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Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was 
first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. 
The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms 
of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to 
comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these 
studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have 
highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, 
in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based 
on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related dis-
eases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related 
diseases, such as cancer and ischemic heart disease, are systematically addressed.
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Abbreviations
ACSL4  Acyl-CoA synthetase long chain family mem-

ber 4
ALOX12  Arachidonic 12-lipoxygenase
ALOX15  Arachidonic 15-lipoxygenase
ATF3  Activation transcription factor 3
Bach1  BTB and CNC homology 1
BRD4  Bromodomain-containing protein 4
CDK1  Cyclin-dependent kinase 1
CYP1B1  Cytochrome P450 1B1
Cys  Cystine
DMF  Dimethyl fumarate
DPP4  Dipeptidyl peptidase 4
EMP1  Epithelial membrane protein 1
FECH  Ferrochelatase
FPN  Ferroportin
FPN1  Ferroportin 1

FTH  Ferritin heavy chain
FTH1  Ferritin heavy chain 1
FTL  Ferritin light chain
G6PD  Glucose-6-phosphate dehydrogenase
GCLC  Glutamate-cysteine ligase catalytic subunit
GCLM  Glutamate-cysteine ligase modifier subunit
GPX4  Glutathione peroxidase 4
GSH  Glutathione
H2Bub1  H2B ubiquitination modification
HCC  Hepatocellular carcinoma
HO-1  Heme oxygenase-1
HSF1  Heat shock factor 1
HSPB1  Heat shock protein family B member 1
HSPE1  Heat shock protein family E member 1
IMA  Imatinib
JAK  Janus kinase
LSH  Lymphoid-specific helicase
MCL1  Myeloid cell leukemia-1
NADPH  Nicotinamide adenine dinucleotide phosphate
NCOA4  Nuclear receptor co-activator protein 4
NEDD4L  Neural precursor cell expressed developmen-

tally downregulated 4-like
NQO1  NAD(P)H quinone oxidoreductase 1
Nrf2  Nuclear factor-erythroid 2-related factor 2
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OGD/R  Oxygen-glucose deprivation and 
reoxygenation

PLB  Plumbagin
ROS  Reactive oxygen species
SAT1  Spermidine/spermine N1-acetyltransferase 1
SIRT6  Sirtuin 6
SKP2  S-phase kinase-associated protein 2
SLC40A1  Solute carrier family 40 member 1
SLC7A11  Solute carrier family 7 member 11
STAT3  Signal transducer and activator of transcrip-

tion 3
TAZ  Transcriptional coactivator with PDZ-binding 

motif
TEAD  TEA/ATTS domain
TFAP2A  Transcription factor AP2 alpha
TFRC  Transferrin receptor
TGF-β  Transforming growth factor beta
THSWD  Tao Hong Si Wu Tang
TNFAIP1  TNF alpha-induced protein 1
Tyk2  Tyrosine kinase 2
Ub  Ubiquitin
Usp7  Ubiquitin-specific protease 7
YAP  Yes-Association protein

Introduction

Research studies have indicated that the accumulation of 
lipid peroxidation in cells can trigger ferroptosis. Lipid per-
oxidation of cell and organelle membranes can lead to fer-
roptosis, with the endoplasmic reticulum membrane being 
the primary site of lipid peroxidation. Further studies have 
suggested that lipid peroxidation in membranes of the endo-
plasmic reticulum is an early event in the occurrence of fer-
roptosis, whereas lipid peroxidation of mitochondrial and 
other cell membranes takes place late in the process [1–3]. It 
is worth noting the vital contribution of mitochondria in fer-
roptosis. Iron ions, via the Fenton reaction, enhance the pro-
duction of reactive oxygen species (ROS) by mitochondria, 
which in turn activate the enzyme 15-lipoxygenase. This 
enzyme is responsible for the oxidation of free polyunsatu-
rated fatty acids esterified in phosphatidylcholine, leading to 
the damage of cellular membranes and ultimately resulting 
in ferroptosis [4].

It is important to note that the role of mitochondria in 
ferroptosis is dependent on specific background conditions. 
In cases where there is a deficiency of cysteine, it results in 
the hyperpolarization of the mitochondrial membrane poten-
tial and an accumulation of lipid peroxides, which triggers 
ferroptosis. However, when the mitochondrial tricarboxylic 
acid cycle loop or the electron transport chain is inhibited, 
the hyperpolarization of the mitochondrial membrane poten-
tial is reduced, and the ferroptosis caused by the lack of 

cysteine is effectively suppressed. This is due to the fact that 
mitochondrial metabolism significantly promotes the rapid 
depletion of glutathione(GSH), which leads to the genera-
tion of lipid ROS and ultimately ferroptosis. However, once 
glutathione peroxidase 4 (GPX4) is eliminated or pharma-
cologically inhibited in the cell, the cell can undergo fer-
roptosis independent of the mitochondria [5].

From a lipid metabolism perspective, ferroptosis is 
caused by the accumulation of harmful lipid peroxides. It 
disturbs cellular processes such as the balance of iron, redox, 
and antioxidant systems [6]. The buildup of toxic lipid ROS 
is caused by the deactivation of intracellular GSH-depend-
ent antioxidant defenses [7]. GPX4 is a crucial enzyme that 
regulates ferroptosis by converting harmful lipid peroxides 
into harmless alcohols. It prevents the accumulation of these 
substances and ultimately prevents cell death. A decrease 
in GPX4 can lead to the accumulation of lipid peroxides, 
damaging the cell membrane and causing cell death [8].

The role of system Xc- is highly significant in the 
advancement of ferroptosis. system Xc- is a multifaceted 
protein responsible for regulating cystine uptake and glu-
tamate excretion within cells. Its primary function is to 
facilitate the production of GSH by transporting cystine into 
the cell, where it undergoes reduction to form cysteine. In 
combination with GPX4, GSH reduces the effects of reac-
tive oxygen and nitrogen species. However, obstruction of 
system Xc- impedes cystine uptake, reducing intracellular 
GSH synthesis. This depletion of GSH leads to a decrease 
in the activity of GPX4, which makes it unable to break 
down intracellular lipid peroxides (ROOH) into ROH and 
 H2O2. As a result, there is a significant increase in ROS, 
which disrupts the cell's redox balance and lead to damage 
from cellular lipid peroxidation, ultimately resulting in the 
ferroptosis process [7, 9].

Iron plays a critical role in the manifestation of ferrop-
tosis. However, excessive amounts of free reactive iron can 
result in damage to tissues. In the case of iron overload-
related cardiomyopathy, iron chelation therapy is highly 
recommended as a treatment option [10]. The mitochon-
dria play a critical role in regulating iron levels within cells, 
containing up to 50% of the total iron content in the body. 
An imbalance in iron levels can lead to the accumulation of 
iron within the mitochondria, which can significantly hinder 
their normal functioning [11]. Furthermore, iron can transfer 
electrons to oxygen and hydrogen peroxide, giving rise to 
ROS, which can be harmful to cells [7, 11, 12].

Ferroptosis plays an essential role in a variety of dis-
eases, including neurological disorders (e.g., stroke and 
Alzheimer's disease), cancer, and cardiovascular disease 
[13–15]. Cellular metabolism relies heavily on iron, mak-
ing the study of ferroptosis a critical aspect of maintain-
ing adequate iron levels while also preventing cell death. 
A thorough comprehension of ferroptosis's mechanisms 
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and regulatory networks is essential for devising novel 
strategies to address associated diseases [13, 16]. In 
recent years, there has been an increasing interest in 
studying the signaling pathways involved in ferroptosis, 
as well as its essential regulatory genes. A few critical 
signaling pathways and regulatory proteins, such as P53 
and nuclear factor-erythroid 2-related factor 2 (Nrf2), 
have been identified, and their effects on ferroptosis 
should not be overlooked. Ferroptosis, due to its intricate 
relationship with various diseases, demands an in-depth 
comprehension of the underlying molecular mechanisms. 
Recent developments in the study of ferroptosis have led 
to the identification of novel targets and strategies that 
could potentially aid in the prevention and treatment of 
these ailments.

