MS-based 
metabolomics approach is the low identification confidence 
for certain metabolites. This is because metabolite 
fragmentation patterns are relatively unpredictable or 
uninformative (similar fragments for different species), and 
thus the MS/MS data is often insufficient to differentiate 
structural and stereo-isomers [97]. Nevertheless, the 
introduction of ion mobility separation has been able 
to resolve some of the issues associated with LC-based 
approaches. At present most MS systems have time 
scales that are well-integrated with rapid (millisecond) 
ion mobility separations; for every LC peak, several ion 
mobility spectra are acquired, and for every ion mobility 
spectrum, multiple mass spectra are recorded. The coupling 
of ion mobility separations with LC–MS-based platforms 
ensures improved mass spectra quality and sensitivity, the 

potential to distinguish co-eluting precursors, and the power 
to shorten chromatographic times without compromising 
resolution [108]. The ion mobility estimations can also be 
employed to calculate collision cross-sections for individual 
metabolites. Notably, since collision cross-section values are 
based on the physical properties of the metabolites and are 
independent of MS or LC settings, they offer remarkable 
inter-laboratory precision for the identification of a broad 
range of metabolites [109]. Stable isotope-labeled internal 
standards have been widely used to generate calibration 
curves for calculating metabolite concentration in clinical 
samples. However, the use of labeled internal standards for 
every metabolite may not be practical, and thus, can affect 
the feasibility of such targeted approaches for metabolite 
quantification [110].

Another promising technique named Seahorse XF 
technology, introduced by Agilent Technologies in the year 
2006, is capable of measuring oxygen consumption rate 
(OCR) and extracellular acidification rate (ECAR) through 
fluorophore-based sensors, in living cells about important 
cellular functions like mitochondrial respiration and 
glycolysis which are essential components of altered energy 
metabolism, especially in cancer research [14, 111, 112]. 
This technique allows the addition of inhibitors, stimulators, 
or substrate compounds and their mixing, thereby permitting 
the analysis of the effect of such compounds on the 
automatic measurement of OCR and ECAR in real-time. 
OCR which represents the oxygen (O2) amounts present in 
the system is an indicator of mitochondrial respiration, while 
ECAR refers largely to the output protons (H+) which is an 
indicator of glycolysis (Fig. 6). This technique can measure 
the metabolic response of cells to drugs or other inhibitors 
in real-time measurements [113].

In modern f luxomics or metabolic f lux analysis 
experiments, heavy-labeled isotope tracing is the most 
popular and straightforward strategy for the investigation 
of intracellular metabolic flux in cancer cells. This method 
involves nourishing (feeding) the cancer cells with 
isotopically labeled nutrients followed by measurement of 
the isotopic labeling pattern of metabolites through various 
analytical approaches like mass spectrometry or NMR [66, 
114, 115]. The isotopic labeling pattern of metabolites 
provides functional (and sometimes real-time) insight into 
the relative involvement of various pathways towards the 
biosynthesis of such metabolites. This information can be 
used to infer the active cancer cell metabolic pathways and 
their relative contributions to the biosynthesis in context 
of cancer. Further, the information from this method can 
be translated into the identification of perturbed metabolic 
pathways resulting from drug chemoresistance in various 
cancers.

Recent advances in ultra-sensitive high-resolution 
MS technologies have made it possible for researchers to 
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investigate various analytes at single-cell resolution. Single-
cell techniques have dominated the field of genomics for 
the past decade and have had a substantial presence in the 
field of proteomics for the past few years [116]. Even though 
metabolomics at the single-cell level is not a new concept, 
it remains a challenging methodology due to the dynamic 
nature of the cellular metabolome as well as the low 
number of metabolites enriched from the single-cells. In a 
nutshell, analysis technologies for single-cell metabolomics 
necessitate high selectivity and sensitivity, faster acquisition 
and response speeds, the possibility of capturing data from 
small sample amounts, and no impact on cellular states 
during sample preparation, while the data analysis needs 
to fetch information from the analytical data using complex 
computational techniques and robust models [117]. One of 
the simplest strategies for sample preparation in single-cell 
metabolomics is to undergo rapid freezing of the cells just 
before the metabolites have to be analyzed, using liquid 
nitrogen, which halts the cellular changes inside a cell 
[118]. In the past researchers have used methods that directly 
sucked the cellular contents of cell under study inside a 
nanoelectrospray ionization tip followed by dissolution in 
ionization solvent and direct injection into an MS instrument 
through nanospray ionization [119–121]. In another strategy, 
Nascimento et al. developed electrochemical sensors and 

used nanopipette tips covalently blended with glucose 
oxidase, which functionalized the tip as a nano-sensor for 
glucose allowing the quantification of intracellular glucose 
at a single-cell level [122]. This strategy can be translated 
into distinguishing cancerous cells from non-cancerous 
cells as it is scientifically known that cancer cells have 
higher glucose requirements than normal cells. Zhu et al., 
designed a silica capillary-fused micropipette needle where 
they could stimulate Paternò-Büchi (PB) reactions at the 
C=C bond, thereby facilitating the sites of C=C bonds in 
unsaturated lipids that can be identified in the cell lysates 
at the single-cell level. They studied a single human colon 
cancer cell (HCT-116) where they demonstrated that the 
use of a capillary-fused needle offered several benefits (like 
single cell metabolite extraction probe, cell lysis container, 
micro-reactor, and nano-ESI emitter) and direct processed 
sample introduction into the MS system [123].

Bioinformatics and computational biology 
tools in cancer metabolomics

In the past few decades, researchers have gained insights 
into disease mechanisms, leading to the identification and 
discovery of potential biomarkers and novel therapeutic 

Fig. 6   A schematic representation of SeaHorse based metabolomics strategy used for measuring the oxygen consumption rate (OCR) and 
extracellular acidification rate (ECAR) of live cells
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targets by analyzing the metabolic profiles of various 
cancer specimens [124, 125]. Usually, the data originating 
from metabolomics experiments is comprised of enormous 
metabolic information, and such data processing 
profoundly counts on fast and robust computational 
techniques. Therefore, the sheer complexity and volume 
of metabolomics data necessitates the development of 
metabolomics data-centric sophisticated computational 
approaches. Metabolomics data analysis is a complex 
multi-stepped sequential pipeline starting from data 
preprocessing and feature extraction to pathway analysis 
and machine learning-based predictive model building, 
where bioinformatics and computational biology play an 
imperative role. Computational bioinformatic tools play 
a critical role in the advancement of our understanding 
of cancer metabolism and paving the way for future 
personalized treatment strategies.

While acquiring metabolomics data, inter-sample 
variations usually disguise the actual biological differential 
patterns. Sample-to-sample variation, if not properly 
addressed, can lead to deceptive results in MS analyses. 
This type of variation primarily reflects disparities in the 
initial sample composition, obscuring the true metabolic 
changes due to underlying biological processes. Therefore, 
implementing robust sample normalization protocols 
is crucial to minimize these variations, ensuring that 
observed MS signal differences are representative of 
actual biological phenomena rather than inconsistencies 
in sample preparation. In the metabolomics data analysis 
pipeline, various data-driven computational strategies like 
post-acquisition sample normalization, instrument-oriented 
drifting of signals, linearity of MS signal, and computational 
variations are considered important and are adopted in data 
analysis software [126].

A variety of bioinformatics and computational biology 
tools play a crucial role in handling the intricate data sets 
derived from metabolomics studies. These tools facilitate a 
range of tasks, from data processing and statistical analysis 
to pathway mapping and machine learning. The major tools 
and software packages used in cancer metabolomics are 
briefly discussed further.

Data processing and preprocessing tools

Data processing is crucial in metabolomics studies, as it 
involves refining raw data, reducing noise, and aligning 
peaks for further analysis. Several software packages can 
be used to process the metabolomics data. MS-DIAL is one 
such tool that is a comprehensive software package designed 
for untargeted metabolomics and lipidomics studies. 
MS-DIAL supports various types of mass spectrometry 
data and offers functions for peak detection, alignment, 
and identification. In cancer metabolomics, MS-DIAL is 

valuable for processing complex datasets and identifying 
metabolites across multiple samples. It integrates with 
metabolite databases, enabling researchers to annotate 
metabolites and perform pathway analysis. Likewise, XCMS 
is an R-based software package, which is widely used for 
processing and analyzing MS-based metabolomics data. It 
provides tools for peak detection, retention time alignment, 
and feature quantification. XCMS utilizes the Metlin library 
in the background to identify the metabolites from the MS 
data. In cancer metabolomics, this tool helps identify and 
quantify metabolites in a robust and reproducible manner. 
Further, MetaboAnalyst is an open-source platform 
that, with its recent updates, provides a range of data 
preprocessing functionalities, including normalization, 
scaling, and transformation. MetaboAnalyst is useful in 
cancer metabolomics for ensuring data consistency and 
comparability across different experiments and conditions. 
Another package mzMine, is a user-friendly platform for 
processing MS data that offers visualizations that facilitate 
peak detection and alignment. Researchers can manually 
inspect and adjust peaks, ensuring high-quality data for 
subsequent analysis.

Statistical analysis tools

After data processing, statistical analysis tools help identify 
significant metabolites, patterns, and correlations between 
different sample groups in cancer studies. SIMCA is a 
multivariate data analysis software that offers mathematical 
modeling techniques like principal component analysis 
(PCA), partial least squares-discriminant analysis 
(PLS-DA), and orthogonal partial least squares-discriminant 
analysis (OPLS-DA). These methods are crucial in cancer 
metabolomics for identifying distinct metabolic profiles 
and potential biomarkers. Another freely available open-
source tool widely used amongst the metabolomics user 
community is MetaboAnalyst. Beyond data preprocessing, 
MetaboAnalyst provides a range of statistical tools, 
including univariate and multivariate analyses. It supports 
various statistical tests and visualizations, such as clustering, 
heatmaps, and volcano plots, allowing researchers to find 
significant metabolites that distinguish cancerous from non-
cancerous samples in a very simple GUI-based interface 
[87]. Many other R and Python-based packages for statistical 
analysis can be used for metabolomics data analysis, 
however, they are not much user-friendly and require some 
programming skills.

Metabolic pathway and network analysis tools

An important bioinformatics requirement in metabolomics 
research is the need to map the metabolic findings to 
biological pathways and processes. Metabolic pathway 
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analysis tools help researchers map identified metabolites 
to known biological pathways, providing insights into the 
metabolic networks involved in cancer. KEGG (Kyoto 
Encyclopedia of Genes and Genomes) is one such tool that 
offers comprehensive pathway maps that integrate genomic, 
proteomic, and metabolomic data. In cancer metabolomics, 
KEGG is used to identify pathways altered in cancer cells, 
guiding researchers toward potential therapeutic targets 
[127]. Likewise, the MetaboAnalyst platform also offers 
integrated pathway analysis with metabolomics data, 
allowing researchers to map metabolites to known pathways 
and identify those significantly impacted by cancer. This 
package helps reveal key metabolic pathways involved in 
cancer progression and resistance to treatment if such kind 
of research questions are analyzed through metabolomics 
data. Similarly, network analysis tools are also an important 
aspect of metabolomics data analysis and are majorly used 
to visualize and analyze complex interactions between 
metabolites, proteins, and genes to provide a holistic 
overview of the molecular interplay existing in cancer. 
Such tools provide a broader perspective on the biological 
context of cancer metabolomics data. Cytoscape is a 
popular network visualization tool, that allows researchers 
to create and analyze complex biological networks through 
its inbuilt plugins. In cancer metabolomics data analysis, 
it helps visualize the interactions between metabolites and 
other cellular components, offering insights into the broader 
metabolic landscape of cancer.

Integration tools

Cancer involves complex interactions between various 
biological systems. Data integration tools help combine the 
data from different omics disciplines with metabolomics, 
enabling a more comprehensive understanding of cancer 
biology. Bioconductor package is a collection of R 
packages for analyzing and integrating various omics data. 
Bioconductor facilitates the integration of genomics and 
metabolomics data, allowing researchers to explore how 
genetic variations affect metabolic pathways in cancer. 
MetaboAnalyst also offers modules for the integration 
of multi-omics data in an intuitive GUI interface that is 
user-friendly.

Machine learning and predictive modeling tools

In recent times, machine learning and predictive modeling 
have become increasingly important in biological research 
including cancer metabolomics, providing tools for building 
predictive models for diagnosis, prognosis, and treatment 
response. Scikit-learn, a Python library for machine 
learning, offers a wide range of tools for building predictive 
models and performing clustering and classification. In 

cancer metabolomics, these models can help identify 
metabolic signatures that distinguish between different 
cancer types or stages. Similarly, TensorFlow and PyTorch 
are deep learning frameworks that enable the development of 
complex models for pattern recognition and classification in 
large datasets. In cancer metabolomics, these tools are used 
to identify metabolic signatures that distinguish between 
different cancer types or stages and elucidate hidden patterns 
and relationships that may be indicative of specific cancer 
behaviors.

