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Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary 
artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur 
in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent 
decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, 
and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) 
directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine 
oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic 
hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal 
muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. 
A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane 
as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested 
that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, 
adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at 
times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions 
of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunc-
tion caused by this disorder.

Keywords  Adenine nucleotides · Diabetic cardiomyopathy · Energy metabolism · Mitochondria-associated membrane · 
Reactive oxygen species · Xanthine oxidoreductase

Introduction

AMP deaminase (AMPD) plays important roles in energy 
metabolism, nucleotide pool size regulation, and amino acid 
metabolism [1–3] (Fig. 1). Deamination of AMP by AMPD, 

which lowers AMP level, keeps the adenylate kinase (AK) 
reaction proceeding in the direction of ATP generation from 
ADP (i.e., 2ADP ⇋ ATP + AMP), while it reduces the ade-
nine nucleotide level. The AK reaction also maintains low 
ADP level, preserving a high ATP/ADP ratio and thus free 
energy of ATP hydrolysis (∆GATP = ∆G0

ATP + RT ln([ADP]
[Pi]/[ATP]). AMPD competes with cytosolic 5’-nucleotidase 
for AMP, modulating the level of adenosine, which serves 
as a substrate of nucleotide synthesis and a ligand of P2 
receptors. AMP deamination is an irreversible step in the 
purine nucleoside cycle (PNC), which supplies citric acid 
cycle intermediates and regenerates AMP from IMP. These 
functions of AMPD have been analyzed mostly in skeletal 
muscle in which AMPD activity is much higher than that 
in other tissues [4, 5]. AMPD shares its substrate, AMP, 
with AMP-activated protein kinase (AMPK), and there is an 
apparent reciprocal relationship between AMPD and AMPK 
activities [6–14]. AMPD in skeletal muscle has received 
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attention for its roles in exercise endurance [3], myopathy 
[15], and muscle atrophy [16] and for its manipulation to 
improve insulin sensitivity via AMPK activation [17–19]. In 
contrast, the pathophysiological role of AMPD in the heart 
is poorly understood.

Diabetes mellitus is characterized by dysfunctional insu-
lin-mediated signaling and an altered profile of energy sub-
strates to cells, which modulates mechanistic target of rapa-
mycin complex (mTORC) signaling, leading to adaptation 
and/or maladaptation in energy production. As the shortage 
of ATP is sensed in cells through the elevation of AMP lev-
els [20], it is conceivable that AMPD-mediated pathways are 
modified in diabetes. In fact, significantly increased levels of 
AMPD activity in the hearts of diabetic animal models were 

first reported more than 30 years ago [21], and the diabetes-
induced change in AMPD activity in the heart and other 
organs was confirmed by animal models of type 1 and type 2 
diabetes [9, 22–24] but not in a model of short-term diabetes 
[25] (Table 1). Unfortunately, the pathophysiological roles 
of AMPD upregulation in diabetes and insulin resistance 
have not been explored until recently [7, 9, 13, 24, 26, 27], 
while significant progress has been made in our knowledge 
regarding the mechanisms of diabetes-induced heart failure, 
fatty liver, and sarcopenia [28–35]. However, the results of 
a series of studies from this laboratory [23, 36–39] support 
the notion that AMPD upregulation plays an important role 
in diabetic cardiomyopathy as it does in diabetes-induced 
sarcopenia and fatty liver [7, 9, 13, 24, 26]. In this article, 

Fig. 1   Overview of the metabolic pathways directly and indirectly 
regulated by AMP deaminase. Solid lines and dotted lines indicate 
metabolic pathways and regulatory pathways, respectively. A recent 
study suggests that there is mutual negative regulation between 
BCKDH and AMPD3 in cardiomyocytes [38]. AK adenylate kinase, 

AMPD AMP deaminase, AMPK AMP-activated protein kinase, ADSL 
adenylosuccinate lyase, ADSS adenylosuccinate synthase, BCKDH 
branched-chain α-keto acid dehydrogenase, 5′-NT 5′-nucleotidase, 
XOR xanthine oxidoreductase, Adeno adenosine, Ino inosine, sAMP 
adenylosuccinate. The figure was created with Biorender.com

Table 1   Alterations in AMPD in animal models of diabetes and insulin resistance

STZ streptozotocin, OLETF Otsuka Long-Evans Tokushima Fatty, CKD chronic kidney disease

Animal model Organ Change in AMPD References

BB/Wistar rats Heart Increased activity Jenkins et al. [21]
STZ-induced diabetic rats Heart Increased activity Jenkins et al. [21]
STZ-induced diabetic rats Heart, Kidney, and Liver No significant change in activity Pawelczyk et al. [25]
STZ-induced diabetic rats Heart Increased activity Podgorska et al. [22]
High-fat diet-fed mice Heart Increased activity Rybakowska et al. [82]
OLETF rats Heart Increased activity Kouzu et al. [23]
OLETF rats Heart Increased activity and protein expression Tatekoshi et al. [36]
Sucrose-fed rats Liver Increased activity Lanaspa et al. [7]
STZ-induced diabetic mice Liver Increased activity without a change in protein level Cicerchi et al. [9]
Fructose-fed rats Liver Increased activity Castro et al. [24]
CKD mice with insulin resistance Skeletal muscle Increased activity and protein expression Andres-Hernando et al. [27]
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we briefly review the functions and regulations of AMPD 
and its contribution to diabetic cardiomyopathy. We mainly 
focused on the roles of AMPD in diastolic dysfunction at an 
early stage of diabetic cardiomyopathy since mechanisms in 
the early stage possibly trigger those that lead to subsequent 
systolic dysfunction and adverse cardiac remodeling.