P53 in ferroptosis

P53 is a crucial regulatory protein that is commonly known 
as the "guardian of the cell." It plays a pivotal role in regu-
lating cell growth, division, repair, and apoptosis. P53 also 
plays multiple roles in ferroptosis. In this context, we dem-
onstrate how it contributes significantly to ferroptosis by 
targeting several important factors (Fig. 1).

Solute carrier family 7 member 11(SLC7A11)

Recent studies have revealed the crucial role of the P53 
protein in regulating the expression of the SLC7A11 gene, 
which is responsible for modulating the ferroptosis process. 
Inhibition of SLC7A11 expression is a key marker of ferrop-
tosis, and P53 also contributes to this process by suppress-
ing the expression of SLC7A11 to some degree [17, 18]. 
SLC7A11 serves as a vital antioxidant defense mechanism 

Fig. 1  An overview of the role of P53 on Ferroptosis. Abbreviations: 
ALOX12, Arachidonic 12-lipoxygenase; Cys, cystine; DPP4, Dipep-
tidyl peptidase 4; ROS, Reactive oxygen species; SAT1, Spermidine/

spermine N1-acetyltransferase 1; SLC7A11, Solute carrier family 7 
member 11; Ub, Ubiquitin; USP7, Ubiquitin-specific protease 7
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in cells and plays a significant role in the absorption of cys-
tine. A decline in the cellular levels of cystine can hinder 
the production of GSH, leading to an untimely removal of 
ROS. Inhibition of SLC7A11 by P53 results in a compro-
mised ability of cells to effectively respond to ROS stress, 
rendering them more vulnerable to ferroptosis. Nevertheless, 
it is essential to note that the P53-mediated inhibition of 
SLC7A11 alone is insufficient to trigger ferroptosis, as addi-
tional cellular damage (e.g., ROS stress or erastin exposure) 
is required to induce ferroptosis [17, 19]. P53 increases cel-
lular sensitivity to ferroptosis by inhibiting SLC7A11 gene 
expression, especially when cells are subjected to oxidative 
stress or other injuries. SLC7A11 is a promising target for 
future research into cancer treatment.

Spermidine/spermine N1‑acetyltransferase 1 (SAT1)

Notably, despite the absence of conventional P53 
functions(e.g., P53-mediated cell cycle arrest, apoptosis, and 
senescence), cells are still capable of exercising a tumor sup-
pressor effect [19]. Additionally, it has been demonstrated 
that even when the P53 protein has lost its typical functions, 
such as cell cycle arrest and apoptosis, it is still able to pro-
mote ferroptosis, thereby achieving tumor suppression [18, 
20]. The P53 protein serves as a transcription factor that can 
effectively regulate various target genes through transcrip-
tional processes. Upon activation, P53 initiates the upregu-
lation of SAT1 expression, which in turn increases cellular 
sensitivity to oxidative stress. SAT1 is a crucial enzyme in 
polyamine metabolism as it plays a rate-limiting role in the 
conversion of arginine to putrescine. SAT1 has been found 
to upregulate the expression of arachidonic 15-lipoxygenase 
(ALOX15), which is a lipoxygenase that plays a crucial 
role in the peroxidation of arachidonic acid. The increased 
expression of ALOX15 leads to further lipid peroxidation. 
However, the precise mechanism through which SAT1 mod-
ulates the expression of ALOX15 is not fully understood. 
The activation of SAT1 expression results in the induction of 
lipid peroxidation and an elevated cellular response to ROS-
induced stress, ultimately contributing to ferroptosis [21].

Arachidonate 12‑lipoxygenase (ALOX12)

The expression level of ALOX12 is significantly diminished 
in a variety of human cancers, including cervical squamous 
cell carcinoma, head and neck squamous cell carcinoma, 
esophageal squamous cell carcinoma, and acute myeloid 
leukemia. ALOX12 plays a crucial role in P53-induced 
ferroptosis. It is a lipoxygenase enzyme that facilitates the 
production of peroxides from polyunsaturated fatty acids 
[22]. Evidence suggests that ALOX12 mutations in human 
tumors impede its catalytic activity and its ability to oxidize 
polyunsaturated fatty acids. Knockdown of the ALOX12 

gene has revealed a significant reduction in the inactivation 
of P53-mediated ferroptosis [23]. The significance of P53 
in Ferroptosis among vascular endothelial cells has been 
established through research. Findings indicate a notable 
increase in the expression of P53 and cytochrome ALOX12 
in angiotensin II-treated human umbilical vein endothelial 
cells. This suggests that the angiotensin II type 1 receptor 
and angiotensin II type 2 receptor trigger cellular ferroptosis 
through the P53-ALOX12 signaling axis. Additionally, P53 
indirectly contributes to ALOX12's function by regulating 
the transcription of SLC7A11 [24, 25]. If cells have excess 
ROS, it could intensify P53 protein-mediated ferroptosis 
[26].

H2B

It is well known that H2B is a crucial component of histones. 
However, the relationship between H2B and ferroptosis has 
yet to be investigated. The phenomenon of ferroptosis is 
intricately tied to the extent of H2B ubiquitination modifi-
cation (H2Bub1). The reduction of H2Bub1 contributes to 
an escalation in ferroptosis. The activation of solute carrier 
family member 11 is attained through epigenetic mecha-
nisms instigated by H2Bub1. Recent studies have shown 
that P53 can negatively regulate the levels of H2Bub1 by 
promoting the nuclear translocation of the ubiquitin-specific 
protease 7 deubiquitinating enzyme. The function of P53 is 
independent of its role as a transcription factor and estab-
lishes a connection between P53 and ferroptosis through 
H2Bub1-mediated epigenetic pathways. These findings shed 
new light on the complex mechanisms underlying chromatin 
regulation and provide important insights into the role of 
P53 in cancer and other diseases [27].

Fe

The induction of cell death via an overabundance of iron is 
governed by the regulatory function of P53, which oversees 
the transcriptional output of transferrin and the intracellular 
concentration of free iron [28, 29]. The tumor suppressor 
protein P53 has been shown to regulate intracellular iron 
ion levels through the modulation of the H ferritin gene. As 
a critical intracellular iron storage protein, H ferritin plays 
a vital role in protecting cells against ROS by binding to 
free iron ions. Overexpression of H ferritin has been found 
to reduce hydrogen peroxide-induced cytotoxicity, thereby 
mitigating oxidative stress and promoting cellular survival. 
According to recent research, P53 has demonstrated the abil-
ity to stimulate the expression of ferritin. Interestingly, this 
mechanism of action occurs post-transcriptionally, rather 
than through transcriptional regulation. However, the exact 
mechanisms underlying this process remain unresolved and 
require further investigation [30]. A different research study 
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found that P53 has the potential to efficiently interact with 
the H ferritin promoter, leading to suppression of ferritin 
expression [31]. Furthermore, overexpression of P53 can 
inhibit H ferritin gene transcription, which in turn reduces 
the intracellular expression [31]. P53 also regulates iron 
metabolism by inducing the expression of ferredoxin reduc-
tase, which in turn regulates iron metabolism [32]. However, 
the role of P53 in ferroptosis is complex, as it can either 
impede or facilitate the process [18]. It is noteworthy that 
ferritin has the ability to induce P53 expression under condi-
tions of oxidative stress [29, 33].

P21

The P21 protein plays a crucial role in ferroptosis regulation. 
Understanding the regulatory mechanisms in this process 
can help to comprehensively understand ferroptosis and 
its therapeutic potential [34]. P53/P21 is a crucial signal-
ing pathway. Studies have shown that inhibiting the P53/
P21 pathway can prevent ferroptosis and slow the onset and 
progression of hypertensive nephropathy [35]. It is impor-
tant to note that the P53-P21 signaling pathway is connected 
to GSH levels. This pathway can help cancer cells survive 
without serine by increasing GSH levels and maintaining a 
balanced redox state. Studies have shown that blocking P21 
can cause lipid peroxidation, ROS production, and a series 
of ferroptosis events when exposed to radiation [36].