Overall, bioinformatics and computational biology tools 
are integral to cancer metabolomics, enabling researchers 
to process, analyze, and interpret the vast amounts of data 
generated in these studies. Tools like MS-DIAL, XCMS, 
MetaboAnalyst, and others are crucial for data processing 
and analysis, while network and pathway analysis tools help 
uncover the broader biological context. Machine learning 
and integration tools are at the forefront of predictive 
modeling and cross-omics analysis, contributing to a deeper 
understanding of cancer metabolism and the development of 
novel therapeutic strategies.

Metabolomics in cancer and its metastasis: 
exploration of potential biomarkers 
for diagnosis and novel theranostic targets

Advances in omics technologies have revolutionized 
biology for a better understanding of biological processes 
and disease etiology. Integration of metabolomics with 
bioinformatics grants in-depth analysis of metabolites which 
helps to decipher the biological complexity of cancer and 
provide insights into the characterization of the disease. 
Furthermore, metabolomics can also aid in identifying 
metabolites that can serve as biomarkers for cancer diagnosis 
[4–6].

Metabolite biomarkers for cancer diagnosis

The primary aim of most metabolomic investigations has 
been to establish a biomarker panel for early diagnosis of 
cancer. According to the US Food and Drug Administration 
(FDA), a biomarker is a ‘characteristic that is objectively 
measured and evaluated as an indicator of normal biological 
processes, pathogenic processes, or biological responses to 
a therapeutic intervention’. The metabolome shares close 
connectivity with cancer, and thus metabolomics has been 
implemented by researchers to identify therapeutic and 
diagnostic targets in lung cancer [128, 129], hepatocellular 
carcinoma (HCC) [130, 131], colorectal cancer (CRC) [125, 
132, 133], leukemia [132], bladder cancer [134], esophageal 
adenocarcinoma (EAC) [135], pancreatic cancer [136–139], 
head and neck cancer [140], gastric cancer [141], prostate 
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cancer [124, 142], oral cancer [143, 144], ovarian cancer 
[145] and breast cancer [146–149] (Table 1).

In a study that provided metabolic adaptations of 
invasive ductal carcinoma (IDC), a form of breast cancer, 
to identify diagnostic markers along with potential 
therapeutic targets in tissue and serum of patients with 
IDC, 42 and 32 metabolites were found to be significantly 
altered, respectively [146]. These metabolites include 
amino acids, nucleic acids, amino sugar, fatty acids, and 
other organic compounds. More importantly, a three 
metabolites panel was identified, including tryptophan, 
tyrosine, and creatine, in both tissue and serum samples 
that might be beneficial in screening IDC from control as 
well as patients [146]. Another LC–MS-based metabolomics 
investigation in plasma of breast cancer patients (n = 70) 
and healthy controls (n = 46) identified a panel of four 
metabolites including L-octanoylcarnitine, 5-oxoproline, 
hypoxanthine, and docosahexaenoic acid that showed 
potential as biomarkers for early diagnosis of breast cancer 
[147]. Putluri et al. [149] analyzed the metabolome of breast 
cancer sub-types, including luminal A, luminal B, HER2-
enriched, basal-like, and Tamoxifen-resistance cancer cells 
using LC–MS-based metabolomics strategy and found 
that pyrimidine metabolism is significantly upregulated in 
luminal B, Her2-enriched and basal-like subtypes as well 
in Tamoxifen-resistant breast cancer cells. Downstream 
investigation of RRM2 (Ribonucleotide reductase subunit 
M2), an enzyme involved in the pyrimidine biosynthesis 
pathway revealed that it is upregulated in the above breast 
cancer sub-types as well as in Tamoxifen-resistant breast 
cancer cells. Subsequent knockdown of the RRM2 gene in 
resistant cancer cells resulted in attenuation of cell growth 
and proliferation [149].

Sreekumar et al. [124] investigated tissue (n = 42), urine 
(n = 110), and plasma (n = 110) samples of prostate cancer 
patients using GC–MS and LC–MS-based metabolomics 
strategies. The study identified several altered metabolites 
and sarcosine, an N-methyl glycine derivative was found 
to be highly upregulated in all the three prostate cancer 
biospecimens. Synthesis of sarcosine is driven by catalysis 
of the enzyme glycine N-methyltransferase, and knockdown 
of this enzyme resulted in a significant reduction of prostate 
cancer invasion and migration [124]. GC–MS-based 
tissue metabolomics was employed for investigating 
metabolic alterations in ovarian cancer patients (n = 101). 
The authors found a significant alteration in the levels of 
172 metabolites that were largely involved with lipid and 
amino acid metabolism. Among the altered metabolites, 
n-acetylaspartate (NAA), a neuron-specific metabolite that 
demonstrated the highest fold change (28.4 folds, p < 0.001) 
was further successfully validated in a separate cohort 
of ovarian cancer samples (n = 145). Further, N-acetyl 
aspartate synthetase, the enzyme involved in the synthesis 

of NAA was knocked down in HEYA8 ovarian cancer cells 
resulting in a reduced expression of the metabolite with a 
concomitant attenuation of cell proliferation [145]. Urine 
and plasma samples from lung cancer patients (n = 178 and 
156) and healthy individuals (n = 351 and 60) were analyzed 
using LC–MS-based metabolomics strategies in two 
independent investigations that resulted in the identification 
of two biomarker panels—Creatine riboside (CR) and 
N-acetylneuraminic acid (NANA); and β-hydroxybutyric 
acid, LysoPC 20:3, PC ae C40:6, citric acid, and fumaric 
acid [128, 129].

Biomarker development for early detection of 
hepatocellular carcinoma (HCC) has gained pace as it has 
become a significant cause of patient deaths in chronic 
liver disease. The most extensively used biomarker in HCC 
is Alpha-fetoprotein (AFP). Elevated serum AFP levels 
correlate well with increased HCC development, and it 
has reached phase 5 of biomarker development for its 
clinical utility. Interestingly, a multicentric LC–MS-based 
serum metabolomics study led by Luo and co-workers 
identified a panel of biomarkers consisting of Phenylalanyl-
tryptophan and glycocholate that could outperform AFP in 
differentiating HCC patients from healthy controls [130]. 
The study involved a total of 1448 individuals, including 
healthy controls (n = 290) and patients with HCC (n = 645), 
liver cirrhosis (n = 310), intrahepatic cholangiocarcinoma 
(n = 25), and chronic hepatitis B virus infection (n = 150). 
Another GC–MS-based metabolomics profiling of serum 
and urine samples of 822 patients with HCC, 24 patients 
with benign liver tumors, and 71 healthy individuals 
found that inosine and chenodeoxycholic acid levels can 
successfully differentiate HCC patients from healthy 
controls [131].

Several efforts have also been dedicated to identifying 
potential metabolite biomarkers for the diagnosis of 
pancreatic cancer. In such an LC–MS-based metabolomics 
study on serum exosomes from 22 patients with pancreatic 
cancer and 57 healthy individuals, Tao and co-workers 
identified a panel of lipid biomarkers including LysoPC 
22:0, PC (P-14:0/22:2) and PE (16:0/18:1) that were closely 
associated with tumor stage and patient’s overall survival 
[137]. Another metabolomics investigation employing both 
GC–MS and LC–MS platforms identified glutamate, choline, 
1,5-anhydro-D-glucitol, betaine, and methyl guanidine as 
potential biomarkers in the plasma of 100 patients with 
pancreatic cancer and 100 healthy individuals [139].

The application of LC–MS-based metabolomics has 
also found its way to analyzing serum and urine samples of 
CRC patients for the identification of candidate metabolite 
biomarkers. In such a multicentric investigation, Deng and 
co-workers analyzed urine samples from 171 CRC patients 
and 171 healthy individuals on an LC–MS platform and 
identified a biomarker panel containing diacetylspermine 
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and kynurenine. The two metabolites could discriminate 
CRC patients with an AUC of 0.864, a sensitivity of 
80.0%, and a specificity of 80.0% [133]. A couple of 
years later, serum samples from 98 CRC patients and 50 
healthy individuals were investigated using LC–MS-based 
metabolomics and another panel of potential biomarkers 
containing hexadecanedioic acid, 4-dodecylbenzene sulfonic 
acid, 2-pyrocatechuic acid, and formyl anthranilic acid was 
identified [125].

Saliva is yet another non-invasive biofluid that can be 
easily accessed and is an attractive source of metabolites, 
particularly for oral cancers. Ishikawa and co-workers 
employed a capillary electrophoresis (CE)-TOF–MS-based 
metabolomics platform to identify the dysregulated 
metabolites in the saliva of 24 patients with oral cancer and 
44 healthy individuals. They found that two metabolites, 
namely S-adenosylmethionine (SAM) and pipecolate could 
discriminate oral cancers from controls with a high area 
under receiver operating characteristic (ROC) curves (0.827; 
95% confidence interval, 0.726–0.928, P < 0.0001) [143]. 
Another biomarker panel consisting of L-phenylalanine and 
L-leucine was proposed for detecting oral cancers based 
on an LC–MS-based metabolomics study conducted on 
the saliva of 30 patients with oral cancer and 60 healthy 
individuals [144].

While tumor tissues, serum, plasma, and saliva have 
been frequently employed for identifying metabolic 
alteration, a recent interesting study tried a dried blood 
spot (DBS) sampling technique coupled with direct 
infusion MS to investigate metabolic alterations in 166 
gastric cancer patients and 183 healthy individuals [141]. 
DBS relies on withdrawing microvolumes of blood from 
subjects by heel or finger puncture and therefore has an 
advantage over conventional blood withdrawal methods 
in terms of stability, simpler storage, and easier transfer. 
The study identified a panel of biomarkers including 
alanine, arginine, glycine, ornithine, tyrosine/citrulline, 
valine/phenylalanine, 3-Hydroxybutyrylcarnitine, 
isovalerylcarnitine/propionylcarnitine, decadienoylcarnitine 
that could distinguish gastric cancer patients from healthy 
individual with appreciable sensitivity (87.5 to 95.4%) as 
well as specificity (86.3 to 90.0%) [141].

Emergence of single‑cell metabolomics in cancer 
and metastasis

The prowess of metabolomics has been evaluated at 
single-cell level as well. Many researchers have worked 
towards exploring this technology to understand the 
biology of tumor drug resistance mechanisms and tumor 
metastasis. By evaluating the genomic and metabolic 
biochemical information of individual cells, researchers 
can discriminate several genes and regulatory pathways 

steering the development of drug resistance and metastasis 
in cancer cells. Single-probe MS technology was used by 
Sun et al., to scrutinize the metabolic alterations found 
in colorectal cancer stem cells and non-stem cancer cells 
wherein they observed that colorectal cancer stem cells had 
higher amounts of TCA cycle metabolites and unsaturated 
lipids. They further administered inhibitors of SCD1, 
NF-κB, and ALDH1A1 to colorectal cancer stem cells 
and found that this administration of inhibitors reduced 
the abundance of unsaturated lipids and impeded tumor 
spheroids formation, eventually showing a reduction in 
stemness of colorectal cancer stem cells [150]. In another 
study, human colorectal cancer cell line HCT-116 cells 
were exposed to mitotic inhibitors namely, taxol and 
vinblastine by Liu et al., wherein they employed single-
cell MS to understand the metabolomic alterations at single 
cell level revealing four biological pathways that could be 
implicated in the chemotherapy intervention of colorectal 
cancer [151]. Similarly, single-cell metabolomics has been 
explored in several studies related to cancer metastasis. 
Abouleila et al. used an untargeted approach to understand 
the differences between gastric cancer (GC) and colorectal 
cancer (CRC) patient samples and employed a strategy 
to decipher the metabolic cues at single-cell circulating 
tumor cells (CTCs) level using microfluidics-based live cell 
enrichment methods coupled to single-cell MS analysis. 
They reported several statistically significant differences 
in metabolites and lipids and specifically identified some 
important ones like acylcarnitines, sterol lipids, and 
eicosanoids which were found to be elevated in CRC CTCs, 
while glycerophospholipids showed higher abundances in 
GC CTCs [152]. Chen et al. utilized a single-cell MS-based 
metabolomics approach to decipher the metabolic picture in 
drug-resistant cancer cells. They used the HCT-116 cell line 
model of CRC and exposed it to Irinotecan (IRI) drug, which 
is a broadly used drug to treat metastatic CRCs, to make 
HCT-116 cells resistant to IRI. They repurposed an anti-
diabetic drug, Metformin, which is reported to selectively 
kill cancer stem cells, and hypothesized that metformin 
can re-sensitize IRI-resistant HCT-116 cells and rescue 
the therapeutic effect. Using a single-probe MS technique 
towards the analysis of live IRI-resistant cells, they observed 
that metformin treatment was correlated with the decrease in 
lipids and fatty acids, probably through fatty acid synthase 
(FASN) inhibition. In this interesting study, the authors 
were able to show the effect of Metformin-IRI synergy to 
overcome drug resistance in IRI-resistant CRC cells [153]. 
In other words, single-cell metabolomics holds the potential 
for substantiating metabolomics research on rare types of 
cells, especially in terms of cancer.