Expression and function of AMPD 
in the heart

AMPD expression and activity regulation 
in the heart

There are three main isoforms of AMPD in human and rat 
tissues: isoform A (rat) or M (human) in skeletal muscle, 
isoform B (rat) or L (human) in the liver, and isoform C (rat) 
or E (human) in erythrocytes and the heart. While AMPD 
A/M isoform expression is primarily restricted to skeletal 
muscle, the B/L isoform and C/E isoform are expressed in 
many tissues. AMPD1, AMPD2, and AMPD3 genes encode 
AMPD A/M, AMPD B/L, and AMPD C/E, respectively, 
[40–42]. The AMPD isoforms have native tetrameric struc-
tures [41, 43, 44] and their assembly is thought to be driven 
by the relative abundance of polypeptides with no apparent 
preference for similar subunits [44]. Human AMPDs con-
tain conserved C-terminal domains, where catalytic residues 
reside, and divergent N-terminal domains. The N-terminal 
domains of AMPD modulate binding capacities to actomy-
osin and cytoplasmic membranes, regulating intracellular 
distribution [45, 46] and catalytic activity [44, 47].

Western blot analysis for AMPD proteins shows full-
length forms and N-terminal truncated forms [44, 48–51]. 
The N-terminal regions of AMPD proteins are very sensi-
tive to proteolysis, and truncation of the N-terminal region 
is observed during purification and storage of the peptide at 
4 ℃. The apparent Km values of N-terminal truncated forms 
of human AMPD1 and AMPD3 in absence of ATP were 
lower than those of the full-length forms [44], and truncated 
AMPD3 exhibited altered sensitivity to phosphoinositide 
compared with its full-length form [47]. Recently, Ronca 
and Raggi [52] discussed the physiological importance of 
AMPD1 truncation by a calpain-like protease and effects 
of the truncation on AMPD-troponin T interaction in skel-
etal muscle cells in a review article. However, whether such 
mechanisms apply to cardiomyocytes in vivo remains to be 
investigated.

In rodent hearts, hypoxia-inducible factor 1 (HIF-1) [53] 
and miR301b [36] were shown to regulate the transcription 
and translation of the AMPD3 gene, respectively. Foxo1/3/4 
and HDAC3 in skeletal muscle [54, 55] and cyclin-depend-
ent kinase-7 (CDK7)-mediated assembly of a super-enhancer 
in renal tubular cells [56] were also reported to be involved 

in regulation of AMPD3 expression, although their functions 
in the heart have not been confirmed. In addition, mutual 
regulation between AMPD3 and branched-chain α-keto acid 
dehydrogenase (BCKDH) in cardiomyocytes was revealed in 
a recent study [38] (Fig. 1); in rat neonatal cardiomyocytes, 
siRNA knockdown of BCKDH-E1α increased AMPD3 
expression levels and activity, and conversely, knockdown 
of AMPD3 expression increased BCKDH activity with-
out increasing BCKDH protein. Although the mechanism 
of mutual regulation remains to be further investigated, 
there is a possibility that suppression of BCKDH activity 
by upregulated AMPD contributes to impaired metabo-
lism of branched-chain amino acids (BCAAs) in diabetic 
hearts as discussed in the section entitled AMPD and BCAA 
metabolism.

Studies using rats, rabbits, and piglets showed that car-
diac AMPD is activated by ATP, ADP, adenosine, Ca2+, 
and NADH, while it is inhibited by GTP, inorganic phos-
phates, phosphoinositide and palmitoyl-CoA [57–60]. The 
regulation of cardiac AMPD by ATP (Fig. 1) is distinct from 
that of skeletal muscle AMPD, which is inhibited by ATP 
[52]. Protein kinase C (PKC) phosphorylates AMPD, which 
reduces the Km value of AMPD without affecting Vmax, 
and this posttranslational modification does not affect the 
allosteric response of AMPD to ATP and ADP [59, 61, 62]. 
In contrast, protein kinase A (PKA) does not appear to regu-
late AMPD activity in either the heart or skeletal muscle 
[62, 63]. Interaction with Ca2+-calmodulin has been shown 
to activate AMPD3 in erythrocytes [64], but the role of this 
interaction in the heart remains unknown.