Dipeptidyl peptidase 4 (DPP4)

It has been discovered that the level of DPP4 expression in 
tumors is associated with the tumor's biological aggressive-
ness [37]. Additionally, DPP4 plays a crucial role in regulat-
ing ferroptosis, and its function is linked to reactions involv-
ing lipid peroxidation [38]. In colorectal cancer cells, P53 
and DPP4 interact. This interaction affects the location and 
enzymatic activity of DPP4, which in turn plays a significant 
role in regulating the onset of ferroptosis. Specifically, P53 
promotes the relocation of DPP4 to the nucleus and limits 
its enzymatic activity. This helps to reduce the likelihood 
of ferroptosis. However, if P53 has mutations or deletions, 
DPP4 accumulates on the cell membrane and promotes lipid 
peroxidation, increasing the likelihood of ferroptosis. Addi-
tionally, DPP4 binds to NADPH oxidase 1, which further 
promotes lipid peroxidation and enhances the likelihood of 
ferroptosis [16, 39].

The various functions of P53 in ferroptosis are inter-
twined with diverse pathways and have significant implica-
tions for comprehending the mechanisms controlling cell 
death and tumor growth. Nonetheless, it is crucial to conduct 
additional laboratory and clinical research to confirm these 
discoveries and gain a better understanding of the connec-
tion between P53 and ferroptosis.

Nrf2 in ferroptosis

Nrf2 is a significant transcription factor involved in regulat-
ing the intracellular antioxidant stress response and main-
taining the stability of the intracellular environment. As a 
result, it plays a critical role in protecting cells against oxida-
tive damage. In this section, we will focus on the vital role 
of Nrf2 in ferroptosis and its important associated targets 
(Fig. 2).

Ferroportin (FPN)

Nrf2 is a protein that plays a significant role in the regulation 
of iron metabolism within cells. FPN) is another essential 
protein that helps in the transport of iron and maintains its 
balance both inside and outside the cell. If a cell does not 
have enough iron, ferritin heavy chain 1(FTH1) and nuclear 
receptor co-activator protein 4 (NCOA4) combine to form a 
complex that releases iron through ferritin autophagy. Con-
versely, if there is an excess of iron inside the cell, FPN1 
transports it outside the cell [40]. Nrf2 is responsible for 
controlling the expression of iron transport proteins and 
factors linked with ferroptosis at the transcriptional level. 
Brain microvascular endothelial cells express FPN1, and its 
expression is regulated by Nrf2. FPN1 plays a significant 
role in facilitating iron entry into the brain. A deficiency 
in Nrf2 results in reduced expression of FPN1 in micro-
vascular endothelial cells, which hinders the entry of iron 
[41]. Research has revealed that Nrf2 and FPN are crucial 
for protecting macrophages from ferroptosis. When FPN or 
Nrf2 is suppressed, iron levels and lipid peroxidation within 
cells increase, making them more susceptible to ferroptosis 
triggered by RSL3, a GPX4 inhibitor. It was later discov-
ered that FPN expression, triggered by RSL3, is depend-
ent on Nrf2 [42]. Additionally, research has revealed that 
heme plays a crucial role in regulating the transcription of 
FPN1. This is accomplished through its interaction with 
BTB and CNC homology 1 (Bach1), Nrf2, and the MARE/
ARE sequence situated at the -7007 position of the FPN1 
promoter. As a result, heme can impact iron transport and 
metabolism [42, 43]. It is evident that the Nrf2-FPN signal-
ing pathway does not have only a single regulatory effect in 
regulating ferroptosis but varies with changes in the tissue 
environment and other factors.

FTH/ ferritin light chain (FTL)

Iron can be stored in cells as ferritin, which consists of 
FTH and FTL. FTH acts as an iron reductase, and FTL 
stores large amounts of iron [44, 45]. FTH, which Nrf2 
targets, is crucial for regulating iron metabolism and 



 Molecular and Cellular Biochemistry

antioxidant systems in ferroptosis. Increasing FTH expres-
sion can help counteract ferroptosis and restore cellular 
balance. Studies have shown that inhibiting autophagy 
decreases FTH expression and activating Nrf2 increases it 
[46]. When the function of lysosomes is impeded, the deg-
radation of FTH is also hindered, resulting in a decrease 
in the manifestation of ferroptosis symptoms, such as lipid 
peroxidation and iron accumulation [47].

After a traumatic brain injury, the brain has a natu-
ral defense mechanism, with Nrf2 playing a crucial role 
in this process. By regulating ferroptosis and controlling 
ferritin levels, Nrf2 helps safeguard the brain. However, 
in the absence of Nrf2, decreased FTH levels can lead to 
increased free iron levels, which may cause neurological 
abnormalities. Nrf2 is known to play a role in promoting 
the expression of FTL, a protein involved in iron metabo-
lism. Studies have shown that deletion or mutation of FTL 
can disrupt iron balance in the brain, leading to ferroptosis 
in neuronal cells. This can cause early morphological signs 
of neurodegenerative lesions and impairments in motor 
coordination in mice [44]. Studies have shown that differ-
ent FTH/FTL ratios have different functions, with higher 
FTH1/FTL ratios effectively inhibiting ferroptosis [48]. 

Therefore, it is essential to understand the role of Nrf2 in 
brain protection and to investigate potential therapies to 
enhance its function. [49, 50].

Ferrochelatase (FECH)

FECH is an important enzyme involved in heme synthesis. 
It is a vital enzyme that facilitates the integration of iron 
ions into protoporphyrin IX, which is necessary for the 
synthesis of heme [51]. This procedure efficiently restricts 
the accumulation of iron ions in the human body; this may 
lead to oxidative stress and lipid peroxidation. Inhibition 
of FECH can lead to increased oxidative stress and the 
onset of ferroptosis [52, 53]. Nrf2 can affect the process of 
heme biosynthesis by directly increasing the transcription 
of the FECH gene, thereby allowing the binding of iron 
to porphyrin to form heme [54, 55]. Notably, researchers 
have discovered that Nrf2 activates various genes related 
to heme regulation, including FECH. It has been proposed 
that both heme byproducts and heme itself can impact the 
immune system, and heme is essential for maintaining iron 
balance [56].

Fig. 2  An overview of the role of Nrf2 on Ferroptosis. Abbreviations: 
FECH, Ferrochelatase; FPN, Ferroportin; FTH, Ferritin heavy chain; 
FTL, Ferritin light chain; GCLC, Glutamate-cysteine ligase catalytic 
subunit; GCLM, Glutamate-cysteine ligase modifier subunit; GPX4, 

Glutathione peroxidase 4; G6PD, Glucose-6-phosphate dehydroge-
nase; NQO1, NAD(P)H quinone oxidoreductase 1; Nrf2, Nuclear 
factor erythroid 2-related factor 2; ROS, Reactive oxygen species; 
SLC7A11, Solute carrier family 7 member 11
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GPX4

GPX4 is a protein that belongs to the GPX family and is 
crucial in the process of ferroptosis [8, 57]. Until recently, 
the critical regulators of ferroptosis were unknown. How-
ever, a study was conducted that used targeted metabolomics 
analysis and chemical proteomics strategies to identify two 
classes of ferroptosis inducers. The first class led to the 
inactivation of GPX4 by depleting GSH, and the second 
class directly inhibited the activity of GPX4. The study also 
found that altering the expression of GPX4 could modulate 
the effects of ferroptosis-inducing agents on cells. Further-
more, two representative ferroptosis-inducing agents were 
found to be effective in preventing the growth of mouse 
xenograft tumors. In a sensitivity analysis of 177 cancer cell 
lines, GPX4-regulated ferroptosis was particularly effective 
against diffuse large B-cell lymphoma and renal cell carci-
noma [8]. Therefore, GPX4 is a crucial factor in regulat-
ing ferroptosis and is essential in causing cancer cell death 
through ferroptosis.