From the above-mentioned studies, it is evident that 
metabolomics holds great promise in identifying potential 
biomarkers for cancer diagnosis and thereby contributes to 
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accelerating the treatment procedures. However, we do not 
yet have a metabolite biomarker approved by the FDA to be 
used in the clinics, and therefore, this warrants validation 
of the biomarker panels identified in the discovery phase in 
larger multicentric cohorts and clinical trials.

Potential of metabolomics in the development 
of novel theranostic targets

Theranostics, a combination of diagnostics and therapeutics 
has gained the attention of researchers for advancements 
in personalized oncology. The development of theranostics 
could be used for parallel tumor targeting and tumor imaging 
since it can destroy cancer cells while sparing normal cells. 
Therapeutics in oncology target altered pathways involved in 
growth, proliferation, and metastasis. The metabolite profile 
gets altered whether caused by external factors or internal 
dysfunction in patients. Thus, metabolomics is opening new 
opportunities in the investigation of therapeutic responses 
[154].

B h u j wa l l a  e t   a l .  i n t r o d u c e d  t h e  t e r m 
‘metabolotheranostics’ to specifically target the diseased-
based alterations in metabolic pathways with image-guided 
delivery platforms to achieve specific disease therapy [155]. 
Molecular imaging can be used to identify theranostic 
targets specific to cancer with the overall purpose of 
minimizing damage to healthy tissue. Theranostic imaging 
requires delivery of therapeutic cargo to targets which 
are mostly receptors and antigens specific to cancer cells 
that can be imaged without affecting the normal cells. 
Metabolic imaging creates new opportunities in cancer 
for metabolotheranostics where cancer-specific metabolic 
alterations can be detected [155].

Biomarker studies would extensively help to identify, 
validate, and optimize therapeutic targets, determine drug 
mechanisms, and predict treatment response and resistance 
to cancer therapy. Metabolomics finds an important 
connection in all of these applications. Personalization 
of therapies would be beneficial to patients for the 
determination of markers as a part of drug development for 
better performance of treatment [156].

Challenges and future perspectives 
in the development of cancer metabolite 
biomarkers

Deciphering the various realms of metabolism toward 
finding the cues for life-threatening diseases like cancer 
has been in practice for many decades now. Although 
metabolomics holds great potential for achieving its goals, 
concrete conclusions from such cancer metabolomics studies 
could not be drawn confidently.

Challenges in cancer metabolomics

The major limitation in cancer metabolomics is the lack of 
technological sufficiency which made it difficult to decipher 
the subtle changes, restricting the researchers from coming 
up with effective disease-specific biomarkers and therapeutic 
targets. Given its dynamicity, the study of the metabolome 
needs very precise and strictly controlled biological 
sampling strategies to avoid false positives. Moreover, 
dietary habits, lifestyle, and demographic diversities 
among individuals play an important role in the formation 
of the metabolome of an individual under healthy as well 
as diseased conditions [157]. Particularly, the variability 
in the demographic conditions needs to be autonomously 
evaluated and taken into consideration for metabolomics 
biomarker discovery [158]. These highly important aspects 
of proper, strict, and well-planned study design as well as 
the demographic variables to be considered have been well-
elaborated in a recent review article [157].

Currently, cancer is one of the most socioeconomically 
affecting diseases and is a major cause of death worldwide. 
Therefore, the search for new biomarkers is essential for 
early diagnosis and effective treatment. It is evident that 
the majority of cancers result in characteristic alterations 
in the metabolite profile before manifesting clinical 
symptoms. Therefore, these altered metabolites could be 
promising novel biomarkers/biosignatures for diagnosis 
and therapeutics. Advances in mass spectrometry 
technologies rendered a powerful platform for identifying 
potential biomarkers to improve diagnosis and therapeutics. 
Nevertheless, no single metabolite biomarker or metabolite 
biosignature reached a stage for cancer clinical utility. The 
majority of the metabolomics studies in clinical research so 
far have been performed in a small cohort of samples and 
are limited to the discovery phase. It is essential to validate 
the discovery phase findings in larger cohorts of fresh 
samples before proposing clinical trials. An interdisciplinary 
collaborative approach is the need of the hour to succeed in 
metabolomics-driven cancer biomarker discovery. Extensive 
collaborations are still needed between biologists, chemists, 
and clinicians to gain success in identifying metabolic 
markers for cancer. Moreover, there is a major need for 
innovations in mass spectrometry technology and updated 
metabolite libraries which will help to identify metabolites at 
very low concentrations. Longitudinal clinical metabolomics 
studies have the potential to uncover the metabolite changes 
that are responsible for disease progression, drug resistance, 
and understanding the disease mechanism. Unfortunately, 
such studies are very limited in metabolomics-driven 
biomarker discovery due to a lack of a proper collaborative 
environment between hospitals and research laboratories. 
Although many obvious obstacles are at play, the rise in 
usage of metabolomics in clinical research may soon come 
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up with potential metabolite biomarkers that would be useful 
for diagnosis, prognosis, and treatment of cancer in the near 
future.

Challenges of achieving quantitative accuracy 
in untargeted metabolomics

Untargeted metabolomics, while offering a comprehensive 
view of the metabolome, faces significant challenges in 
achieving quantitative accuracy. Major issues like ion 
suppression in MS and overlapping signals in NMR data 
can significantly compromise the reliability of metabolite 
quantification and subsequent biomarker validation. 
Therefore, users must utilize the strategies to improve 
quantitative accuracy and their inherent limitations, along 
with the potential impact on scalability and sensitivity. Ion 
Suppression in MS is a well-known phenomenon where the 
presence of certain metabolites can inhibit the ionization 
of others, leading to skewed results [159–162]. This issue 
can arise from co-eluting compounds or matrix effects and 
can significantly affect the quantification of metabolites 
in complex biological samples. The addition of internal 
standards (IS), especially stable isotope-labeled standards 
to the sample, is a critical strategy in mass spectrometry 
(MS) to mitigate the effects of ion suppression, ensuring 
more reliable and accurate quantification of metabolites in 
complex biological samples [163]. Generally, while adopting 
the IS strategy during MS analysis, the internal standards 
are chosen to closely resemble the target metabolites in 
terms of chemical structure and properties, but they are 
different enough to avoid interference in the MS data. IS 
serves as reference points for data quantification in MS 
analysis. Researchers can normalize the data by comparing 
the response of the target analytes to that of the internal 
standards, eventually compensating for fluctuations in 
ionization efficiency, thereby ensuring more accurate 
quantification [163]. Multiple Reaction Monitoring (MRM) 
uses specific ion transitions to detect and quantify target 
metabolites, reducing the impact of ion suppression. This 
targeted approach can enhance sensitivity and selectivity 
and could be a great strategy to validate the analytes of 
interest once they have been screened from the untargeted 
metabolomics approach [164].

NMR spectroscopy is another powerful tool in 
metabolomics, offering non-destructive analysis and a 
broad detection range. However, overlapping signals from 
different metabolites can complicate accurate quantification, 
especially in untargeted metabolomics applications. 
Overlapping signals in NMR occur when two or more 
metabolites have resonance frequencies that are very 
close or identical, leading to the superimposition of their 
NMR peaks. During the NMR data analysis, it becomes 
difficult to assign the peaks to specific metabolites when 

the peaks overlap and this ambiguity complicates the 
process of metabolite identification and quantification [165]. 
Advanced software algorithms like Spectral Automatic 
NMR Decomposition (SAND), MetaboLab, and Automated 
Quantification Algorithm (AQuA) can separate overlapping 
signals, allowing for more accurate quantification [166–168], 
however, they require significant computational resources. 
Expertise in NMR data analysis is warranted for 2D NMR 
techniques like Total Correlation Spectroscopy (TOCSY), 
Correlation Spectroscopy (COSY), or Heteronuclear 
Single Quantum Coherence (HSQC) which can provide 
additional structural information, aiding in the resolution of 
overlapping signals. While effective, these methods are time-
consuming and may not be practical for high throughput 
studies.

Further, accurate quantification in metabolomics also 
relies on multipoint calibration curves, which are used to 
establish a relationship between metabolite concentration 
and instrument response. Calibrations can be complex 
in untargeted metabolomics due to the wide range of 
metabolites and their varying chemical properties. Therefore, 
addressing these challenges researchers have implemented 
advanced quantitative techniques like isotope dilution 
where stable isotope-labeled standards for each curated 
metabolite of interest are used, creating highly accurate 
calibration curves. However, although reliable, this approach 
is resource-intensive and may not be feasible for large-scale 
studies. Standard spiking is another technique where the 
addition of known amounts of a standard to the sample, can 
help correct for matrix effects and improve quantification 
accuracy. However, it requires careful experimental design 
and may not be suitable for all types of samples. Quantitative 
Nuclear Magnetic Resonance (qNMR) is an approach that 
uses specific internal standards to create calibration curves 
in NMR and offers high reproducibility but also requires 
specialized equipment and expertise.

In summary, achieving quantitative accuracy in 
untargeted metabolomics presents significant challenges 
due to ion suppression in MS and overlapping signals 
in NMR. Strategies such as internal standards, sample 
cleanup, spectral deconvolution, and advanced calibration 
techniques are essential to improving reliability. While 
these methods offer solutions, they come with limitations 
regarding scalability and sensitivity, highlighting the need 
for continued innovation in this field.

Conclusion

Although being a highly complex and challenging field 
of research, metabolomics holds tremendous potential in 
the field of disease biology. Metabolomics being highly 
dynamic, complements the other omics platforms of 
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research in understanding the metabolome in terms of 
disease indicators or biomarkers [169]. Therefore, utmost 
care must be employed while devising the strategies for 
sample collection thereby minimizing the chances of 
variability in the metabolite profiling. Biomarker discovery 
gains confidence when the differential metabolite 
profiling from the discovery cohort can be verified and 
replicated in an independent cohort of disease-specific 
and clinically well-characterized samples. Furthermore, 
another important factor of cross-validating the study 
results through multicentric and multinational cohorts 
would epitomize the potential capability of translating the 
results from bench to bedside in the future. In the long run, 
researchers should be encouraged to adapt these kinds of 
collaborative and multicentric metabolomics studies across 
various transnational settings. These approaches, schemes, 
and policies in the metabolite biomarker discovery 
pipeline assure the enhancement of the overall evaluation 
of the human population, meanwhile also expediting the 
path toward novel drug discovery and precision medicine 
in the near future.

Acknowledgements  The authors apologize to those whose primary 
work could not be cited due to space limitations. Figures were created 
with Biorender.com under a paid subscription. This work is supported 
by the intramural fund from the National Centre for Cell Science, 
Department of Biotechnology (DBT), Government of India, India. KT 
acknowledges the CSIR for research associateship and SJ, PPB and SB 
acknowledge DBT for fellowship. MC acknowledges University Grant 
Commission (UGC) for fellowship. Authors would like to acknowledge 
Dr Ajay Pillai for his critical inspection and suggestions.

Author contributions  KT, BK, SR were responsible for conceiving 
the study, designing the outline of the paper and critical review of 
the manuscript before submission. SJ was responsible for the section 
of omics approaches in cancer research; PPR drafted the section 
of mapping cancer metabolism: global and targeted strategies; 
KT drafted the bioinformatics and computational biology tools in 
cancer metabolomics section, KT and SB were responsible for the 
metabolomics in cancer and its metastasis; MC was responsible for 
the importance of metabolite fluxes in cancer and its metastasis; AT 
drafted the metabolite biomarkers for cancer diagnosis; TN contributed 
for the section of oncometabolites and their mechanism of action in 
cancer and metastasis. KT and BK compiled the final manuscript. All 
authors reviewed the final manuscript before the submission.

Funding  This work is supported by the intramural fund from the 
National Centre for Cell Science, Department of Biotechnology (DBT), 
Government of India, India.

 Data availability  Not applicable.