Intracellular localization of AMPD in the heart

While AMPD has been thought to be present mostly in the 
cytosol, its localization in the sarcoplasmic reticulum (SR) 
as a member of the “cardiac SR-glycogenolytic complex” 
was proposed by Entman et al. [65–69] almost five decades 
ago. In addition, it was found that AMPD interacts with sar-
comeric proteins, such as myosin, leading to a change in the 
level of soluble AMPD depending on the status of muscle 
contraction [42]. We recently postulated that AMPD may 
localize in mitochondria in addition to the SR and cytosol 
because AMPD is functionally linked with AK (Fig. 1), 
which plays a crucial role in high-energy phosphotransfer 
from ATP generation sites to ATP utilization sites as does 
the creatine kinase (CK) system. Although the majority of 
AKs are localized in the cytosol, their different isoforms 
have been found to be localized in mitochondria, nuclei, and 
plasma membranes [20]. In our study, AMPD3 signals were 
detected in cytosolic fractions, fractions of mitochondria-
associated endoplasmic reticulum membrane (MAM), and 
fractions of endoplasmic reticulum (ER)/outer mitochon-
drial membrane and were barely in mitochondrial fractions 
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derived from rat hearts [39]. AMPD3 proteins in the ER/SR 
and MAM appear to be involved in the regulation of BCAA 
metabolism and mitochondria-ER/SR contact formation, 
respectively, as discussed below (sections entitled AMPD 
and BCAA metabolism and AMPD and increased mitochon-
dria-ER/SR contacts in diabetic cardiomyopathy). There 
were marked differences between the intracellular compart-
ments in the proportions of signals corresponding to 90-kDa 
full-length AMPD3 and a signal of an approximately 78-kDa 
protein. In our previous studies [36–39], we interpreted the 
78-kDa protein as a truncated form of AMPD3. However, 
the interpretation recently turned out to be wrong because 
our recent Western blot analysis using the same anti-AMPD3 
antibody (Proteintech 23997-1-AP) and AMPD3-knockout 
mouse samples confirmed that the signal of the 90-kDa pro-
tein is specific to AMPD3 but that of the 78-kDa protein is 
not (Kouzu et al. 2023 unpublished observation). Neverthe-
less, Western blotting showed that full-length AMPD3 local-
izes not only in the cytosol but also in the SR and MAM in 
the rat heart. Immunogold labeling with electron microscopy 
revealed that AMPD1 was localized in myofibrils and the SR 
and nuclei in skeletal muscle [70, 71], but a similar analysis 
for cardiomyocytes has not been reported.

Role of the PNC in the heart

AMPD is one of the three enzymes that constitute the PNC 
(Fig. 1). AMPD catalyzes the conversion of AMP to IMP, 
which reacts with aspartate and GTP, generating adenylosuc-
cinate by adenylosuccinate synthase (ADSS). The formed 
adenylosuccinate generates fumarate and AMP by adenylo-
succinate lyase, completing the cycle. Since fumarate is not 
readily transported via the mitochondrial inner membrane, 
it is converted to malate before being taken up into the mito-
chondrial matrix. In skeletal muscle, elevation of workload 
stress increases the rate of the PNC, which is indicated by 
increased levels of citric acid cycle intermediates, decreased 
levels of aspartate, and increased ammonia release [72, 73].

In contrast to skeletal muscle, increased workload in iso-
lated perfused rat hearts did not induce metabolite changes 
that reflect an increase in PNC-mediated metabolism [74]. 
In rat hearts in situ, an increase in ventricular afterload 
tended to elevate adenylosuccinate levels, but aspartate 
levels were also elevated, arguing against the possibility of 
an increased rate of the PNC [23]. The difference between 
skeletal muscle and cardiac muscle in response to increased 
workload might be attributable to lower ADSS levels and 
AMPD activity in cardiac muscle than in skeletal muscle 
[4, 5, 75, 76]. However, the PNC in the heart might play a 
protective role against ischemic injury. A recent study by Wu 
et al. [53] showed that treatment with hadacidin, an inhibi-
tor of ADSS, significantly augmented both ATP and ADP 
depletion and AMP accumulation during ischemia in mouse 

hearts, suggesting that the PNC contributes to the preserva-
tion of energy charge in the ischemic myocardium.

AMPD and BCAA metabolism

Recent studies [3, 13, 38] have revealed that the PNC is not 
the only connection between AMPD and amino acid metabo-
lism. Miller et al. [13] comprehensively examined the impact 
of AMPD3 overexpression on the metabolome and transcrip-
tome of C2C12 cells. They found that BCAAs, glycolysis, 
and ceramide metabolic pathways were among the most 
highly enriched by overexpressed AMPD3 as were purine 
metabolism pathways. Overexpression of AMPD3 increased 
the intracellular levels of BCAAs, branched-chain α-keto 
acids (BCKAs), pyruvate, and α-ketoglutarate and increased 
the release of BCKAs and alanine into the culture medium. 
An increase in glutamine release into the culture media was 
not detectable possibly due to pre-existing glutamine in the 
culture medium. BCKDH activity was not directly deter-
mined in the study by Miller et al. [13], but the increase in 
intracellular BCKA levels was much larger than the increase 
in BCAA levels (i.e., 2–3-fold vs. 1.1–1.2-fold) in AMPD3-
overexpressing C2C12 cells, and the levels of BCKAs in the 
culture media were also higher. Moreover, ATP was reduced 
with no change in ADP/ATP and AMP/ATP ratios. These 
findings might reflect reduced metabolic flux from BCKAs 
to short-chain acyl-CoA species by BCKDH in AMPD3-
overexpressing cells.