In recent years, an increasing number of researchers 
have started investigating the correlation between GPX4 
and Nrf2. Under conditions of high oxidative stress, Nrf2 
is activated and promotes the transcription of a range of 
target genes, including GPX4, heme oxygenase-1 (HO-1), 
and SLC7A11. However, Nrf2 expression is inhibited with 
atorvastatin, which suppresses the expression of GPX4 and 
SLC7A11 [58]. Furthermore, when atorvastatin is admin-
istered, it can impair the expression and function of GPX4 
in mitochondria and other organelles within the cell. This 
is due to the downregulation of Nrf2, which inhibits the 
expression of GPX4 and SLC7A11, ultimately contributing 
to the ferroptosis state of the cell [58]. In an oxygen–glucose 
deprivation and reoxygenation (OGD/R)-induced PC12 cell 
model, OGD/R stimulation led to the onset of ferroptosis 
and a significant reduction in the protein expression levels of 
GPX4, FTH1, and FPN. According to the study, the harmful 
effects of OGD/R can be reversed, and cellular ferroptosis 
can be prevented by the knockdown of TNF alpha-induced 
protein 1 (TNFAIP1). This knockdown helps in regulating 
the Nrf2/GPX4 signaling pathway, which inhibits ferropto-
sis and reduces OGD/R-induced neuronal cell injury. The 
results of the study suggest that the Nrf2/GPX4 signaling 
pathway plays a crucial role in regulating ferroptosis [59].

In addition to its role in neuronal cells, there is experi-
mental evidence that GPX4 plays an essential protective 
role in autoimmune hepatitis and autoimmune hepatitis 
induced by liver-specific antigen S100. Interference with 
GPX4 expression by using AAV8-m-GPX4 showed that 
GPX4 knockdown resulted in a significant increase in the 
expression of ferroptosis markers, including cyclooxyge-
nase-2, acyl-CoA synthetase long chain family member 4 
(ACSL4), and FTH1, as well as led to increased liver injury 

and inflammatory cell infiltration [60]. According to recent 
studies, two crucial pathways relevant to HO-1 and sirtuin6 
(SIRT6) have been discovered. The Nrf2/HO-1/GPX4 path-
way plays a crucial role in preventing liver damage caused 
by Maresin-1. maresin-1 can effectively prevent ferroptosis 
by activating the Nrf2/HO-1 pathway, which inhibits the 
production of ROS and boosts the expression of GPX4 [61]. 
Researchers discovered that SIRT6 controls the expression 
of p-Nrf2 and NCOA4, while melatonin prevents ferroptosis 
in mirror epithelial cells by activating the SIRT6/p-Nrf2/
GPX4 pathway when exposed to antioxidant stress [62].

To summarize, it is clear that Nrf2/GPX4 has a significant 
impact on ferroptosis in many tissues and organs, making it 
a valuable target for the development of pioneering drugs 
that could benefit humans. For example, wogonin is a fla-
vonoid extracted from Scutellaria baicalensis, which has a 
variety of pharmacological effects, including anticancer and 
anti-inflammatory effects. Wogonin induces ferroptosis in 
pancreatic cancer cells by increasing the levels of intracel-
lular ferrous ions and superoxide radicals, decreasing the 
level of GSH, and inhibiting the expression of the Nrf2/
GPX4 pathway [63].

NAD(P)H quinone oxidoreductase 1 (NQO1)

NQO1, an antioxidant enzyme, has been discovered to 
impede the ferroptosis response. In cases where cellular 
autophagy is compromised, P62 tends to accumulate. P62 
then competes with Nrf2 for Keap1 binding, leading to an 
increase in the expression of antioxidant proteins such as 
HO1, FTH1, and NQO1 by facilitating the translocation of 
Nrf2 [64, 65]. NQO1 plays multiple roles in ferroptosis. Spe-
cifically, utilizing the PharmMapper database and molecular 
docking technology, it was discovered that plumbagin(PLB) 
can bind to NQO1 during PLB-induced ferroptosis. This 
binding significantly increased NQO1 activity, leading to 
cell death through an NQO1-dependent pathway. Further-
more, when NQO1 was silenced, the effectiveness of PLB in 
inhibiting cell growth was notably reduced. These findings 
strongly suggest that NQO1 plays a crucial role in PLB-
induced cell death in ferroptosis [64, 66].

It has been observed that propofol can increase the levels 
of Nrf2, which in turn can protect against lung injury caused 
by ventilators, myocardial toxicity due to ischemia/reperfu-
sion, and kidney injury. As a result, there is an increase in 
the levels of Nrf2 and its downstream target genes, including 
NQO1 and SLC7A11. NQO1 plays a crucial role in con-
trolling the redox balance within cells and protecting them 
from oxidative harm [67, 68]. These effects are important 
in various drug applications and development. The use of 
imatinib (IMA) may harm the heart by triggering ferropto-
sis. However, it was discovered that berberine offers protec-
tion against IMA-induced cardiac damage, partly due to the 
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action of Nrf2/NQO1 [69]. A different research study found 
that tanshinones have protective effects, mediated by NQO1, 
against ferroptosis-related damage. Additionally, NQO1 
gene defects weakened the protective effects of 15-047 (a 
compound) against liver injury induced by concanavalin A 
and myocardial ischemia–reperfusion injury in mice [70]. 
A study reported for the first time about the high expression 
of transcription factor AP2 alpha (TFAP2A) in gallbladder 
cancer in terms of a malignant phenotype and the regulation 
of ferroptosis. Specifically, inhibition of TFAP2A decreased 
proliferation, migration, and invasion of gallbladder cancer 
cells while promoting ferroptosis. Silencing TFAP2A led to 
down-regulation of Nrf2 and its target genes (NQO1, etc.) 
[71].

Recent studies have revealed important pathways related 
to HO-1 and NQO1. The Nrf2/HO-1/NQO1 signaling path-
way plays a crucial role in regulating ovarian cancer cells. 
Additionally, eriodictyol has been found to have a positive 
impact on cell viability, ferroptosis effects, and mitochon-
drial function by regulating this signaling pathway. In a 
mouse transplantation tumor model, eriodictyol inhibited 
tumor growth, exacerbated mitochondrial dysfunction, and 
decreased Nrf2 levels, which in turn affected the action of 
NQO1 [72]. Furthermore, the anticancer effect of neferine 
in thyroid cancer is related to the Nrf2/HO-1/NQO1 path-
way. NQO-1 can neutralize oxidative stress by enhancing 
the ability to scavenge ROS. On the other hand, NQO-1 can 
inhibit the cancerous process by stabilizing the P53 tumor 
suppressor [73].

In conclusion, the target gene of Nrf2, NQO1, has a vital 
role in future research and tumor drug development.