Declarations 

Conflict of interest  The authors declare no conflict of interest regarding 
the content of this article.

References

	 1.	 de la Cruz-Lopez KG, Castro-Munoz LJ, Reyes-Hernandez 
DO, Garcia-Carranca A, Manzo-Merino J (2019) Lactate in 
the regulation of tumor microenvironment and therapeutic 
approaches. Front Oncol 9:1143. https://​doi.​org/​10.​3389/​fonc.​
2019.​01143

	 2.	 Schmidt CW (2004) Metabolomics: what’s happening 
downstream of DNA. Environ Health Perspect 112:A410–
A415. https://​doi.​org/​10.​1289/​ehp.​112-​a410

	 3.	 Hansen TWR, Wong RJ, Stevenson DK (2020) Molecular 
physiology and pathophysiology of bilirubin handling by the 
blood, liver, intestine, and brain in the newborn. Physiol Rev 
100:1291–1346. https://​doi.​org/​10.​1152/​physr​ev.​00004.​2019

	 4.	 Zhang F, Zhang Y, Zhao W, Deng K, Wang Z, Yang C, Ma 
L, Openkova MS, Hou Y, Li K (2017) Metabolomics for 
biomarker discovery in the diagnosis, prognosis, survival 
and recurrence of colorectal cancer: a systematic review. 
Oncotarget 8:35460–35472. https://​doi.​org/​10.​18632/​oncot​
arget.​16727

	 5.	 Long NP, Yoon SJ, Anh NH, Nghi TD, Lim DK, Hong 
YJ, Hong SS, Kwon SW (2018) A systematic review on 
metabolomics-based diagnostic biomarker discovery and 
validation in pancreatic cancer. Metabolomics 14:109. https://​
doi.​org/​10.​1007/​s11306-​018-​1404-2

	 6.	 Armitage EG, Barbas C (2014) Metabolomics in cancer 
biomarker discovery: current trends and future perspectives. J 
Pharm Biomed Anal 87:1–11. https://​doi.​org/​10.​1016/j.​jpba.​
2013.​08.​041

	 7.	 Bamji-Stocke S, van Berkel V, Miller DM, Frieboes HB (2018) 
A review of metabolism-associated biomarkers in lung cancer 
diagnosis and treatment. Metabolomics 14:81. https://​doi.​org/​
10.​1007/​s11306-​018-​1376-2

	 8.	 Gunther UL (2015) Metabolomics biomarkers for breast cancer. 
Pathobiology 82:153–165. https://​doi.​org/​10.​1159/​00043​0844

	 9.	 Kdadra M, Hockner S, Leung H, Kremer W, Schiffer E (2019) 
Metabolomics biomarkers of prostate cancer: a systematic 
review. Diagnostics (Basel). https://​doi.​org/​10.​3390/​diagn​ostic​
s9010​021

	 10.	 Erben V, Bhardwaj M, Schrotz-King P, Brenner H (2018) 
Metabolomics biomarkers for detection of colorectal 
neoplasms: a systematic review. Cancers (Basel). https://​doi.​
org/​10.​3390/​cance​rs100​80246

	 11.	 Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the 
next generation. Cell 144:646–674. https://​doi.​org/​10.​1016/j.​
cell.​2011.​02.​013

	 12.	 Warburg O (1925) The metabolism of carcinoma cells. J 
Cancer Res 9:148–163

	 13.	 Schwenk RW, Vogel H, Schurmann A (2013) Genetic and 
epigenetic control of metabolic health. Mol Metab 2:337–347. 
https://​doi.​org/​10.​1016/j.​molmet.​2013.​09.​002

	 14.	 Zheng J (2012) Energy metabolism of cancer: glycolysis versus 
oxidative phosphorylation (review). Oncol Lett 4:1151–1157. 
https://​doi.​org/​10.​3892/​ol.​2012.​928

	 15.	 Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi 
L (2018) Mitochondrial metabolism and cancer. Cell Res 
28:265–280. https://​doi.​org/​10.​1038/​cr.​2017.​155

	 16.	 Daye D, Wellen KE (2012) Metabolic reprogramming in 
cancer: unraveling the role of glutamine in tumorigenesis. 
Semin Cell Dev Biol 23:362–369. https://​doi.​org/​10.​1016/j.​
semcdb.​2012.​02.​002

	 17.	 Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) 
Multiple biological activities of lactic acid in cancer: influences 
on tumor growth, angiogenesis and metastasis. Curr Pharm Des 
18:1319–1330. https://​doi.​org/​10.​2174/​13816​12127​99504​902

https://doi.org/10.3389/fonc.2019.01143
https://doi.org/10.3389/fonc.2019.01143
https://doi.org/10.1289/ehp.112-a410
https://doi.org/10.1152/physrev.00004.2019
https://doi.org/10.18632/oncotarget.16727
https://doi.org/10.18632/oncotarget.16727
https://doi.org/10.1007/s11306-018-1404-2
https://doi.org/10.1007/s11306-018-1404-2
https://doi.org/10.1016/j.jpba.2013.08.041
https://doi.org/10.1016/j.jpba.2013.08.041
https://doi.org/10.1007/s11306-018-1376-2
https://doi.org/10.1007/s11306-018-1376-2
https://doi.org/10.1159/000430844
https://doi.org/10.3390/diagnostics9010021
https://doi.org/10.3390/diagnostics9010021
https://doi.org/10.3390/cancers10080246
https://doi.org/10.3390/cancers10080246
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.molmet.2013.09.002
https://doi.org/10.3892/ol.2012.928
https://doi.org/10.1038/cr.2017.155
https://doi.org/10.1016/j.semcdb.2012.02.002
https://doi.org/10.1016/j.semcdb.2012.02.002
https://doi.org/10.2174/138161212799504902


Molecular and Cellular Biochemistry	

	 18.	 Doherty JR, Cleveland JL (2013) Targeting lactate metabolism 
for cancer therapeutics. J Clin Invest 123:3685–3692. https://​doi.​
org/​10.​1172/​JCI69​741

	 19.	 Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, 
Sanchez-Garcia FJ (2016) Lactate contribution to the tumor 
microenvironment: mechanisms, effects on immune cells and 
therapeutic relevance. Front Immunol 7:52. https://​doi.​org/​10.​
3389/​fimmu.​2016.​00052

	 20.	 San-Millan I, Brooks GA (2017) Reexamining cancer 
metabolism: lactate production for carcinogenesis could be the 
purpose and explanation of the Warburg Effect. Carcinogenesis 
38:119–133. https://​doi.​org/​10.​1093/​carcin/​bgw127

	 21.	 Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic 
pathways and the electron transport chain: a dangeROS 
liaison. Br J Cancer 122:168–181. https://​doi.​org/​10.​1038/​
s41416-​019-​0651-y

	 22.	 Ciccarone F, Di Leo L, Lazzarino G, Maulucci G, Di Giacinto 
F, Tavazzi B, Ciriolo MR (2020) Aconitase 2 inhibits the 
proliferation of MCF-7 cells promoting mitochondrial 
oxidative metabolism and ROS/FoxO1-mediated autophagic 
response. Br J Cancer 122:182–193. https://​doi.​org/​10.​1038/​
s41416-​019-​0641-0

	 23.	 Sarfati D, Koczwara B, Jackson C (2016) The impact of 
comorbidity on cancer and its treatment. CA Cancer J Clin 
66:337–350. https://​doi.​org/​10.​3322/​caac.​21342

	 24.	 Le A, Udupa S, Zhang C (2019) The metabolic interplay between 
cancer and other diseases. Trends Cancer 5:809–821

	 25.	 Sacerdote C, Ricceri F (2018) Epidemiological dimensions of 
the association between type 2 diabetes and cancer: a review 
of observational studies. Diabetes Res Clin Pract 143:369–377. 
https://​doi.​org/​10.​1016/j.​diabr​es.​2018.​03.​002

	 26.	 Godsland IF (2009) Insulin resistance and hyperinsulinaemia 
in the development and progression of cancer. Clin Sci (Lond) 
118:315–332. https://​doi.​org/​10.​1042/​CS200​90399

	 27.	 Hu CM, Tien SC, Hsieh PK, Jeng YM, Chang MC, Chang YT, 
Chen YJ, Chen YJ, Lee EYP, Lee WH (2019) High glucose 
triggers nucleotide imbalance through O-GlcNAcylation of key 
enzymes and induces KRAS mutation in pancreatic cells. Cell 
Metab 29(1334–1349):e10. https://​doi.​org/​10.​1016/j.​cmet.​2019.​
02.​005

	 28.	 Gallagher EJ, LeRoith D (2015) Obesity and diabetes: the 
increased risk of cancer and cancer-related mortality. Physiol 
Rev 95:727–748. https://​doi.​org/​10.​1152/​physr​ev.​00030.​2014

	 29.	 Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) 
Overweight, obesity, and mortality from cancer in a prospectively 
studied cohort of U.S. adults. N Engl J Med 348:1625–1638. 
https://​doi.​org/​10.​1056/​NEJMo​a0214​23

	 30.	 Nieman KM, Romero IL, Van Houten B, Lengyel E (2013) 
Adipose tissue and adipocytes support tumorigenesis and 
metastasis. Biochim Biophys Acta 1831:1533–1541. https://​doi.​
org/​10.​1016/j.​bbalip.​2013.​02.​010

	 31.	 Stengel B (2010) Chronic kidney disease and cancer: a troubling 
connection. J Nephrol 23:253–262

	 32.	 Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels 
M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, 
Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan 
M, Simantov R, Bukowski RM and Group TS (2007) Sorafenib 
in advanced clear-cell renal-cell carcinoma. N Engl J Med 
356:125–134. https://​doi.​org/​10.​1056/​NEJMo​a0606​55

	 33.	 Mouhayar E, Salahudeen A (2011) Hypertension in cancer 
patients. Tex Heart Inst J 38:263–265

	 34.	 Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, 
Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, 
Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE 
(2008) VEGF inhibition and renal thrombotic microangiopathy. 

N Engl J Med 358:1129–1136. https://​doi.​org/​10.​1056/​NEJMo​
a0707​330

	 35.	 Liu Y, Yang C (2021) Oncometabolites in cancer: current 
understanding and challenges. Cancer Res 81:2820–2823. https://​
doi.​org/​10.​1158/​0008-​5472.​CAN-​20-​3730

	 36.	 Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking 
altered metabolism with cancer. J Clin Invest 123:3652–3658. 
https://​doi.​org/​10.​1172/​JCI67​228

	 37.	 Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D (2017) 
Oncometabolites: a new paradigm for oncology, metabolism, and 
the clinical laboratory. Clin Chem 63:1812–1820. https://​doi.​org/​
10.​1373/​clinc​hem.​2016.​267666

	 38.	 Dang L, White DW, Gross S, Bennett BD, Bittinger MA, 
Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks 
KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, 
Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) 
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. 
Nature 462:739–744. https://​doi.​org/​10.​1038/​natur​e08617

	 39.	 Rzem R, Vincent MF, Van Schaftingen E, Veiga-da-Cunha M 
(2007) L-2-hydroxyglutaric aciduria, a defect of metabolite 
repair. J Inherit Metab Dis 30:681–689. https://​doi.​org/​10.​1007/​
s10545-​007-​0487-0

	 40.	 Van Vranken JG, Na U, Winge DR, Rutter J (2015) Protein-
mediated assembly of succinate dehydrogenase and its cofactors. 
Crit Rev Biochem Mol Biol 50:168–180. https://​doi.​org/​10.​3109/​
10409​238.​2014.​990556

	 41.	 Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, 
Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, Roylance 
RR, Olpin S, Bevan S, Barker K, Hearle N, Houlston RS, Kiuru 
M, Lehtonen R, Karhu A, Vilkki S, Laiho P, Eklund C, Vierimaa 
O, Aittomaki K, Hietala M, Sistonen P, Paetau A, Salovaara R, 
Herva R, Launonen V, Aaltonen LA, Multiple Leiomyoma C 
(2002) Germline mutations in FH predispose to dominantly 
inherited uterine fibroids, skin leiomyomata and papillary renal 
cell cancer. Nat Genet 30:406–410. https://​doi.​org/​10.​1038/​
ng849

	 42.	 Mu X, Zhao T, Xu C, Shi W, Geng B, Shen J, Zhang C, Pan 
J, Yang J, Hu S, Lv Y, Wen H, You Q (2017) Oncometabolite 
succinate promotes angiogenesis by upregulating VEGF 
expression through GPR91-mediated STAT3 and ERK 
activation. Oncotarget 8:13174–13185. https://​doi.​org/​10.​18632/​
oncot​arget.​14485