While the role of BCAAs as energy substrates in the 
heart is small, their roles in the maintenance of normal 
function and morphology of the heart were indicated by 
the findings that inactivation of BCKDH worsened heart 
failure [77, 78] and that cardiomyocyte-selective deletion 
of BCKDH-E1α induced deterioration of cardiac function 
and adverse ventricular remodeling [79]. Cardiac BCKDH 
was found to localize not only in mitochondria but also in 
the ER where the E1α and E2 subunits of BCKDH physi-
cally interact with AMPD3 [38] (Fig. 2). As mentioned in 
the section titled AMPD expression and regulation in the 
heart, there is mutual negative regulation between BCKDH 
and AMPD3 functions (Fig. 1), and BCKDH activity was 
shown to be increased when AMPD3 expression was sup-
pressed in cardiomyocytes in vitro. The physiological func-
tion of AMPD-mediated regulation of BCKDH is unclear. 
However, there is a possibility that, under the condition 
of sufficient ATP supply, AMPD activity, which is posi-
tively regulated by ATP, suppresses BCAA catabolism via 
BCKDH inhibition to spare BCAAs for protein synthesis. 
Interestingly, the suppression of BCKDH activity modifies 
the expression of enzymes relevant to fatty acid oxidation as 
well as AMPD expression in cardiomyocytes in vitro [38]. 
The relationship between BCKDH and AMPD3 may play a 
significant role in metabolic changes in diabetic hearts. In 
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fact, reduced BCKDH expression in hearts of Otsuka Long-
Evans Tokushima Fatty (OLETF) rats (a model of type 2 
diabetes) was associated with upregulated AMPD3 activity 
and the accumulation of BCAAs and lipid droplets in car-
diomyocytes [38, 80].

In contrast to the observations in C2C12 cells and 
OLETF rat hearts [13, 38], AMPD3 upregulation induced 
by HDAC3 deletion in skeletal muscle was associated with 
upregulation of enzymes participating in BCAA metabolism 
and increased oxidation of amino acids and fatty acids [3]. 
The reason for the different impacts of upregulated AMPD3 
on amino acid and fatty acid oxidation between the studies 
[3, 13, 38] is unclear, but the PNC may function differently 
depending on the cell type and HDAC3 deletion may affect 
other targets besides AMPD3.

AMPK‑mediated signaling pathways and AMPD

AMP functions as a primary sensor of the balance of 
energy supply/consumption in cells. Dzeja and Terzic [20] 
proposed an “adenylate kinase metabolic monitoring sys-
tem” in which the change in the intracellular ADP level is 

amplified by AK to a larger change in AMP, leading to the 
activation of AMP-mediated processes that normalize the 
ADP/ATP balance. When ATP generation does not meet its 
demand, increased AMP activates AMPK by three mecha-
nisms: promotion of Thr172 phosphorylation, inhibition of 
Thr172 dephosphorylation, and allosteric activation [81]. 
Activated AMPK promotes the catabolism of energy sub-
strates (glucose uptake and glycolysis, fatty acid uptake and 
oxidation), except for lipolysis, and inhibits anabolic pro-
cesses (gluconeogenesis, synthesis of glycogen, fatty acids, 
triglycerides, phospholipids, sterols, and proteins), enabling 
ATP synthesis to match ATP demand. In addition to AMP, 
LKB1- and CaMKKβ-mediated phosphorylation at Thr172 
and Akt-mediated phosphorylation at Ser485 modulate 
AMPK activity.

A reciprocal relationship between AMPD and AMPK 
activity has been shown in some but not all studies in which 
AMPD was overexpressed or genetically deleted. In hepatic 
and renal cell lines in vitro, activation of AMPD suppressed 
AMPK activity [6–14]. Upregulation of AMPD2 in the 
liver in diabetic mice was associated with decreased AMPK 
phosphorylation and increased gluconeogenesis via the 

Fig. 2   Current working hypothesis for the pathophysiological roles 
of upregulated AMPD in diabetic hearts. Upregulation of AMPD in 
diabetic hearts is possibly an adaptive response that supports AK-
mediated high-energy phosphotransfer, compensates for impaired 
Ca2+ uptake in mitochondria by remodeling mitochondria-ER/SR 
contacts, and prevents excessive BCAA use for ATP synthesis. In the 
normal heart, the role of BCAAs as energy substrates in the heart is 
small, but their role might be larger during increased ATP demand 