SLC7A11

The SLC7A11 protein is essential for transporting cystine 
and GSH within cells. This amino acid transporter protein 
performs a crucial antioxidant function by supplying cystine 
to synthesize GSH, which helps cells fight against oxidative 
stress [74, 75]. SLC7A11 is involved in the regulation of fer-
roptosis by transporting cystine. It was also found that the 
expression of SLC7A11 during ferroptosis is regulated by 
factors such as Nrf2 [74, 76]. Highly activated Nrf2 induces 
the expression of SLC7A11 by directly binding to its pro-
moter region. A study found that Nrf2 overactivation induces 
its expression through direct binding to the promoter region 
of SLC7A11, which promotes resistance to radiation therapy 
and reduces radiation therapy-induced levels of lipid peroxida-
tion, prostaglandin-endoperoxide synthase 2 expression, and 
morphological features from radiation therapy-associated fer-
roptosis [76]. It is worth noting that SLC7A11 plays a crucial 
role in mediating Nrf2-related resistance to radiation therapy 
through the inhibition of ferroptosis. This presents an excit-
ing avenue for the future targeting of therapeutic resistance 

biomarkers through the Nrf2/SLC7A11/ferroptosis axis. In 
lung epithelial cell experiments, the Nrf2/SLC7A11/HO-1 
pathway was essential in OGD/R-induced ferroptosis, high-
lighting the dual role of SLC7A11 in regulating cell death 
and redox homeostasis, as well as nutrient dependence. By 
increasing SLC7A11 expression, Nrf2 activation helps to 
reduce OGD/R-induced ferroptosis, leading to an increase in 
intracellular cystine concentration and a decrease in oxidative 
stress [77]. Another study found that Nrf2 and signal trans-
ducer and activator of transcription 3 (STAT3) are involved 
in the regulation of ferroptosis by affecting the expression of 
SLC7A11 and play an important role in acute lung injury [78]. 
Nrf2 and STAT3 ameliorate pathological processes associated 
with acute lung injury by regulating SLC7A11 [78, 79].

In addition to its role in lung injury, the Nrf2/SLC7A11/
HO-1 axis plays an important role in liver ischemic 
injury. Mice and cell models treated with dimethyl fuma-
rate (DMF) showed that DMF could inhibit ferroptosis in 
injured liver cells by activating the Nrf2/SLC7A11/HO-1 
pathway, thereby protecting the liver from injury [80]. 
When cerebral hypoxia–ischemia occurs, the expression 
of SLC7A11 is inhibited, leading to a decrease in GPX4 
activity and an increase in the accumulation of lipid perox-
ides, which induces ferroptosis. However, activation of the 
Nrf2/SLC7A11/GPX4 signaling pathway by the application 
of kaempferol, a natural antioxidant, enhances antioxidant 
capacity, reduces the accumulation of lipid peroxides, and 
resists OGD/R-induced ferroptosis [81].

A study offered valuable insights into the potential ben-
efits of activating the SLC7A11/GPX4 pathway to inhibit 
ferroptosis and safeguard the brain against stroke damage. 
Its results showed that rats who underwent treadmill train-
ing exhibited lowered levels of malondialdehyde and iron 
ions, as well as increased expression of GSH, SLC7A11, 
and GPX4 proteins compared with those in the stroke group. 
However, inhibiting SLC7A11 appeared to reverse this effect 
[82].

In a model of acute kidney injury induced by hypercapnia 
or ischemia–reperfusion, melatonin enhances the binding of 
Nrf2 to the SLC7A11 promoter, promotes the transcriptional 
expression of SLC7A11, and restores the protein level of 
Nrf2; this attenuates the cellular damage caused by acute 
kidney injury [83].

Therefore, various studies have demonstrated that Nrf2-
SLC7A11 has a pivotal role in safeguarding cells against 
ferroptosis.

Glutamate‑cysteine ligase catalytic subunit (GCLC) 
and glutamate‑cysteine ligase modifier subunit 
(GCLM)

GCLC catalyzes the attachment of cysteine to glutamic 
acid in the initial step of GSH production [84, 85]. GCLC is 
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highly expressed in cancers such as breast cancer, hepatocel-
lular carcinoma (HCC), and colon cancer. High expression 
of GCLC in breast cancer enhances GSH biosynthesis and 
reduces intracellular ROS accumulation [84]. Nrf2 activates 
GCLC transcription by interacting with related cis-acting 
elements upstream of the GCLC transcription start site. 
Actin-like protein 6A regulates the transcriptional activity 
of GCLC and participates in the regulation of ferroptosis 
by interacting with Nrf2 [85, 86]. Moreover, when cells are 
activated by Nrf2, GCLC can further prevent ferroptosis by 
controlling the buildup of glutamate through the synthesis of 
γ-glutamyl peptide. This not only helps maintain glutamate 
balance but also plays a non-traditional, GSH-dependent role 
in safeguarding against ferroptosis [87].

Nrf2 also regulates the expression of several genes related 
to iron metabolism, including GCLM. GCLM is the reg-
ulatory subunit of GSH synthetase, which is an essential 
component of the GSH synthesis pathway. Nrf2's role in 
regulating these genes helps cells better adapt to oxidative 
stress and protects them from ferroptosis [87, 88]. Reduced 
expression of GCLM is responsible for reduced glutamate-
cysteine ligase activity. In experiments with hypoxia-reper-
fusion injury and ischemia–reperfusion injury, GCLM was 
in an inhibited state, which further led to a decrease in the 
synthesis of GSH. In addition, other studies have found GSH 
is an essential factor in the prevention of lipid peroxidation 
and the protection of cells from ferroptosis [89]. Further-
more, GCLM is highly expressed in bladder cancer and is 
associated with poor prognosis, and GCLM may promote 
the survival and growth of bladder cancer cells [90]. In GSH 
homeostasis, both GCLC and GCLM play essential roles in 
regulating the process of ferroptosis under the regulation of 
Nrf2; this should be further followed up by relevant studies.

Glucose‑6‑phosphate dehydrogenase (G6PD)

G6PD is a vital enzyme that participates in cellular meta-
bolic processes and, in particular, plays a vital role in main-
taining cellular redox homeostasis. It is produced mainly 
in intracellular barosomes (small organelles) and stabilizes 
the membrane structure of erythrocytes. In addition, G6PD 
is an essential enzyme in the pentose phosphate pathway, 
primarily responsible for the production of nicotinamide 
adenine dinucleotide phosphate (NADPH). NADPH is a 
crucial coenzyme that plays a vital role in various cellular 
reduction reactions. Individuals with deficient or decreased 
levels of G6PD in their red blood cells are more susceptible 
to hemolytic anemia [91–93].

A study on the functional mechanism of G6PD in HCC 
and its role in ferroptosis found that G6PD expression is 
upregulated in HCC and that high expression is associated 
with poorer survival. Further experimental results demon-
strated that higher expression of G6PD inhibited ferroptosis 

and thus promoted tumor cell survival [93]. G6PD is one of 
the vital ferroptosis-associated genes and is closely associ-
ated with HCC development and immune function [94].

Nrf2-regulated G6PD is critical for maintaining cellu-
lar redox balance and growth. Deletion or pharmacologi-
cal inhibition of G6PD leads to an increase in the  NADP+/
NADPH ratio, resulting in oxidation [95]. Activation of Nrf2 
enhances G6PD expression and promotes the proliferation 
and migration of breast cancer cells, and there is no obvi-
ous explanation for how Nrf2 regulates G6PD. However, 
studies have shown that bromodomain-containing protein 
4 (BRD4) plays a vital role in regulating G6PD expression. 
BRD4 can directly bind to the G6PD promoter and activate 
its transcription while decreasing the stability of Nrf2, thus 
inhibiting G6PD expression [96].

Yes‑association protein/transcriptional 
coactivator with PDZ‑binding motif (YAP/
TAZ) in ferroptosis

YAP/TAZ are effectors of the Hippo signaling pathway that 
influence ferroptosis by regulating iron metabolism and 
ROS-producing proteins in a variety of biological settings 
[97]. YAP/TAZ activation is found in multiple tumor types 
and plays an important role in tumor biology. Since YAP/
TAZ activation is associated with apoptotic escape, tumor 
progression, metastasis, and drug resistance, the use of YAP/
TAZ-induced ferroptosis as a therapeutic strategy may have 
therapeutic potential for YAP/TAZ-activated chemoresistant 
and metastatic tumor cells [98] (Fig. 3).