	 43.	 Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, 
Sudarshan S (2014) The oncometabolite fumarate promotes 
pseudohypoxia through noncanonical activation of NF-kappaB 
signaling. J Biol Chem 289:24691–24699. https://​doi.​org/​10.​
1074/​jbc.​M114.​568162

	 44.	 Shim EH, Livi CB, Rakheja D, Tan J, Benson D, Parekh V, 
Kho EY, Ghosh AP, Kirkman R, Velu S, Dutta S, Chenna B, 
Rea SL, Mishur RJ, Li Q, Johnson-Pais TL, Guo L, Bae S, 
Wei S, Block K, Sudarshan S (2014) L-2-Hydroxyglutarate: an 
epigenetic modifier and putative oncometabolite in renal cancer. 
Cancer Discov 4:1290–1298. https://​doi.​org/​10.​1158/​2159-​8290.​
CD-​13-​0696

	 45.	 Sainero-Alcolado L, Liano-Pons J, Ruiz-Perez MV, Arsenian-
Henriksson M (2022) Targeting mitochondrial metabolism for 
precision medicine in cancer. Cell Death Differ 29:1304–1317. 
https://​doi.​org/​10.​1038/​s41418-​022-​01022-y

	 46.	 Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key 
player in cancer metabolism. Cancer Res 72:3709–3714. https://​
doi.​org/​10.​1158/​0008-​5472.​CAN-​11-​4112

	 47.	 Rueda-Rincon N, Bloch K, Derua R, Vyas R, Harms A, 
Hankemeier T, Khan NA, Dehairs J, Bagadi M, Binda MM, 
Waelkens E, Marine JC, Swinnen JV (2015) p53 attenuates AKT 
signaling by modulating membrane phospholipid composition. 

https://doi.org/10.1172/JCI69741
https://doi.org/10.1172/JCI69741
https://doi.org/10.3389/fimmu.2016.00052
https://doi.org/10.3389/fimmu.2016.00052
https://doi.org/10.1093/carcin/bgw127
https://doi.org/10.1038/s41416-019-0651-y
https://doi.org/10.1038/s41416-019-0651-y
https://doi.org/10.1038/s41416-019-0641-0
https://doi.org/10.1038/s41416-019-0641-0
https://doi.org/10.3322/caac.21342
https://doi.org/10.1016/j.diabres.2018.03.002
https://doi.org/10.1042/CS20090399
https://doi.org/10.1016/j.cmet.2019.02.005
https://doi.org/10.1016/j.cmet.2019.02.005
https://doi.org/10.1152/physrev.00030.2014
https://doi.org/10.1056/NEJMoa021423
https://doi.org/10.1016/j.bbalip.2013.02.010
https://doi.org/10.1016/j.bbalip.2013.02.010
https://doi.org/10.1056/NEJMoa060655
https://doi.org/10.1056/NEJMoa0707330
https://doi.org/10.1056/NEJMoa0707330
https://doi.org/10.1158/0008-5472.CAN-20-3730
https://doi.org/10.1158/0008-5472.CAN-20-3730
https://doi.org/10.1172/JCI67228
https://doi.org/10.1373/clinchem.2016.267666
https://doi.org/10.1373/clinchem.2016.267666
https://doi.org/10.1038/nature08617
https://doi.org/10.1007/s10545-007-0487-0
https://doi.org/10.1007/s10545-007-0487-0
https://doi.org/10.3109/10409238.2014.990556
https://doi.org/10.3109/10409238.2014.990556
https://doi.org/10.1038/ng849
https://doi.org/10.1038/ng849
https://doi.org/10.18632/oncotarget.14485
https://doi.org/10.18632/oncotarget.14485
https://doi.org/10.1074/jbc.M114.568162
https://doi.org/10.1074/jbc.M114.568162
https://doi.org/10.1158/2159-8290.CD-13-0696
https://doi.org/10.1158/2159-8290.CD-13-0696
https://doi.org/10.1038/s41418-022-01022-y
https://doi.org/10.1158/0008-5472.CAN-11-4112
https://doi.org/10.1158/0008-5472.CAN-11-4112


	 Molecular and Cellular Biochemistry

Oncotarget 6:21240–21254. https://​doi.​org/​10.​18632/​oncot​arget.​
4067

	 48.	 Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) 
Molecular principles of metastasis: a hallmark of cancer 
revisited. Signal Transduct Target Ther 5:28. https://​doi.​org/​10.​
1038/​s41392-​020-​0134-x

	 49.	 DeBerardinis RJ, Chandel NS (2020) We need to talk about the 
warburg effect. Nat Metab 2:127–129. https://​doi.​org/​10.​1038/​
s42255-​020-​0172-2

	 50.	 Warburg O, Wind F, Negelein EJTJogp, (1927) The metabolism 
of tumors in the body. J Gen Physiol 8:519

	 51.	 Donato C, Kunz L, Castro-Giner F, Paasinen-Sohns A, 
Strittmatter K, Szczerba BM, Scherrer R, Di Maggio N, 
Heusermann W, Biehlmaier O, Beisel C, Vetter M, Rochlitz 
C, Weber WP, Banfi A, Schroeder T, Aceto N (2020) Hypoxia 
triggers the intravasation of clustered circulating tumor cells. 
Cell Rep 32:108105. https://​doi.​org/​10.​1016/j.​celrep.​2020.​
108105

	 52.	 Mehlen P, Puisieux A (2006) Metastasis: a question of life or 
death. Nat Rev Cancer 6:449–458. https://​doi.​org/​10.​1038/​nrc18​
86

	 53.	 Gill JG, Piskounova E, Morrison SJ (2016) Cancer oxidative 
stress, and metastasis. Cold Spring Harbor Symp Quant Biol 
81:163–175. https://​doi.​org/​10.​1101/​sqb.​2016.​81.​030791

	 54.	 Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, 
Solmonson A, Murphy MM, Gu Z, Gu W, Martin MJN (2020) 
Metabolic heterogeneity confers differences in melanoma 
metastatic potential. Nature 577:115–120

	 55.	 Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK (2020) EMT, 
MET, plasticity, and tumor metastasis. Trends Cell Biol 30:764–
776. https://​doi.​org/​10.​1016/j.​tcb.​2020.​07.​003

	 56.	 Colvin H, Nishida N, Konno M, Haraguchi N, Takahashi H, 
Nishimura J, Hata T, Kawamoto K, Asai A, Tsunekuni K, 
Koseki J, Mizushima T, Satoh T, Doki Y, Mori M, Ishii H (2016) 
Oncometabolite D-2-hydroxyglurate directly induces epithelial-
mesenchymal transition and is associated with distant metastasis 
in colorectal cancer. Sci Rep 6:36289. https://​doi.​org/​10.​1038/​
srep3​6289

	 57.	 Atlante S, Visintin A, Marini E, Savoia M, Dianzani C, Giorgis 
M, Sürün D, Maione F, Schnütgen F, Farsetti A, Zeiher AM, 
Bertinaria M, Giraudo E, Spallotta F, Cencioni C, Gaetano C 
(2018) α-ketoglutarate dehydrogenase inhibition counteracts 
breast cancer-associated lung metastasis. Cell Death Dis 9:756. 
https://​doi.​org/​10.​1038/​s41419-​018-​0802-8

	 58.	 Røsland GV, Dyrstad SE, Tusubira D, Helwa R, Tan TZ, 
Lotsberg ML, Pettersen IKN, Berg A, Kindt C, Hoel F, Jacobsen 
K, Arason AJ, Engelsen AST, Ditzel HJ, Lønning PE, Krakstad 
C, Thiery JP, Lorens JB, Knappskog S, Tronstad KJ (2019) 
Epithelial to mesenchymal transition (EMT) is associated with 
attenuation of succinate dehydrogenase (SDH) in breast cancer 
through reduced expression of SDHC. Cancer Metab 7:6. https://​
doi.​org/​10.​1186/​s40170-​019-​0197-8

	 59.	 Metallo CM, Vander Heiden MG (2013) Understanding 
metabolic regulation and its influence on cell physiology. Mol 
Cell 49:388–398. https://​doi.​org/​10.​1016/j.​molcel.​2013.​01.​018

	 60.	 Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of 
metabolism: the flux from Mendelian to complex diseases. Nat 
Rev Genet 7:449–460. https://​doi.​org/​10.​1038/​nrg18​80

	 61.	 Lagziel S, Lee WD, Shlomi T (2019) Studying metabolic 
flux adaptations in cancer through integrated experimental-
computational approaches. BMC Biol 17:51. https://​doi.​org/​10.​
1186/​s12915-​019-​0669-x

	 62.	 Winter G, Kromer JO (2013) Fluxomics - connecting ’omics 
analysis and phenotypes. Environ Microbiol 15:1901–1916. 
https://​doi.​org/​10.​1111/​1462-​2920.​12064

	 63.	 Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon 
MA (2015) From metabolomics to fluxomics: a computational 
procedure to translate metabolite profiles into metabolic fluxes. 
Biophys J 108:163–172. https://​doi.​org/​10.​1016/j.​bpj.​2014.​11.​
1857

	 64.	 Sauer U (2006) Metabolic networks in motion: 13C-based flux 
analysis. Mol Syst Biol 2:62. https://​doi.​org/​10.​1038/​msb41​
00109

	 65.	 Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, 
Tasdogan A (2022) Emerging metabolomic tools to study cancer 
metastasis. Trends Cancer 8:988–1001. https://​doi.​org/​10.​1016/j.​
trecan.​2022.​07.​003

	 66.	 Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, 
Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza 
C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, 
Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks 
OD, Malloy C, Metallo CM, Meuillet EJ, Munger J, Noh K, 
Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre 
J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, 
Vousden K, Young JD, Zamboni N, Fendt SM (2015) A roadmap 
for interpreting (13)C metabolite labeling patterns from cells. 
Curr Opin Biotechnol 34:189–201. https://​doi.​org/​10.​1016/j.​
copbio.​2015.​02.​003

	 67.	 Antoniewicz MR (2018) A guide to (13)C metabolic flux analysis 
for the cancer biologist. Exp Mol Med 50:1–13. https://​doi.​org/​
10.​1038/​s12276-​018-​0060-y

	 68.	 Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) 
Metabolic targets for cancer therapy. Nat Rev Drug Discov 
12:829–846. https://​doi.​org/​10.​1038/​nrd41​45

	 69.	 Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen 
J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, 
Mathews D, Pascual JM, Mickey BE, Malloy CR, DeBerardinis 
RJ (2012) Metabolism of [U-13C]glucose in human brain tumors 
in vivo. NMR Biomed 25:1234–1244. https://​doi.​org/​10.​1002/​
nbm.​2794

	 70.	 Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth 
MF, Verfaillie C, Grünewald TGP, Fendt S-M (2017) Proline 
metabolism supports metastasis formation and could be inhibited 
to selectively target metastasizing cancer cells. Nat Commun 
8:15267. https://​doi.​org/​10.​1038/​ncomm​s15267

	 71.	 Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger 
K, Veys K, Elia I, Buescher Joerg M, Orth Martin F, Davidson 
Shawn M, Grünewald Thomas Georg P, De Bock K, Fendt S-M 
(2016) Breast cancer-derived lung metastases show increased 
pyruvate carboxylase-dependent anaplerosis. Cell Rep 17:837–
848. https://​doi.​org/​10.​1016/j.​celrep.​2016.​09.​042

	 72.	 Rinaldi G, Pranzini E, Van Elsen J, Broekaert D, Funk CM, 
Planque M, Doglioni G, Altea-Manzano P, Rossi M, Geldhof V, 
Teoh ST, Ross C, Hunter KW, Lunt SY, Grünewald TGP, Fendt 
S-M (2021) In vivo evidence for serine biosynthesis-defined 
sensitivity of lung metastasis, but not of primary breast tumors, 
to mTORC1 inhibition. Mol Cell 81:386-397.e7. https://​doi.​org/​
10.​1016/j.​molcel.​2020.​11.​027

	 73.	 Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy 
V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y, 
Margulis V, Cadeddu JA, Pedrosa I, DeBerardinis RJ, Malloy 
CR, Bachoo RM, Maher EA (2018) Isotope tracing of human 
clear cell renal cell carcinomas demonstrates suppressed glucose 
oxidation in vivo. Cell Metab 28:793-800.e2. https://​doi.​org/​10.​
1016/j.​cmet.​2018.​07.​020

	 74.	 Gill JG, Leef SN, Ramesh V, Martin-Sandoval MS, Rao AD, 
West L, Muh S, Gu W, Zhao Z, Hosler GA, Vandergriff TW, 
Durham AB, Mathews TP, Aurora AB (2022) A short isoform of 
spermatogenic enzyme GAPDHS functions as a metabolic switch 
and limits metastasis in melanoma. Can Res 82:1251–1266. 