in diabetic hearts, in which glucose oxidation is suppressed. When 
an increased cardiac workload raises the rate of ATP hydrolysis to a 
higher level, adverse actions of AMPD upregulation are exerted by 
enhancement of IMP generation and Ca2+ influx into mitochondria. 
AMPD AMP deaminase, IMP inosine monophosphate, Mito-ER con-
tacts mitochondria-endoplasmic reticulum contacts, mPTP mitochon-
drial permeability transition pore, ROS reactive oxygen species, XOR 
xanthine oxidoreductase. The figure was created with Biorender.com
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upregulated expression of phosphoenolpyruvate carboxykin-
ase (PEPCK) and glucose-6-phosphatase, while the suppres-
sion of AMPK was mediated by increased uric acid levels 
[9]. AMPD3 overexpression for 48 h reduced AMPK-Thr172 
phosphorylation and the mitochondrial oxygen consumption 
rate in skeletal muscle [13]. In a study by Davis et al. [12], 
ATP and ADP levels were reduced by AMPD3 overexpres-
sion for 48 h in C2C12 cells, but the AMP/ATP ratio and 
Thr172-phospho-AMPK level were unchanged. Both the 
contraction of skeletal muscle during tetanic contraction and 
its relaxation were impaired in AMPD1-deficient mice when 
the levels of AMP, AMP/ATP ratio, and phosphorylation of 
Thr172-AMPK were elevated [14]. Pharmacological inhibi-
tion of AMPD or knockout of AMPD1 increased tissue AMP 
and p-Thr172-AMPK levels during the stimulated contrac-
tion of skeletal muscles, although such impacts of AMPD 
suppression were not detected under resting conditions 
[10]. Taken together, these findings suggest that AMPD can 
participate in AMPK regulation by modulating the AMP/
ATP ratio, although an increase in AMPD activity alone is 
not always sufficient to reduce the AMP/ATP ratio to a low 
enough level to inhibit AMPK. In other words, AMPD activ-
ity appears to elevate the threshold for activation of AMPK 
in response to mechanisms that increase ATP consumption 
and modify the AMP/ATP ratio.

Unfortunately, few data on AMPD–AMPK relation-
ships in the heart have been reported. In studies by Ryba-
kowska et al. [82, 83], changes in AMPD activity induced 
by a high-fat diet were not correlated with AMPK activity. 
In our study, there was no difference in Thr172-phospho-
AMPK levels between control and OLETF rat hearts under 
baseline conditions despite two-fold higher AMPD levels 
in OLETF rat hearts. However, activation of AMPK/ULK1/
mTORC signaling induced by ischemic heart failure was 
observed in control rats but not in OLETF rats [84]. The 
lack of AMPK activation in OLETF rats was associated 
with impaired autophagy in the myocardium and increased 
mortality due to heart failure. AMPK functions are down-
regulated in diabetic hearts [29] and whether the upregulated 
AMPD activity is involved in the suppression of the stress-
induced activation of AMPK in diabetic hearts remains to 
be further investigated.

AMPD and SR/ER functions

ATP for Ca2+ uptake in the SR is supplied by glycolysis 
and two phosphotransfer systems, the CK system and the 
AK system. Several lines of evidence support the impor-
tant contribution of glycolysis in the proximity of the SR to 
SR function. Mark Entman’s group [65–69] found that the 
SR is physically associated with glycogen and a series of 
enzymes involved in glycogenolysis (i.e., phosphorylase b 
kinase, phosphorylase b/a, debranching enzyme, adenylate 

cyclase, PKA), and they proposed that the “SR-glycogeno-
lytic complex” regulates glycogenolysis in the SR. In a study 
by Xu et al. [85], the entire chain of glycolytic enzymes was 
associated with SR vesicles from both cardiac and skeletal 
muscles. The inhibition of glycolysis by iodoacetate, an 
inhibitor of GAPDH, suppressed Ca2+ uptake by SR vesi-
cles, and the uptake was restored by phosphoenolpyruvate 
(PEP). The addition of a soluble hexokinase ATP trap elimi-
nated Ca2+ uptake by ADP and PEP but had little effect on 
Ca2+ uptake induced by endogenous ATP, suggesting that 
glycolysis-derived ATP was preferentially used by the SR. 
Glycogen has been shown to be a preferential source for 
glucose oxidation in the working heart [86, 87]. Unfortu-
nately, the role of AMPD in glycogenolysis or glycolysis in 
the heart has not been specifically investigated. However, it 
is possible that AMPD in the SR-glycogenolytic complex 
finely tunes phosphorylase b activity. AMP is a much more 
potent physiological activator of phosphorylase b than IMP 
[88] and thus IMP generation from AMP by AMPD could 
decrease phosphorylase b activation, potentially suppressing 
glycogenolysis in the SR.

AK isoforms localize in the cytosol, mitochondria, and/
or nucleus, and AK1 is the major cytosolic AK isoform in 
humans [89]. The specific role of the AK system in SR func-
tion has not been characterized. However, circumstantial evi-
dence suggests that AMPD in the SR/ER supports the adap-
tive increase in AK-mediated energy transfer to the SR in the 
heart under stress. The contribution of AK to high-energy 
phosphotransfer reactions is much smaller than that of CK 
(~ 10% vs. 89%) in healthy hearts [90]. However, in a dog 
model of pacing-induced heart failure, phosphotransfer via 
AK increased by 134%, contributing 21% to the total ATP 
turnover, while the contribution of CK was reduced from 89 
to 40% [90]. In two murine models of heart failure (i.e., heart 
failure induced by transaortic constriction and that induced 
by myocardial infarction), CK activity was reduced, while 
AK activity remained unchanged [91]. As AMPD is impor-
tant for the AK reaction to proceed in the direction of ATP 
formation, the role of AMPD would become larger when 
myocardial stress increases AK-mediated phosphotransfer 
reaction in ATP-consuming sites, including the SR.