One thing needs to be emphasized here. In some specific 
types of cancer, YAP/TAZ inhibits ferroptosis. In this case, 
YAP/TAZ inhibitors can be utilized to induce ferroptosis. 
Some drugs, such as zoledronic acid, inhibit the entry of 
YAP/TAZ into the nucleus by maintaining them in a phos-
phorylated state. Verteporfin restricts the transcriptional 
activity of TEAD (TEA/ATTS domain) by inhibiting its 
binding to YAP/TAZ. The BET protein inhibitor JQ-1 inhib-
its YAP/TAZ by inhibiting BRD4, an essential component 
of the YAP/TAZ-TEAD complex, thereby inhibiting YAP-
mediated transcriptional activity. In esophageal squamous 
cell carcinoma cells, arsenic-iron oxide nano complexes 
degrade YAP and increase the sensitivity of esophageal 
squamous cell carcinoma cells to radiotherapy and chemo-
therapy [99–101].

The impact of YAP/TAZ on ferroptosis is a complex 
matter and cannot be oversimplified. Overexpression of 
discoidin domain receptor tyrosine kinase 2 in breast 
tumor cells with mesenchymal features is responsible 
for their high sensitivity to ferroptosis, and knockdown 
of discoidin domain receptor tyrosine kinase 2 inhibits 
the YAP/TAZ signaling pathway, yet protects cells from 
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ferroptosis [102]. YAP/TAZ is involved in the regulation 
of the uptake of cystine, a precursor of GSH, through the 
glutamate-cystine antiporter. GPX4 catalyzes the reduc-
tion of lipid peroxidation to the corresponding alcohols 
through GSH [99, 100].

In an experiment, it was discovered that changes in cell 
density affect ferroptosis. When the cell density is low and 
there is a loss of intercellular contact, YAP and TAZ are 
activated, which further promotes ferroptosis. Conversely, 
high cell density helps maintain intercellular contact and 
inhibits ferroptosis [103]. Epithelial membrane protein 1 
(EMP1) is a direct target gene of TAZ and affects suscepti-
bility to ferroptosis by regulating the expression of EMP1. 
TAZ silencing resulted in a significant down-regulation of 
EMP1 mRNA, and EMP1 silencing resulted in increased 
cellular resistance to ferroptosis [104]. It was also shown 
that the activation state of TAZ plays an important role in 
the regulation of cell density-associated ferroptosis, affect-
ing the levels of NADPH oxidase 4 and lipid peroxidation. 
Higher levels of NADPH oxidase 4 enhanced lipid peroxida-
tion and sensitized cells to ferroptosis [104].

For YAP, it has been shown that S-phase kinase-associ-
ated protein 2, a downstream target gene of YAP, is a critical 
factor in the regulation of YAP-enhanced ferroptosis and 
lipid peroxidation. Inhibition of S-phase kinase-associated 
protein 2 has been associated with tumorigenesis and pro-
gression and is involved in cell cycle progression. Inhibition 
of S-phase kinase-associated protein 2 expression attenuated 
the ferroptosis-promoting effect of YAP [105].

ACSL4 in ferroptosis

According to recent research, ACSL4 has been identified as 
a critical component in the process of ferroptosis. This study 
provides evidence that excessive activation of ACSL4 can 
play a critical role in the induction of ferroptosis in skeletal 
muscle cells during exercise-induced heat stroke. This is 
achieved by altering lipid peroxidation levels in the cells 
[106]. Experimental evidence has shown that the activation 
of ferroptosis in skeletal muscle cells can be inhibited by 
either pharmacological or genetic inhibition of ACSL4. This 

Fig. 3  An overview of the role of YAP/TAZ on Ferroptosis. Abbreviations: EMP1, Epithelial membrane protein 1; SKP2, S-phase kinase-asso-
ciated protein 2; TEAD, TEA/ATTS domain; YAP/TAZ, Yes-Association protein/ Transcriptional coactivator with PDZ-binding motif
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inhibition can also reduce the tissue damage and inflamma-
tory response associated with ferroptosis. Moreover, it has 
been observed that YAP expression is significantly increased 
during exercise heat stroke. Overexpression of YAP results 
in the upregulation of ACSL4, while gene repression of YAP 
leads to the downregulation of ACSL4 [106] (Fig. 4).

Under ischemic conditions, the expression of ACSL4 
increases, which subsequently triggers the process of fer-
roptosis following ischemia/reperfusion. Inhibition of 
ACSL4 can hinder this process. ACSL4 inhibition can be 
achieved pharmacologically using drugs like rosiglitazone 
or genetically using siRNA. This protective measure inhibits 
ferroptosis and protects the cells under ischemic or hypoxic 
conditions [107]. For example, ACSL4 is a significant trig-
ger for ferroptosis in acute kidney injury, and ACSL4 inhibi-
tion protects the kidneys from ischemia/reperfusion-induced 
kidney injury [108]. In acute cerebral ischemia–reperfu-
sion injury, using animal models and cellular experiments, 

researchers found that ACSL4 mediates thrombin-induced 
neurotoxicity and is involved in ferroptosis. ACSL4 con-
tributes to ferroptosis by converting free arachidonic acid 
to arachidonoyl coenzyme A, which generates lipid perox-
ides [109]. ACSL4 was downregulated in brain tissue early 
after ischemia and similarly in primary cortical neurons and 
microglia. Further studies showed that inhibition of ACSL4 
expression attenuated brain injury and exerted a protective 
effect by suppressing ferroptosis and neuroinflammation 
within neurons [110].

ACSL4 was also found to be involved in hepatic inflam-
mation, disorders of hepatic lipid metabolism, and cell 
proliferation processes. Deficiency of ACSL4 reduced 
hepatocyte sensitivity to ferroptosis and decreased lipid per-
oxidation. In transhepatic lipid accumulation disease and 
non-alcoholic steatohepatitis models, inhibition of ACSL4 
attenuates lipotoxicity-induced liver injury [111]. It has 
been observed that tumor cells with deficient ACSL4 exhibit 

Fig. 4  An overview of the role of ACSL4 on Ferroptosis. Abbreviations: ACSL4, Acyl-CoA synthetase long chain family member 4; CDK1, 
Cyclin-dependent kinase 1; CYP1B1, Cytochrome P450 1B1; YAP, Yes-Association protein
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greater resistance to ferroptosis, in contrast to normal ACS4-
expressing tumor cells. This disparity may contribute to the 
distinct response of these cells to T cells and their potential 
to affect antitumor immunity [112].

Additionally, in patients with colorectal cancer, the 
enzyme cytochrome P450 1B1 (CYP1B1) plays a crucial 
role in ferroptosis. CYP1B1 is also closely linked with a 
fatty acid metabolizing enzyme called long-chain family 
member 4. CYP1B1 promotes the polyubiquitination and 
degradation of ACSL4 by participating in the 20-HETE-acti-
vated protein kinase C pathway, which in turn increases the 
expression of FBXO10. This degradation of ACSL4 leads 
to the inhibition of ferroptosis, thus triggering tolerance in 
colorectal cancer cells [113].

Recently, it was found that ACSL4 is a phosphoryl-
ated substrate of cyclin-dependent kinase 1 (CDK1), and 
by directly phosphorylating ACSL4, CDK1 binds to and 
breaks down ACSL4 proteins. This suggests that ACSL4 
degradation requires that the phosphorylated motif created 
by CDK1 be recognized by ubiquitin-protein ligase E3 com-
ponent N-recognin 5. Further studies revealed that CDK1 
promotes oxaliplatin resistance by inhibiting ACSL4-medi-
ated ferroptosis [114]. In conclusion, CDK1 and CYP1B1 
play an important role in promoting the phosphorylation of 
ACSL4 and its subsequent degradation by polyubiquitina-
tion. These findings provide important clues and rationale 
for further investigation of therapeutic strategies targeting 
ACSL4 and ferroptosis.

Heat shock factor (HSF1) in ferroptosis

HSF1 plays a crucial role in regulating the heat shock 
response. Its involvement in the regulation of ferroptosis, 
which is induced by iron overload in cancer cells, is of great 
significance [115]. Erastin is a specific ferroptosis-inducing 
compound and induces the expression of heat shock protein 
family B member 1 (HSPB1) via an HSF1-dependent path-
way. In turn, overexpression of HSPB1 inhibited erastin-
induced ferroptosis [116, 117]. HSF1 affects intracellular 
iron levels and maintains intracellular iron homeostasis by 
regulating the expression of heat shock proteins such as 
HSPB1 [118] (Fig. 5).