https://doi.org/10.18632/oncotarget.4067
https://doi.org/10.18632/oncotarget.4067
https://doi.org/10.1038/s41392-020-0134-x
https://doi.org/10.1038/s41392-020-0134-x
https://doi.org/10.1038/s42255-020-0172-2
https://doi.org/10.1038/s42255-020-0172-2
https://doi.org/10.1016/j.celrep.2020.108105
https://doi.org/10.1016/j.celrep.2020.108105
https://doi.org/10.1038/nrc1886
https://doi.org/10.1038/nrc1886
https://doi.org/10.1101/sqb.2016.81.030791
https://doi.org/10.1016/j.tcb.2020.07.003
https://doi.org/10.1038/srep36289
https://doi.org/10.1038/srep36289
https://doi.org/10.1038/s41419-018-0802-8
https://doi.org/10.1186/s40170-019-0197-8
https://doi.org/10.1186/s40170-019-0197-8
https://doi.org/10.1016/j.molcel.2013.01.018
https://doi.org/10.1038/nrg1880
https://doi.org/10.1186/s12915-019-0669-x
https://doi.org/10.1186/s12915-019-0669-x
https://doi.org/10.1111/1462-2920.12064
https://doi.org/10.1016/j.bpj.2014.11.1857
https://doi.org/10.1016/j.bpj.2014.11.1857
https://doi.org/10.1038/msb4100109
https://doi.org/10.1038/msb4100109
https://doi.org/10.1016/j.trecan.2022.07.003
https://doi.org/10.1016/j.trecan.2022.07.003
https://doi.org/10.1016/j.copbio.2015.02.003
https://doi.org/10.1016/j.copbio.2015.02.003
https://doi.org/10.1038/s12276-018-0060-y
https://doi.org/10.1038/s12276-018-0060-y
https://doi.org/10.1038/nrd4145
https://doi.org/10.1002/nbm.2794
https://doi.org/10.1002/nbm.2794
https://doi.org/10.1038/ncomms15267
https://doi.org/10.1016/j.celrep.2016.09.042
https://doi.org/10.1016/j.molcel.2020.11.027
https://doi.org/10.1016/j.molcel.2020.11.027
https://doi.org/10.1016/j.cmet.2018.07.020
https://doi.org/10.1016/j.cmet.2018.07.020


Molecular and Cellular Biochemistry	

https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​21-​2062%​JCanc​erRes​
earch

	 75.	 Sun RC, Fan TWM, Deng P, Higashi RM, Lane AN, Le A-T, 
Scott TL, Sun Q, Warmoes MO, Yang Y (2017) Noninvasive 
liquid diet delivery of stable isotopes into mouse models for deep 
metabolic network tracing. Nat Commun 8:1646. https://​doi.​org/​
10.​1038/​s41467-​017-​01518-z

	 76.	 Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang 
C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal 
T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy 
CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ 
(2017) Lactate metabolism in human lung tumors. Cell 171:358-
371.e9. https://​doi.​org/​10.​1016/j.​cell.​2017.​09.​019

	 77.	 Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, 
Sudderth J, Quesada-Diaz E, Cajigas A, Vemireddy V, Gonzalez-
Ericsson PI, Sanders ME, Mobley BC, Huffman K, Sahoo S, 
Alluri P, Lewis C, Peng Y, Bachoo RM, Arteaga CL, Hanker AB, 
DeBerardinis RJ, Malladi S (2022) Metabolic diversity within 
breast cancer brain-tropic cells determines metastatic fitness. Cell 
Metab 34:90-105.e7. https://​doi.​org/​10.​1016/j.​cmet.​2021.​12.​001

	 78.	 Labuschagne CF, Cheung EC, Blagih J, Domart M-C, Vousden 
KH (2019) Cell clustering promotes a metabolic switch that 
supports metastatic colonization. Cell Metab 30:720-734.e5. 
https://​doi.​org/​10.​1016/j.​cmet.​2019.​07.​014

	 79.	 Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu 
D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, 
Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR 
(2008) K-ras mutations and benefit from cetuximab in advanced 
colorectal cancer. N Engl J Med 359:1757–1765. https://​doi.​org/​
10.​1056/​NEJMo​a0804​385

	 80.	 Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) 
Comparison of RNA-seq and microarray in transcriptome 
profiling of activated T cells. PLoS ONE 9:e78644. https://​doi.​
org/​10.​1371/​journ​al.​pone.​00786​44

	 81.	 Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock 
W, Pappin DJ, Selby PJ (2000) Proteomics: new perspectives, 
new biomedical opportunities. Lancet 356:1749–1756. https://​
doi.​org/​10.​1016/​S0140-​6736(00)​03214-1

	 82.	 Rodland KD (2004) Proteomics and cancer diagnosis: the 
potential of mass spectrometry. Clin Biochem 37:579–583. 
https://​doi.​org/​10.​1016/j.​clinb​iochem.​2004.​05.​011

	 83.	 Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator 
mass spectrometry metabolite analysis and imaging. Anal Chem 
83:2–7. https://​doi.​org/​10.​1021/​ac101​565f

	 84.	 Johnson CH, Gonzalez FJ (2012) Challenges and opportunities 
of metabolomics. J Cell Physiol 227:2975–2981. https://​doi.​org/​
10.​1002/​jcp.​24002

	 85.	 Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: 
beyond biomarkers and towards mechanisms. Nat Rev Mol Cell 
Biol 17:451–459. https://​doi.​org/​10.​1038/​nrm.​2016.​25

	 86.	 Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X, Li J, Ye G, 
Yan M, Zhuang Z, Xu C, Xu G, Sun Y (2016) Integration of 
metabolomics and transcriptomics reveals major metabolic 
pathways and potential biomarker involved in prostate cancer. 
Mol Cell Proteomics 15:154–163. https://​doi.​org/​10.​1074/​mcp.​
M115.​052381

	 87.	 Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman AF, 
MacDonald PE, Wishart DS, Li S, Xia J (2024) MetaboAnalyst 
6.0: towards a unified platform for metabolomics data processing, 
analysis and interpretation. Nucleic Acids Res. https://​doi.​org/​10.​
1093/​nar/​gkae2​53

	 88.	 Xia J, Sinelnikov IV, Han B, Wishart DS (2015) Metaboanalyst 
3.0–making metabolomics more meaningful. Nucleic Acids Res 
43:W251–W257. https://​doi.​org/​10.​1093/​nar/​gkv380

	 89.	 Cambiaghi A, Ferrario M, Masseroli M (2017) Analysis of 
metabolomic data: tools, current strategies and future challenges 

for omics data integration. Brief Bioinform 18:498–510. https://​
doi.​org/​10.​1093/​bib/​bbw031

	 90.	 Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, 
Castellani G, Milanesi L (2016) Methods for the integration of 
multi-omics data: mathematical aspects. BMC Bioinformatics 
17(Suppl 2):15. https://​doi.​org/​10.​1186/​s12859-​015-​0857-9

	 91.	 Huang S, Chaudhary K, Garmire LX (2017) More is better: 
recent progress in multi-omics data integration methods. Front 
Genet 8:84. https://​doi.​org/​10.​3389/​fgene.​2017.​00084

	 92.	 Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S (2019) A selective 
review of multi-level omics data integration using variable 
selection. High Throughput. https://​doi.​org/​10.​3390/​ht801​0004

	 93.	 Rappoport N, Shamir R (2018) Multi-omic and multi-view 
clustering algorithms: review and cancer benchmark. Nucleic 
Acids Res 46:10546–10562. https://​doi.​org/​10.​1093/​nar/​gky889

	 94.	 Jendoubi T (2021) Approaches to Integrating metabolomics and 
multi-omics data: a primer. Metabolites. https://​doi.​org/​10.​3390/​
metab​o1103​0184

	 95.	 Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) 
Multi-omics data integration, interpretation, and its application. 
Bioinform Biol Insights 14:1177932219899051. https://​doi.​org/​
10.​1177/​11779​32219​899051

	 96.	 Kalita B, Barik GK, Sharma T, Taunk K, Bhavsar PP, Santra 
MK, Rapole S (2022) Systemic metabolomic changes associated 
with chemotherapy: role in personalized therapy. Drug Metab 
Handbook: Concepts Appl Cancer Res 2:811–839

	 97.	 Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean 
JA (2016) Untargeted metabolomics strategies-challenges and 
emerging directions. J Am Soc Mass Spectrom 27:1897–1905. 
https://​doi.​org/​10.​1007/​s13361-​016-​1469-y

	 98.	 Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden 
MG, Locasale JW (2021) Metabolomics in cancer research and 
emerging applications in clinical oncology. CA Cancer J Clin 
71:333–358. https://​doi.​org/​10.​3322/​caac.​21670

	 99.	 Posse S, Otazo R, Dager SR, Alger J (2013) MR spectroscopic 
imaging: principles and recent advances. J Magn Reson Imaging 
37:1301–1325. https://​doi.​org/​10.​1002/​jmri.​23945

	100.	 Crecelius AC, Schubert US, von Eggeling F (2015) MALDI mass 
spectrometric imaging meets “omics”: recent advances in the 
fruitful marriage. Analyst 140:5806–5820. https://​doi.​org/​10.​
1039/​c5an0​0990a

	101.	 Chatham JC, Blackband SJ (2001) Nuclear magnetic resonance 
spectroscopy and imaging in animal research. ILAR J 42:189–
208. https://​doi.​org/​10.​1093/​ilar.​42.3.​189

	102.	 Hefke F, Schmucki R, Güntert P (2013) Prediction of peak 
overlap in NMR spectra. J Biomol NMR 56:113–123. https://​
doi.​org/​10.​1007/​s10858-​013-​9727-9

	103.	 Tredwell GD, Bundy JG, De Iorio M, Ebbels TM (2016) 
Modelling the acid/base (1)H NMR chemical shift limits of 
metabolites in human urine. Metabolomics 12:152. https://​doi.​
org/​10.​1007/​s11306-​016-​1101-y

	104.	 Judge MT, Ebbels TMD (2022) Problems, principles and 
progress in computational annotation of NMR metabolomics 
data. Metabolomics 18:102. https://​doi.​org/​10.​1007/​
s11306-​022-​01962-z

	105.	 Stein S (2012) Mass spectral reference libraries: an ever-
expanding resource for chemical identification. Anal Chem 
84:7274–7282. https://​doi.​org/​10.​1021/​ac301​205z

	106.	 Taunk K, Taware R, More TH, Porto-Figueira P, Pereira JAM, 
Mohapatra R, Soneji D, Camara JS, Nagarajaram HA, Rapole S 
(2018) A non-invasive approach to explore the discriminatory 
potential of the urinary volatilome of invasive ductal carcinoma 
of the breast. RSC Adv 8:25040–25050. https://​doi.​org/​10.​1039/​
c8ra0​2083c

	107.	 Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson 
ID, Lewis MR, Dunn WB (2018) Guidelines and considerations 

https://doi.org/10.1158/0008-5472.CAN-21-2062%JCancerResearch
https://doi.org/10.1158/0008-5472.CAN-21-2062%JCancerResearch
https://doi.org/10.1038/s41467-017-01518-z
https://doi.org/10.1038/s41467-017-01518-z
https://doi.org/10.1016/j.cell.2017.09.019
https://doi.org/10.1016/j.cmet.2021.12.001
https://doi.org/10.1016/j.cmet.2019.07.014
https://doi.org/10.1056/NEJMoa0804385
https://doi.org/10.1056/NEJMoa0804385
https://doi.org/10.1371/journal.pone.0078644
https://doi.org/10.1371/journal.pone.0078644
https://doi.org/10.1016/S0140-6736(00)03214-1
https://doi.org/10.1016/S0140-6736(00)03214-1
https://doi.org/10.1016/j.clinbiochem.2004.05.011
https://doi.org/10.1021/ac101565f
https://doi.org/10.1002/jcp.24002
https://doi.org/10.1002/jcp.24002
https://doi.org/10.1038/nrm.2016.25
https://doi.org/10.1074/mcp.M115.052381
https://doi.org/10.1074/mcp.M115.052381
https://doi.org/10.1093/nar/gkae253
https://doi.org/10.1093/nar/gkae253
https://doi.org/10.1093/nar/gkv380
https://doi.org/10.1093/bib/bbw031
https://doi.org/10.1093/bib/bbw031
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.3390/ht8010004
https://doi.org/10.1093/nar/gky889
https://doi.org/10.3390/metabo11030184
https://doi.org/10.3390/metabo11030184
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1007/s13361-016-1469-y
https://doi.org/10.3322/caac.21670
https://doi.org/10.1002/jmri.23945
https://doi.org/10.1039/c5an00990a
https://doi.org/10.1039/c5an00990a
https://doi.org/10.1093/ilar.42.3.189
https://doi.org/10.1007/s10858-013-9727-9
https://doi.org/10.1007/s10858-013-9727-9
https://doi.org/10.1007/s11306-016-1101-y
https://doi.org/10.1007/s11306-016-1101-y
https://doi.org/10.1007/s11306-022-01962-z
https://doi.org/10.1007/s11306-022-01962-z
https://doi.org/10.1021/ac301205z
https://doi.org/10.1039/c8ra02083c
https://doi.org/10.1039/c8ra02083c