Role of AMPD in diabetic cardiomyopathy

Diastolic dysfunction in diabetic cardiomyopathy

Diabetic cardiomyopathy progresses from an early stage 
with diastolic dysfunction alone to later stages with 
diastolic/systolic dysfunction, hypertrophy and loss of 
cardiomyocytes, reduced capillary density, and intersti-
tial fibrosis [28, 29, 92]. The natural history of diabetic 
cardiomyopathy is explained by the sequential activation 
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of multiple cardiac pathological mechanisms (increased 
generation of reactive oxygen species [ROS], impaired 
Ca2+ handling, altered Ca2+ sensitivity of myofilaments, 
mitochondrial dysfunction, remodeling of cytoskeletons 
and extracellular matrix, and impaired microcirculation) 
and extracardiac mechanisms (activation of neurohumoral 
systems, diabetic autonomic neuropathy, increased stiff-
ness of peripheral arteries, and dysregulation of circulat-
ing blood volume due to nephropathy) [28–32]. Of these, 
increased generation of ROS, impaired Ca2+ handling in 
cardiomyocytes, and changes in myofilaments and their 
regulatory proteins [28, 31, 93–95] have been proposed 
to cause impaired diastolic function with preserved sys-
tolic function, a hallmark of the early stage of diabetic 
cardiomyopathy.

To gain insight into the role of AMPD in the mecha-
nisms of diastolic dysfunction, we selected a model of 
type 2 diabetes, OLETF rat, for a series of studies [23, 
36–39]. Although OLETF rats have not been frequently 
used for studies on diabetes in the literature, this model 
has several useful features. OLETF rats have a deficit in 
the cholecystokinin-1 (CCK1) receptor gene, causing the 
absence of the CCK1 receptor in the brain and gastroin-
testinal tract [96]. This genetic abnormality causes hyper-
phagia, obesity, and type 2 diabetes [97–99], and the time 
course of diabetes and its cardiovascular complications 
have been well characterized [99–105]. OLETF rats at 
ages of 29–35 weeks have features suitable for analysis 
of diastolic dysfunction due to impaired cardiomyocyte 
relaxation. At these ages, OLETF rats have hyperinsuline-
mic diabetes, and ventricular pressure–volume relationship 
analyses show diastolic dysfunction with preserved sys-
tolic function; tau (the left ventricular diastolic pressure 
time constant) and left ventricular end-diastolic pressure 
(LVEDP) were only modestly increased at baseline [23, 
37, 106]. Ventricular pressure loading induces a larger 
upward shift in the end-diastolic pressure–volume rela-
tionship (EDPVR) in OLETF rats than in their nondia-
betic control (Long-Evans Tokushima rats, LETO rats), 
although indices of systolic function were unchanged by 
the increased loading. Importantly, there was no differ-
ence in pressure–volume relationships between OLETF 
and LETO rats when cardiac arrest was executed with a 
cardioplegic solution in vitro [23], indicating that dias-
tolic dysfunction shown in vivo is due to the impaired 
relaxation of the myocardium but not due to the increased 
stiffness of the myocardium. In this model of diabetes, 
both AMPD activity and protein levels were increased by 
approximately two-fold, while PKC-α activation and inor-
ganic phosphate level reduction were not detected, sug-
gesting that the change in the AMPD activity is mainly 
due to its increased protein level [23, 36–39].

Increased AMPD activity in diabetic hearts

Although an increase in cardiac AMPD activity has been 
observed in different models of diabetes (Table 1), its mech-
anism is poorly understood. In the OLETF heart, in which 
the AMPD3 protein level was elevated without a change in 
its mRNA level, increased translation of the AMPD3 gene 
by repression of miR301b was suggested to be involved 
[36]. In addition, the downregulation of BCKDH in dia-
betes might contribute to the upregulation of AMPD. The 
expression of most enzymes needed for BCAA metabolism, 
including BCKDH, is suppressed in diabetic hearts, adipose 
tissues, and the liver [107–109]. The reduction of BCKDH-
E1α expression by siRNA increased AMPD3 mRNA and 
protein level by more than five-fold in rat cardiomyocytes 
in vitro, although the underlying mechanism remains unclear 
[38].

AMPD and dysregulation of intracellular Ca2+ 
in diabetic cardiomyopathy

Impaired Ca2+ handling in cardiomyocytes, which causes 
delay in cytosolic Ca2+ transient, has been observed in dif-
ferent models of early diabetes [28, 29, 31, 93, 106]. Its pro-
posed mechanisms include downregulated protein expres-
sion and/or reduced activity of SERCA2a. In the alterations 
in SERCA2a protein and activity levels, a reduction in SER-
CA2a mRNA expression, enhanced SERCA2a degradation 
by elevated ER stress, and modification of SERCA2a by 
advanced glycation end products (AGEs), O-GlcNAcylation, 
and ROS have been suggested to be involved. Upregulated 
AMPD is unlikely to be involved in the change in the protein 
level of SERCA2a as overexpression of AMPD3 did not 
alter levels of SERCA2a, GRP78, or GRP94 in HEK293 
cells [39]. However, AMPD activity potentially affects SR 
Ca2+ uptake during increased cardiac workload by reducing 
intracellular ATP levels via three mechanisms: depletion 
of adenine nucleotides, enhanced suppression of BCKDH 
activity, and inhibition of ATP synthesis in mitochondria 
[23, 37–39].