Recent studies have demonstrated that HSF1 plays a 
crucial role in mitigating iron overload induced by palmitic 
acid. It achieves this by regulating the uptake, storage, and 
efflux of iron. Conversely, a deficiency of HSF1 exacerbates 
the effects of palmitic acid-induced ferroptosis, endoplasmic 
reticulum stress, and iron metabolism disorders in the heart. 
In addition, HSF1 is involved in the regulation of GSH/oxi-
dized GSH ratio and heavy metal-induced stress response as 
an indirect effect on ferroptosis [118].

Ferroptosis is a type of cell death that is associated 
with mitochondria, and it increases levels of ROS in vivo. 
HSF1, a protein, may impact the OXPHOS system in 
mitochondria by regulating heat shock protein family E 
member 1(HSPE1). In prostate cancer cells, HSF1 helps 
maintain metabolism and ROS balance by increasing the 
levels of HSPE1. If HSF1 is inhibited, the expression of 
HSPE1 decreases, which can lead to increased ROS levels 
and greater susceptibility to ferroptosis induced by RSL3 
[119]. The induction of heat shock proteins was enhanced 
by co-treatment with erastin and celastrol, which led to the 
phosphorylation of HSF1, prompted nuclear translocation of 
HSF1, and recruited it to the heat shock protein’s promoter. 
By analyzing Hs578t cells, researchers observed that HSF1 
inhibition increased the sensitivity of cancer cells to the fer-
roptosis inducers RSL3 and imidazole ketone erastin [120].

Recent studies have suggested that targeting the HSF1 
gene can enhance ferroptosis in cervical sarcoma cells, lead-
ing to improved sensitivity to adriamycin and gemcitabine. 
This implies that HSF1 plays a crucial role as a regulatory 
molecule in the occurrence of ferroptosis and is a key factor 
in determining the sensitivity of cervical sarcoma patients 
to drug therapy [121, 122]. Protein expression of HSF1 is 
up-regulated in colorectal cancer tissues, and studies have 
shown that HSF1 binding sites are more open on DNA in 
colorectal cancer tissues than in normal tissues and are asso-
ciated with the process of ferroptosis. It is worth noting that 
ferroptosis is a specific type of death associated with the cell 
death process, and its mechanism is intertwined with other 
programmed cell deaths, such as necrosis, autophagy, and 
apoptosis. It was also found that HSF1 is involved in critical 
genes linking ferroptosis to these three types of programmed 
cell death. The relationship between HSF1 and cellular fer-
roptosis in colorectal cancer tissues requires further study to 
determine the specific relationship [123]. In summary, the 
use of HSF1 as a therapeutic target has a promising future 
in cancer treatment.

STAT3 in ferroptosis

STAT3 is a transcription factor that has been extensively 
studied in the development and progression of a wide range 
of diseases [124]. STAT3 is a protein that functions as a sig-
nal transducer and transcriptional activator, commonly found 
to be activated in various types of cancer. Its activation is 
associated with promoting several cellular processes, includ-
ing cell growth, apoptosis, self-renewal, stem cell develop-
ment, and differentiation. Additionally, STAT3 plays a vital 
role in enhancing the antioxidant capacity of cells by activat-
ing the Nrf2 protein. This activation, in turn, helps protect 
cells from oxidative damage, which can have detrimental 
effects on cellular health [125–129] (Fig. 6).
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A study was conducted to investigate the effects of a com-
pound known as DMF on lymphomas. DMF was effective in 
inhibiting NF-κB and JAK/STAT3 survival signaling in the 
ABC subtype of diffuse large B-cell lymphomas. Addition-
ally, it efficiently induced ferroptosis in germinal center B 
cell-like lymphomas. Moreover, the study hypothesized a 
possible relationship between ferroptosis and STAT3 [126]. 
By interfering with the expression of STAT3, it was found 
to exacerbate hypoxia/reoxygenation-induced cellular fer-
roptosis, whereas overexpression of STAT3 attenuated cel-
lular ferroptosis; STAT3 regulated the ferroptosis process by 
regulating the expression of genes such as SLC7A11 [78].

Experimental observations revealed that ferroptosis was 
increased in induced colitis, colitis caused by Salmonella 
typhimurium infection, and hydrogen peroxide-induced 
IEC-6 cells. The phosphorylation level of STAT3 was 

downregulated in  H2O2-treated IEC-6 cells, and ferrosta-
tin-1, an iron ion inhibitor, could reactivate the phosphoryla-
tion level of STAT3. From these results, we can infer that 
there is a relationship between STAT3 activation and cellular 
ferroptosis [124].

Thiostrepton is a compound with anticancer properties. It 
inhibits the proliferation and clone formation of pancreatic 
cancer cell lines in a dose-dependent manner and is char-
acterized by the induction of cell ferroptosis. Thiostrepton 
significantly inhibited the protein expression of STAT3 
and correspondingly reduced the phosphorylation level of 
STAT3 [130]. Ferroptosis is inhibited in cisplatin-resistant 
osteosarcoma cells. However, under combined treatment 
with cisplatin and the ferroptosis promoters erastin or RSL3, 
ferroptosis was reactivated, sensitizing the cells to increased 
sensitivity to cisplatin. In addition, by adding STAT3 

Fig. 5  An overview of the role of HSF1 on Ferroptosis. Abbrevia-
tions: HSF1, Heat shock factor 1; HSPB1, Heat shock protein family 
B member 1; HSPE1, Heat shock protein family E member 1; FTH1, 

Ferritin heavy chain 1; ROS, Reactive oxygen species; SLC40A1, 
Solute carrier family 40 member 1; TFRC, Transferrin receptor



 Molecular and Cellular Biochemistry

inhibitors, the researchers observed a decrease in the pro-
tein levels of p-STAT3, Nrf2, and GPX4 in the cells, which 
increased ferroptosis and sensitivity to cisplatin. Thus, these 
results suggest that in cisplatin-resistant osteosarcoma cells, 
activation of the STAT3/Nrf2 signaling pathway increases 
the antioxidant capacity of the cells by inhibiting ferroptosis, 
which leads to resistance to cisplatin [125].

STAT3 also plays an important role in sorafenib-
induced cell death in HCC. Exploring the mechanism, 
researchers found that sorafenib downregulated the 
expression of the anti-apoptotic molecule myeloid cell 
leukemia-1 (MCL1) by modulating the activity of STAT3. 
MCL1 binds to beclin-1 and initiates the autophagy pro-
cess by releasing beclin-1. Therefore, sorafenib decreased 
the binding of MCL1 and beclin-1 and promoted the 
binding of beclin-1 and SLC7A11. Since the binding of 

beclin-1 and SLC7A11 inhibits the activity of systemic 
Xc-, sorafenib, therefore, inhibits the function of systemic 
Xc- through this mechanism [131].

According to recent research, inhibiting STAT3 through 
different pathways can cause growth arrest and apoptosis 
in glioma cells. The activation of STAT3 is linked to low 
survival and poor prognosis in glioma patients. The study 
also found that paeoniflorin may be involved in glioma 
cell death through ferroptosis. Paeoniflorin was able to 
increase the expression of NEDD4L and trigger ferroptosis 
in glioma cells by reducing the expression of Nrf2 GPX4. 
The researchers also discovered that NEDD4L (ubiquit-
inase) regulates STAT3 levels negatively by mediating the 
ubiquitination of STAT3. Further studies indicated that 
paeoniforin could trigger ferroptosis by inhibiting tumor 

Fig. 6  An overview of the role of STAT3 on Ferroptosis. Abbrevia-
tions: DMF, Dimethyl fumarate; GPX4, Glutathione peroxidase 4; 
JAK, Janus kinase; MCL1, Myeloid cell leukemia-1; NEDD4L, Neu-

ral precursor cell expressed developmentally downregulated 4-like; 
Nrf2, Nuclear factor erythroid 2-related factor 2; STAT3, Signal 
transducer and activator of transcription 3; Tyk2, Tyrosine kinase 2
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growth in gliomas through the activation of the NEDD4L/
STAT3/Nrf2/GPX4 signaling pathway [132].