	 Molecular and Cellular Biochemistry

for the use of system suitability and quality control samples 
in mass spectrometry assays applied in untargeted clinical 
metabolomic studies. Metabolomics 14:72. https://​doi.​org/​10.​
1007/​s11306-​018-​1367-3

	108.	 May JC, McLean JA (2016) Advanced multidimensional 
separations in mass spectrometry: navigating the big data 
deluge. Annu Rev Anal Chem 9:387–409. https://​doi.​org/​10.​
1146/​annur​ev-​anchem-​071015-​041734

	109.	 Paglia G, Williams JP, Menikarachchi L, Thompson JW, 
Tyldesley-Worster R, Halldórsson S, Rolfsson O, Moseley 
A, Grant D, Langridge J, Palsson BO, Astarita G (2014) 
Ion mobility derived collision cross sections to support 
metabolomics applications. Anal Chem 86:3985–3993. https://​
doi.​org/​10.​1021/​ac500​405x

	110.	 Kapoore RV, Vaidyanathan S (2016) Towards quantitative mass 
spectrometry-based metabolomics in microbial and mammalian 
systems. Philos Trans A Math Phys Eng Sci. https://​doi.​org/​10.​
1098/​rsta.​2015.​0363

	111.	 Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and 
cancer. Cell 166:555–566. https://​doi.​org/​10.​1016/j.​cell.​2016.​
07.​002

	112.	 Lanning NJ, Castle JP, Singh SJ, Leon AN, Tovar EA, Sanghera 
A, MacKeigan JP, Filipp FV, Graveel CR (2017) Metabolic 
profiling of triple-negative breast cancer cells reveals metabolic 
vulnerabilities. Cancer Metab 5:6. https://​doi.​org/​10.​1186/​
s40170-​017-​0168-x

	113.	 Zhang J, Zhang Q (2019) Using seahorse machine to measure 
OCR and ECAR in cancer cells. In: Haznadar M (ed) Cancer 
metabolism: methods and protocols. Springer, New York

	114.	 Zamboni N, Sauer U (2009) Novel biological insights through 
metabolomics and 13C-flux analysis. Curr Opin Microbiol 
12:553–558

	115.	 Dong W, Keibler MA, Stephanopoulos G (2017) Review of 
metabolic pathways activated in cancer cells as determined 
through isotopic labeling and network analysis. Metab Eng 
43:113–124. https://​doi.​org/​10.​1016/j.​ymben.​2017.​02.​002

	116.	 Baysoy A, Bai Z, Satija R, Fan R (2023) The technological 
landscape and applications of single-cell multi-omics. Nat 
Rev Mol Cell Biol 24:695–713. https://​doi.​org/​10.​1038/​
s41580-​023-​00615-w

	117.	 Wei D, Xu M, Wang Z, Tong J (2022) The development of 
single-cell metabolism and its role in studying cancer emergent 
properties. Front Oncol. https://​doi.​org/​10.​3389/​fonc.​2021.​
814085

	118.	 Ibáñez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, 
Geiger P, Dechant R, Heinemann M, Zenobi R (2013) Mass 
spectrometry-based metabolomics of single yeast cells. PNAS 
110:8790–8794. https://​doi.​org/​10.​1073/​pnas.​12093​02110

	119.	 Mizuno H, Tsuyama N, Date S, Harada T, Masujima T (2008) 
Live single-cell metabolomics of tryptophan and histidine 
metabolites in a rat basophil leukemia cell. Anal Sci 24:1525–
1527. https://​doi.​org/​10.​2116/​anals​ci.​24.​1525

	120.	 Pan N, Rao W, Kothapalli NR, Liu R, Burgett AWG, Yang Z 
(2014) The single-probe: a miniaturized multifunctional device 
for single cell mass spectrometry analysis. Anal Chem 86:9376–
9380. https://​doi.​org/​10.​1021/​ac502​9038

	121.	 Pan N, Rao W, Yang Z (2020) Single-probe mass spectrometry 
analysis of metabolites in single cells. In: Shrestha B (ed) Single 
cell metabolism: methods and protocols. Springer, New York, pp 
61–71

	122.	 Nascimento RAS, Özel RE, Mak WH, Mulato M, Singaram B, 
Pourmand N (2016) Single cell “glucose nanosensor” verifies 
elevated glucose levels in individual cancer cells. Nano Lett 
16:1194–1200. https://​doi.​org/​10.​1021/​acs.​nanol​ett.​5b044​95

	123.	 Zhu Y, Wang W, Yang Z (2020) Combining mass spectrometry 
with paternò-büchi reaction to determine double-bond positions 

in lipids at the single-cell level. Anal Chem 92:11380–11387. 
https://​doi.​org/​10.​1021/​acs.​analc​hem.​0c022​45

	124.	 Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu 
J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, 
Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh 
D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, 
Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic 
profiles delineate potential role for sarcosine in prostate cancer 
progression. Nature 457:910–914. https://​doi.​org/​10.​1038/​natur​
e07762

	125.	 Zhang C, Zhou S, Chang H, Zhuang F, Shi Y, Chang L, Ai 
W, Du J, Liu W, Liu H, Zhou X, Wang Z, Hong T (2021) 
Metabolomic profiling identified serum metabolite biomarkers 
and related metabolic pathways of colorectal cancer. Dis Markers 
2021:6858809. https://​doi.​org/​10.​1155/​2021/​68588​09

	126.	 Yu H, Low B, Zhang Z, Guo J, Huan T (2023) Quantitative 
challenges and their bioinformatic solutions in mass 
spectrometry-based metabolomics. TrAC Trends Anal Chem 
161:117009. https://​doi.​org/​10.​1016/j.​trac.​2023.​117009

	127.	 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-
Watanabe M (2023) KEGG for taxonomy-based analysis of 
pathways and genomes. Nucleic Acids Res 51:D587-d592. 
https://​doi.​org/​10.​1093/​nar/​gkac9​63

	128.	 Haznadar M, Cai Q, Krausz KW, Bowman ED, Margono E, Noro 
R, Thompson MD, Mathe EA, Munro HM, Steinwandel MD, 
Gonzalez FJ, Blot WJ, Harris CC (2016) Urinary metabolite risk 
biomarkers of lung cancer: a prospective cohort study. Cancer 
Epidemiol Biomarkers Prev 25:978–986. https://​doi.​org/​10.​1158/​
1055-​9965.​EPI-​15-​1191

	129.	 Zhang L, Zheng J, Ahmed R, Huang G, Reid J, Mandal R, 
Maksymuik A, Sitar DS, Tappia PS, Ramjiawan B, Joubert P, 
Russo A, Rolfo CD, Wishart DS (2020) A high-performing 
plasma metabolite panel for early-stage lung cancer detection. 
Cancers (Basel). https://​doi.​org/​10.​3390/​cance​rs120​30622

	130.	 Luo P, Yin P, Hua R, Tan Y, Li Z, Qiu G, Yin Z, Xie X, Wang 
X, Chen W (2018) A Large-scale, multicenter serum metabolite 
biomarker identification study for the early detection of 
hepatocellular carcinoma. Hepatology 67:662–675

	131.	 Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, 
Su M, Wang X, Xu LX, Yen Y, Liu P, Jia W (2011) Serum and 
urine metabolite profiling reveals potential biomarkers of human 
hepatocellular carcinoma. Mol Cell Proteom 10(M110):004945. 
https://​doi.​org/​10.​1074/​mcp.​M110.​004945

	132.	 Silva C, Passos M, Câmara J (2011) Investigation of urinary 
volatile organic metabolites as potential cancer biomarkers 
by solid-phase microextraction in combination with gas 
chromatography-mass spectrometry. Br J Cancer 105:1894–1904

	133.	 Deng L, Ismond K, Liu Z, Constable J, Wang H, Alatise OI, 
Weiser MR, Kingham TP, Chang D (2019) Urinary metabolomics 
to identify a unique biomarker panel for detecting colorectal 
cancer: a multicenter study. Cancer Epidemiol Biomarkers Prev 
28:1283–1291. https://​doi.​org/​10.​1158/​1055-​9965.​EPI-​18-​1291

	134.	 Peng J, Chen YT, Chen CL, Li L (2014) Development of a 
universal metabolome-standard method for long-term LC-MS 
metabolome profiling and its application for bladder cancer 
urine-metabolite-biomarker discovery. Anal Chem 86:6540–
6547. https://​doi.​org/​10.​1021/​ac501​1684

	135.	 Zhang J, Bowers J, Liu L, Wei S, Gowda GA, Hammoud Z, 
Raftery D (2012) Esophageal cancer metabolite biomarkers 
detected by LC-MS and NMR methods. PLoS ONE 7:e30181. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00301​81

	136.	 Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger 
K, Mapstone M, Fiandaca MS, Federoff HJ, Cheema AK (2017) 
Metabolomic biomarkers of pancreatic cancer: a meta-analysis 
study. Oncotarget 8:68899–68915. https://​doi.​org/​10.​18632/​
oncot​arget.​20324

https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1146/annurev-anchem-071015-041734
https://doi.org/10.1146/annurev-anchem-071015-041734
https://doi.org/10.1021/ac500405x
https://doi.org/10.1021/ac500405x
https://doi.org/10.1098/rsta.2015.0363
https://doi.org/10.1098/rsta.2015.0363
https://doi.org/10.1016/j.cell.2016.07.002
https://doi.org/10.1016/j.cell.2016.07.002
https://doi.org/10.1186/s40170-017-0168-x
https://doi.org/10.1186/s40170-017-0168-x
https://doi.org/10.1016/j.ymben.2017.02.002
https://doi.org/10.1038/s41580-023-00615-w
https://doi.org/10.1038/s41580-023-00615-w
https://doi.org/10.3389/fonc.2021.814085
https://doi.org/10.3389/fonc.2021.814085
https://doi.org/10.1073/pnas.1209302110
https://doi.org/10.2116/analsci.24.1525
https://doi.org/10.1021/ac5029038
https://doi.org/10.1021/acs.nanolett.5b04495
https://doi.org/10.1021/acs.analchem.0c02245
https://doi.org/10.1038/nature07762
https://doi.org/10.1038/nature07762
https://doi.org/10.1155/2021/6858809
https://doi.org/10.1016/j.trac.2023.117009
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1158/1055-9965.EPI-15-1191
https://doi.org/10.1158/1055-9965.EPI-15-1191
https://doi.org/10.3390/cancers12030622
https://doi.org/10.1074/mcp.M110.004945
https://doi.org/10.1158/1055-9965.EPI-18-1291
https://doi.org/10.1021/ac5011684
https://doi.org/10.1371/journal.pone.0030181
https://doi.org/10.18632/oncotarget.20324
https://doi.org/10.18632/oncotarget.20324


Molecular and Cellular Biochemistry	

	137.	 Tao L, Zhou J, Yuan C, Zhang L, Li D, Si D, Xiu D, Zhong 
L (2019) Metabolomics identifies serum and exosomes 
metabolite markers of pancreatic cancer. Metabolomics 15:86. 
https://​doi.​org/​10.​1007/​s11306-​019-​1550-1

	138.	 Fahrmann JF, Bantis LE, Capello M, Scelo G, Dennison JB, 
Patel N, Murage E, Vykoukal J, Kundnani DL, Foretova L, 
Fabianova E, Holcatova I, Janout V, Feng Z, Yip-Schneider 
M, Zhang J, Brand R, Taguchi A, Maitra A, Brennan P, Max 
Schmidt C, Hanash S (2019) A plasma-derived protein-
metabolite multiplexed panel for early-stage pancreatic cancer. 
J Natl Cancer Inst 111:372–379. https://​doi.​org/​10.​1093/​jnci/​
djy126

	139.	 Xie G, Lu L, Qiu Y, Ni Q, Zhang W, Gao YT, Risch HA, Yu H, 
Jia W (2015) Plasma metabolite biomarkers for the detection of 
pancreatic cancer. J Proteome Res 14:1195–1202. https://​doi.​org/​
10.​1021/​pr501​135f