Upregulated AMPD promoted metabolic flux from AMP 
to the IMP/inosine/hypoxanthine/xanthine pathway and 
potentially reduced ATP generation by suppressing glycog-
enolysis and BCAA oxidation and inhibiting mitochondrial 
respiration [23, 37–39]. Upregulation of AMPD3 expression 
was found to reduce BCKDH activity, limiting the supply 
of BCAA-derived short-chain acyl-CoA species to the tri-
carboxylic cycle in cardiomyocytes [38], and to suppress 
mitochondrial state-3 respiration by inhibiting complex I 
in HEK293 cells [39]. Increased generation of ROS during 
pressure loading in OLETF rats was closely associated with 
mitochondrial dysfunction (as discussed in the following 
section) [37]. Collectively, these findings support the notion 
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that upregulated AMPD expression is causally related to 
both increased AMP depletion and insufficient ATP synthe-
sis in OLETF rat hears [23, 37, 38]. In contrast to diastolic 
function, systolic function was preserved during pressure 
loading despite the reduced tissue ATP level, which can be 
explained by the higher energy demand of SERCA2a (52 kJ/
mol) than that of actomyosin ATPase (45–50 kJ/mol) [110].

Ca2+ regulation in mitochondria is also impaired by 
diabetes. Mitochondrial Ca2+ uptake is reduced in cardio-
myocytes subjected to high concentrations of glucose and 
in animal models of type 1 and type 2 diabetes [111–116]. 
Several mechanisms have been proposed for the reduction 
in mitochondrial Ca2+ levels by diabetes: lowered peak of 
cytosolic Ca2+ transient [117–119], which is induced by 
reduced Ca2+ stores in the SR and/or impaired SR func-
tions, reduced Ca2+ transfer from the ER/SR to mitochondria 
[115], impaired function of the mitochondrial Ca2+ uniporter 
(MCU) complex (MCUC) [113, 114, 120], and increased 
Ca2+ efflux via mitochondrial Na2+–Ca2+ exchange [116]. 
Mitochondrial matrix Ca2+ activates the pyruvate dehydro-
genase complex (PDC) by an allosteric mechanism and by 
its dephosphorylation via activation of PDC phosphatases. 
In addition, Ca2+ stimulates the regeneration of NADPH, 
which provides electrons for the production of reduced 
glutathione from oxidized glutathione. Thus, a reduction 
in mitochondrial matrix Ca2+ uptake in diabetic hearts is 
associated with suppressed glucose oxidation, reciprocally 
upregulated fatty acid oxidation, and increased generation 
of ROS in mitochondria [27, 112].

AMPD and increased mitochondria‑ER/SR contacts 
in diabetic cardiomyopathy

Recently, we found that AMPD3 protein expression is 
increased not only in the cytosol but also in MAMs in 
OLETF rat hearts compared with that in nondiabetic control, 
LETO rat hearts [39]. Assessment of the extent of mito-
chondria-ER/SR contacts by electron microscopy showed 
that areas of mitochondria-ER/SR contact are significantly 
increased in OLETF rat cardiomyocytes. The causal rela-
tionship between the upregulated AMPD expression and the 
increase in mitochondria-ER/SR contacts is supported by the 
observations that the overexpression of AMPD3 increased 
mitochondria-ER/SR contacts in HEK293 cells and that this 
structural change was inhibited by knockdown of GRP78, a 
protein that tethers mitochondria to the ER/SR [39]. How-
ever, it is not clear whether AMPD3 proteins localized in the 
MAM primarily mediate the remodeling of mitochondria-
ER/SR contacts.

As expected from the change in mitochondria-ER/
SR contacts, the increase in mitochondrial Ca2+ levels in 
response to pressure loading was larger in OLETF rat hearts 
than in LETO rat hearts, while there was no difference in the 

levels at baseline [39]. These findings support the notion 
that AMPD modulates Ca2+ regulation in mitochondria by 
remodeling mitochondria-ER/SR contacts. It is possible to 
speculate that increased mitochondria-SR/ER contacts by 
AMPD upregulation is an adaptive mechanism to compen-
sate for impaired Ca2+ uptake in mitochondria in diabetes, 
although it increases the risk of mitochondrial Ca2+ overload 
during increased cardiac workload and during pathological 
elevation of cytosolic Ca2+ levels.