In summary, the activation of STAT3 will inhibit fer-
roptosis to a certain extent, ensuring cell survival. How-
ever, some antitumor drugs have varying antitumor efficacy 
depending on their ability to inhibit the STAT3 signaling 
pathway.

Others

Research continues to discover the association of many fac-
tors with ferroptosis. This section discusses a few additional 
proteins whose roles have been less characterized so far.

Lymphoid-specific helicase (LSH) is a chromatin remod-
eling protein that has been found to play a significant role 
in inhibiting ferroptosis in colorectal cancer. LSH interacts 
with ubiquitin-specific protease 11, which stabilizes LSH 
by deubiquitination, resulting in the enhanced resistance of 
colorectal cancer cells to ferroptosis. This discovery could 
potentially lead to novel therapeutic targets for colorectal 
cancer. In addition, it also regulates intracellular  Ca2+ levels 
and lipid peroxidation by modulating the transcription of 
cytochrome P450 family 24 subfamily A member 1, which 
enhances the resistance of cells to ferroptosis [133].

Activation transcription factor 3 (ATF3) is a member of 
the ATF/CREB family of transcription factors whose expres-
sion is rapidly induced by a variety of cellular stresses such 
as DNA damage, oxidative stress, and cellular injury. Recent 
research has discovered that ATF3 plays a crucial role in pro-
moting ferroptosis by inhibiting the expression of SLC7A11, 
which is an important protein that helps protect cells from 
oxidative stress damage by maintaining intracellular GSH 
levels through the system Xc- transporter system. ATF3 
has the ability to directly bind to the promoter of human 
SLC7A11 and inhibit its expression. Furthermore, ATF3 can 
regulate the response of cells to ferroptosis by reducing the 
expression of the transcription factor Nrf2 [134–136].

The signaling molecule Smad is a key component of the 
transforming growth factor beta (TGF-β)/Smad signaling 
pathway. TGF-β plays a crucial role in the onset and pro-
gression of lung fibrosis. TGF-β triggers a cellular signaling 
cascade by binding to its receptor TGF-β R-II. This binding 
process initiates the phosphorylation of two proteins, Smad2 
and Smad3, which then translocate to the nucleus. Recent 
studies have revealed that the activity of the TGF-β/Smad 
signaling pathway can regulate the occurrence of cellular 
ferroptosis [137, 138]. The signaling pathways related to 
ferroptosis are being continuously explored and updated, and 
fully elucidating their mechanisms is of great significance 
for antitumor therapy, ischemic heart disease, and other 
diseases.

Conclusion and perspectives

Ferroptosis is a distinct mode of cell death that occurs 
through iron-dependent lipid peroxidation. This process is 
different from apoptosis, necrosis, and other non-apoptotic 
forms of cell death in terms of its morphology, biochemis-
try, and genetics [6, 7, 11]. Ferroptosis is characterized by 
the oxidation of cell membrane phospholipids; this results 
in oxidation of the polyunsaturated fatty acid content, vari-
able reduction of iron availability, and loss of capacity for 
lipid peroxide repair. This process is involved in physi-
ological functions and a variety of human diseases, such as 
ischemic organ damage, neurodegenerative diseases, and 
cancer [11]. The ferroptosis signaling pathway has been 
studied to gain insight into this novel mode of cell death 
and its potential role in various diseases [7].

A variety of genes play important roles in regulating 
ferroptosis. Numerous studies are currently underway to 
explain its mechanisms. The impact of P53 on ferropto-
sis is complex. While P53 can boost the expression of 
SLC7A11, which defends cells against ROS, it can also 
increase cell sensitivity to oxidative stress and lead to 
ferroptosis by activating SAT1 [18, 21, 139]. Addition-
ally, the P53-ALOX12 signaling axis plays a crucial role 
in triggering ferroptosis in various cancer cells. Notably, 
the P53/P21 signaling pathway can help maintain redox 
homeostasis and elevate GSH levels, which can prevent 
cancer cells from experiencing ferroptosis when serine is 
absent [23, 34]. P53 also has an effect in terms of H2B 
ubiquitination as well as intracellular levels of ferric ions, 
which affect ferroptosis.

Nrf2 is a transcription factor closely related to intracel-
lular iron metabolism and plays an important role in fer-
roptosis. Nrf2 regulates intracellular ferroptosis through 
the regulation of several downstream genes (FTH, FPN, 
FECH, etc.) and also plays an important role in GSH 
homeostasis, specifically through the regulation of 
SLC7A11, GCLC, and GCLM; this shows that Nrf2 plays 
an important role in the regulation of ferroptosis [55]. 
Nrf2/GPX4 and Nrf2/NQO1 effectively regulate ferrop-
tosis in cells through redox regulation, and the anticancer 
effects of various drugs are related to these two pathways 
[8, 66]. The regulatory role of Nrf2 in ferroptosis is still 
in full swing. Research has indicated that the activation of 
YAP/TAZ is responsible for safeguarding multiple cancer 
cell types and hindering the process of ferroptosis. There-
fore, the development of YAP/TAZ inhibitors as a thera-
peutic approach for treating related cancers is considered 
a highly effective strategy [99].

ACSL4 plays a crucial role in neuroinflammation and 
acute kidney injury by regulating the onset of ferroptosis. 
The inhibition of ACSL4 expression has been found to be 
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effective in attenuating brain injury and exerting a protec-
tive effect in neuroinflammation by preventing the onset 
of intra-neuronal ferroptosis [110].

HSF1 is a key factor in the regulation of the heat shock 
response and has a non-negligible role in the occurrence 
of cellular ferroptosis through the regulation of HSPE1, 
which in turn affects intracellular ROS levels. In addition, 
HSF1 also regulates intracellular iron levels and GSH/
oxidized GSH ratio. A variety of antitumor drugs have 
targeted HSF1 to regulate the onset of ferroptosis in cancer 
cells, resulting in promising efficacy outcomes.

The involvement of STAT3 in ferroptosis has been the 
subject of significant research in recent years. Its activa-
tion can have various effects on multiple downstream sign-
aling pathways, including the regulation of iron homeo-
stasis, redox, GSH homeostasis, lipid metabolism. These 
findings suggest that STAT3 plays a crucial role in the 
complex process of ferroptosis and its regulation [124].

The phenomenon of ferroptosis is intricately linked to 
a range of human diseases, including ischemic organ dam-
age, neurodegenerative disorders, and cancer [7, 11]. A 
comprehensive understanding of ferroptosis is essential 
toward the advancement of global public health. Notably, 
certain types of cancers exhibit mechanisms that enable 
them to maintain iron homeostasis, potentially through the 
autophagy pathway. One such example is pancreatic ductal 
adenocarcinoma, where cancer cells utilize high levels of 
autophagy to degrade ferritin, a protein that stores iron 
in the body, to release available iron ions. This process is 
crucial for the development and progression of pancreatic 
ductal adenocarcinoma [140, 141].

So far, scientists have discovered numerous genes and 
signaling pathways that control the intricate process of 
ferroptosis. Future research will delve deeper into uncov-
ering new signaling pathways. Previous studies have dem-
onstrated that activating different signaling pathways can 
have varying effects on ferroptosis regulation. Therefore, 
developing a multitargeted drug that aims to regulate the 
balance of each signaling pathway is a promising area for 
further investigation. It is important to note that while the 
above discussion and summary of mechanisms are com-
prehensive and cover a broad range of areas, ferroptosis is 
a complex process and therefore improved, more detailed 
mechanisms are needed in the future.
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