	140.	 DeFelice BC, Fiehn O, Belafsky P, Ditterich C, Moore M, 
Abouyared M, Beliveau AM, Farwell DG, Bewley AF, Clayton 
SM (2022) Polyamine metabolites as biomarkers in head and 
neck cancer biofluids. Diagnostics 12:797

	141.	 Wu X, Ao H, Gao H, Zhu Z (2022) Metabolite biomarker 
discovery for human gastric cancer using dried blood spot mass 
spectrometry metabolomic approach. Sci Rep 12:14632. https://​
doi.​org/​10.​1038/​s41598-​022-​19061-3

	142.	 Zhao Y, Lv H, Qiu S, Gao L, Ai H (2017) Plasma metabolic 
profiling and novel metabolite biomarkers for diagnosing prostate 
cancer. RSC Adv 7:30060–30069

	143.	 Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, 
Kaneko M, Ota S, Hiwatari K, Enomoto A, Soga T, Tomita M, 
Iino M (2016) Identification of salivary metabolomic biomarkers 
for oral cancer screening. Sci Rep 6:31520. https://​doi.​org/​10.​
1038/​srep3​1520

	144.	 Wang Q, Gao P, Cheng F, Wang X, Duan Y (2014) Measurement 
of salivary metabolite biomarkers for early monitoring of oral 
cancer with ultra performance liquid chromatography-mass 
spectrometry. Talanta 119:299–305. https://​doi.​org/​10.​1016/j.​
talan​ta.​2013.​11.​008

	145.	 Zand B, Previs RA, Zacharias NM, Rupaimoole R, Mitamura 
T, Nagaraja AS, Guindani M, Dalton HJ, Yang L, Baddour J, 
Achreja A, Hu W, Pecot CV, Ivan C, Wu SY, McCullough CR, 
Gharpure KM, Shoshan E, Pradeep S, Mangala LS, Rodriguez-
Aguayo C, Wang Y, Nick AM, Davies MA, Armaiz-Pena G, Liu 
J, Lutgendorf SK, Baggerly KA, Eli MB, Lopez-Berestein G, 
Nagrath D, Bhattacharya PK, Sood AK (2016) Role of increased 
n-acetylaspartate levels in cancer. J Natl Cancer Inst. https://​doi.​
org/​10.​1093/​jnci/​djv426

	146.	 More TH, RoyChoudhury S, Christie J, Taunk K, Mane A, Santra 
MK, Chaudhury K, Rapole S (2018) Metabolomic alterations 
in invasive ductal carcinoma of breast: a comprehensive 
metabolomic study using tissue and serum samples. Oncotarget 
9:2678–2696. https://​doi.​org/​10.​18632/​oncot​arget.​23626

	147.	 Park J, Shin Y, Kim TH, Kim D-H, Lee A (2019) Plasma 
metabolites as possible biomarkers for diagnosis of breast cancer. 
PLoS ONE 14:e0225129

	148.	 Yuan B, Schafferer S, Tang Q, Scheffler M, Nees J, Heil J, Schott 
S, Golatta M, Wallwiener M, Sohn C (2019) A plasma metabolite 
panel as biomarkers for early primary breast cancer detection. Int 
J Cancer 144:2833–2842

	149.	 Putluri N, Maity S, Kommagani R, Creighton CJ, Putluri V, 
Chen F, Nanda S, Bhowmik SK, Terunuma A, Dorsey T (2014) 
Pathway-centric integrative analysis identifies RRM2 as a 
prognostic marker in breast cancer associated with poor survival 
and tamoxifen resistance. Neoplasia 16:390–402

	150.	 Sun M, Yang Z (2019) Metabolomic studies of live single cancer 
stem cells using mass spectrometry. Anal Chem 91:2384–2391. 
https://​doi.​org/​10.​1021/​acs.​analc​hem.​8b051​66

	151.	 Liu R, Sun M, Zhang G, Lan Y, Yang Z (2019) Towards early 
monitoring of chemotherapy-induced drug resistance based 
on single cell metabolomics: combining single-probe mass 
spectrometry with machine learning. Anal Chim Acta 1092:42–
48. https://​doi.​org/​10.​1016/j.​aca.​2019.​09.​065

	152.	 Abouleila Y, Onidani K, Ali A, Shoji H, Kawai T, Lim CT, 
Kumar V, Okaya S, Kato K, Hiyama E, Yanagida T, Masujima T, 
Shimizu Y, Honda K (2019) Live single cell mass spectrometry 
reveals cancer-specific metabolic profiles of circulating tumor 
cells. Cancer Sci 110:697–706. https://​doi.​org/​10.​1111/​cas.​
13915

	153.	 Chen X, Sun M, Yang Z (2022) Single cell mass spectrometry 
analysis of drug-resistant cancer cells: Metabolomics studies of 
synergetic effect of combinational treatment. Anal Chim Acta 
1201:339621. https://​doi.​org/​10.​1016/j.​aca.​2022.​339621

	154.	 Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical 
applications of metabolomics in oncology: a review. Clin 
Cancer Res 15:431–440. https://​doi.​org/​10.​1158/​1078-​0432.​
CCR-​08-​1059

	155.	 Bhujwalla ZM, Kakkad S, Chen Z, Jin J, Hapuarachchige 
S, Artemov D, Penet MF (2018) Theranostics and 
metabolotheranostics for precision medicine in oncology. J Magn 
Reson 291:141–151. https://​doi.​org/​10.​1016/j.​jmr.​2018.​03.​004

	156.	 Cuperlovic-Culf M, Culf AS, Morin P Jr, Touaibia M (2013) 
Application of metabolomics in drug discovery, development 
and theranostics. Current Metab 1:41–57

	157.	 Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish 
MA (2020) current status of metabolomic biomarker discovery: 
impact of study design and demographic characteristics. 
Metabolites. https://​doi.​org/​10.​3390/​metab​o1006​0224

	158.	 Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena 
E, Vaughan AA, Halsall A, Harding N, Knowles JD (2015) 
Molecular phenotyping of a UK population: defining the human 
serum metabolome. Metabolomics 11:9–26

	159.	 Antignac J-P, de Wasch K, Monteau F, De Brabander H, Andre 
F, Le Bizec BJACA (2005) The ion suppression phenomenon in 
liquid chromatography–mass spectrometry and its consequences 
in the field of residue analysis. Anal Chim Acta 529:129–136

	160.	 Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) 
Signal suppression/enhancement in high-performance liquid 
chromatography tandem mass spectrometry. J Chromatogr A 
1217:3929–3937. https://​doi.​org/​10.​1016/j.​chroma.​2009.​11.​060

	161.	 Furey A, Moriarty M, Bane V, Kinsella B, Lehane M (2013) Ion 
suppression; a critical review on causes, evaluation, prevention 
and applications. Talanta 115:104–122. https://​doi.​org/​10.​1016/j.​
talan​ta.​2013.​03.​048

	162.	 Annesley TM (2003) Ion suppression in mass spectrometry. Clin 
Chem 49:1041–1044. https://​doi.​org/​10.​1373/​49.7.​1041

	163.	 Berg T, Strand DH (2011) 13C labelled internal standards—a 
solution to minimize ion suppression effects in liquid 
chromatography–tandem mass spectrometry analyses of drugs 
in biological samples? J Chromatogr A 1218:9366–9374. https://​
doi.​org/​10.​1016/j.​chroma.​2011.​10.​081

	164.	 Reis LG, Casey TM, Sobreira TJP, Cooper BR, Ferreira CR 
(2023) Step-by-Step approach to build multiple reaction 
monitoring (MRM) profiling instrument acquisition methods 
for class-based lipid exploratory analysis by mass spectrometry. 
J Biomol Tech. https://​doi.​org/​10.​7171/​3fc1f​5fe.​1972c​438

	165.	 Dumez J-N (2022) NMR methods for the analysis of mixtures. 
Chem Commun 58:13855–13872. https://​doi.​org/​10.​1039/​
D2CC0​5053F

	166.	 Wu Y, Sanati O, Uchimiya M, Krishnamurthy K, Wedell J, 
Hoch JC, Edison AS, Delaglio F (2024) SAND: automated 
time-domain modeling of NMR spectra applied to metabolite 
quantification. Anal Chem 96:1843–1851. https://​doi.​org/​10.​
1021/​acs.​analc​hem.​3c030​78

https://doi.org/10.1007/s11306-019-1550-1
https://doi.org/10.1093/jnci/djy126
https://doi.org/10.1093/jnci/djy126
https://doi.org/10.1021/pr501135f
https://doi.org/10.1021/pr501135f
https://doi.org/10.1038/s41598-022-19061-3
https://doi.org/10.1038/s41598-022-19061-3
https://doi.org/10.1038/srep31520
https://doi.org/10.1038/srep31520
https://doi.org/10.1016/j.talanta.2013.11.008
https://doi.org/10.1016/j.talanta.2013.11.008
https://doi.org/10.1093/jnci/djv426
https://doi.org/10.1093/jnci/djv426
https://doi.org/10.18632/oncotarget.23626
https://doi.org/10.1021/acs.analchem.8b05166
https://doi.org/10.1016/j.aca.2019.09.065
https://doi.org/10.1111/cas.13915
https://doi.org/10.1111/cas.13915
https://doi.org/10.1016/j.aca.2022.339621
https://doi.org/10.1158/1078-0432.CCR-08-1059
https://doi.org/10.1158/1078-0432.CCR-08-1059
https://doi.org/10.1016/j.jmr.2018.03.004
https://doi.org/10.3390/metabo10060224
https://doi.org/10.1016/j.chroma.2009.11.060
https://doi.org/10.1016/j.talanta.2013.03.048
https://doi.org/10.1016/j.talanta.2013.03.048
https://doi.org/10.1373/49.7.1041
https://doi.org/10.1016/j.chroma.2011.10.081
https://doi.org/10.1016/j.chroma.2011.10.081
https://doi.org/10.7171/3fc1f5fe.1972c438
https://doi.org/10.1039/D2CC05053F
https://doi.org/10.1039/D2CC05053F
https://doi.org/10.1021/acs.analchem.3c03078
https://doi.org/10.1021/acs.analchem.3c03078


	 Molecular and Cellular Biochemistry

	167.	 Han X, Wang W, Ma LH, Al-Ramahi I, Botas J, MacKenzie K, 
Allen GI, Young DW, Liu Z, Maletic-Savatic M (2023) SPA-
STOCSY: an automated tool for identification of annotated and 
non-annotated metabolites in high-throughput NMR spectra. 
bioRxiv. https://​doi.​org/​10.​1101/​2023.​02.​22.​529564

	168.	 Röhnisch HE, Eriksson J, Tran LV, Müllner E, Sandström C, 
Moazzami AA (2021) Improved automated quantification 
algorithm (AQuA) and its application to nmr-based metabolomics 
of EDTA-containing plasma. Anal Chem 93:8729–8738. https://​
doi.​org/​10.​1021/​acs.​analc​hem.​0c042​33

	169.	 Kiebish MA, Narain NR (2019) Enabling biomarker discovery in 
Parkinson’s disease using multiomics: challenges, promise and 
the future. Future Med. https://​doi.​org/​10.​2217/​pme-​2018-​0115

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1101/2023.02.22.529564
https://doi.org/10.1021/acs.analchem.0c04233
https://doi.org/10.1021/acs.analchem.0c04233
https://doi.org/10.2217/pme-2018-0115

	The prowess of metabolomics in cancer research: current trends, challenges and future perspectives
	Abstract
	Introduction—metabolites and their importance
	Metabolism and cancer
	Reprogramming energy metabolism as a hallmark of cancer
	Metabolic diseases as comorbidities in cancer
	Oncometabolites and their mechanism of action in cancer and metastasis
	Importance of metabolite fluxes in cancer and its metastasis

	OMICS approaches in cancer research and biomarker discovery
	Integration of multi-layered omics data integration

	Mapping cancer metabolism: global and targeted strategies
	Bioinformatics and computational biology tools in cancer metabolomics
	Data processing and preprocessing tools
	Statistical analysis tools
	Metabolic pathway and network analysis tools
	Integration tools
	Machine learning and predictive modeling tools

	Metabolomics in cancer and its metastasis: exploration of potential biomarkers for diagnosis and novel theranostic targets
	Metabolite biomarkers for cancer diagnosis
	Emergence of single-cell metabolomics in cancer and metastasis
	Potential of metabolomics in the development of novel theranostic targets

	Challenges and future perspectives in the development of cancer metabolite biomarkers
	Challenges in cancer metabolomics
	Challenges of achieving quantitative accuracy in untargeted metabolomics

	Conclusion
	Acknowledgements 
	References