AMPD and generation of ROS in diabetic 
cardiomyopathy

The role of ROS in the pathogenesis of diabetic cardiomyo-
pathy has been extensively studied, and it has been proposed 
that excessive generation of ROS occurs before the devel-
opment of diastolic dysfunction [31, 121]. In cardiomyo-
cytes, there are multiple ROS-generating mechanisms and 
antioxidant defense mechanisms, both of which are reported 
to be modified in diabetes mellitus or hyperglycemia. ROS 
generated by NADPH oxidase (NOX) [122–125], mitochon-
dria [126–130], uncoupled nitric oxide synthase [131–133], 
and/or xanthine oxidoreductase (XOR) [37, 134–136] are 
involved in diabetic cardiomyopathy, depending on the type 
or stage of diabetes mellitus models. Reported alterations in 
the ROS-mediated injury defense system in diabetic hearts 
include upregulation of superoxide dismutase (SOD) and 
catalase expression, which appears to be adaptive [137–142], 
and downregulation of peroxiredoxins [143, 144], SIRT3 
[145, 146], NF-E2-related factor 2 (NRF2) [147, 148], and 
nicotinamide phosphoribosyltransferase (NAMPT) [149] 
expression, which augments ROS-induced injury. However, 
alterations in the antioxidant defense systems are also dif-
ferent between models of diabetes and their roles in patho-
genesis of diabetic cardiomyopathy remain to be further 
investigated.

Our recent studies showed that increased AMPD activity 
in diabetes contributes to ROS-mediated injury via augmen-
tation of ROS generation by XOR [37]. Hypoxanthine and 
xanthine are metabolites downstream of AMP deamination 
by AMPD, and it is therefore expected that upregulated 
AMPD increases XOR-derived ROS when the ATP turnover 
rate is increased, for example, by increased cardiac work-
load. In fact, while baseline levels of tissue hypoxanthine, 
xanthine and uric acid were similar in OLETF rats and their 
nondiabetic control, LETO rats, ventricular pressure loading 
increased tissue xanthine and uric acid to higher levels in 
OLETF rats [37]. In addition to its substrates, the activity of 
XOR was found to be increased by 20–30% during pressure 
loading via a mechanism mediated by accumulated inosine, 
while there was no activation of XOR by CKD5-mediated 
XOR-Thr222 phosphorylation [150] or increased intracel-
lular iron levels [151, 152]. The causal role of XOR-derived 
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ROS in diastolic dysfunction in OLETF rats was confirmed 
by the findings that a specific XOR inhibitor, topiroxostat, 
suppressed the elevation of tissue biomarkers of ROS (levels 
of 4-HNE and carbonylated proteins) and improved diastolic 
function during pressure loading [37].

An XOR-independent mechanism might also be involved 
in the generation of ROS by upregulated AMPD (Fig. 2). 
Inhibition of XOR in the OLETF rat myocardium to a level 
lower than that in the nondiabetic control did not completely 
restore state-3 respiration of mitochondria [37]. On the other 
hand, state-3 respiration on pyruvate/malate, but not that on 
succinate, in mitochondria was inhibited in AMPD3-over-
expressing cells, indicating complex I inhibition by AMPD 
upregulation [39]. Inhibition of complex I induces genera-
tion of ROS [153, 154], and mitochondrial Ca2+ stimulates 
the production of ROS and greatly enhances the detrimen-
tal effect of ROS on the mitochondrial respirasome [155]. 
Thus, there is the possibility that increased mitochondrial 
ROS generation by enhanced mitochondrial Ca2+ influx via 
remodeled MAMs partly contributes to the excessive genera-
tion of ROS in AMPD3-upregulated hearts.

AMPD and increased vulnerability 
of cardiomyocytes to cell death

Cardiomyocyte death is one of the mechanisms underlying 
the irreversible progression of chronic heart failure [156, 
157]. At late stages of diabetic cardiomyopathy, multiple 
mechanisms, including ischemia caused by insufficient 
microcirculation and inflammatory cytokines, have been 
proposed to trigger the programmed and unprogrammed cell 
death of cardiomyocytes [28, 31, 158]. Excessive generation 
of ROS and impaired Ca2+ handling, two important mecha-
nisms of contractile dysfunction in diabetic cardiomyopa-
thy, increase the propensity for mitochondrial permeability 
transition pore (mPTP) opening. mPTPs are nonselective 
channels in the inner mitochondrial membrane and open 
either in reversible low conductance mode or in irrevers-
ible high conductance mode, mediating redox signals or cell 
death, respectively [159–161]. The threshold for irreversible 
mPTP opening is regulated by multiple factors including the 
interaction of signal molecules, intracellular pH and Ca2+, 
and ATP levels in the matrix. Toxic levels of ROS and/or 
mitochondrial Ca2+ overload trigger irreversible opening of 
mPTPs, leading to necrotic cell death. As diabetes induces 
excessive production of ROS and dysregulation of intracel-
lular Ca2+ homeostasis in cardiomyocytes, it is conceivable 
that the opening of mPTPs underlies progressive cardio-
myocyte death in diabetic cardiomyopathy. This hypothesis 
is difficult to directly test because of technical difficulty 
in quantifying dead cardiomyocytes present at very small 
numbers in the heart. However, an increase in myocardial 
susceptibility to infarction after ischemia/reperfusion and a 

lowered threshold for mPTP opening in diabetic hearts have 
been reported in many, but not all, animal models of diabetes 
[114, 162–165].

As upregulated AMPD promotes generation of ROS and 
elevates mitochondrial Ca2+ levels during increased cardiac 
workload (as discussed above), it is expected that the level of 
AMPD expression correlates with the propensity for mPTP 
opening. In fact, the Ca2+ retention capacity (CRC) of iso-
lated mitochondria (i.e., mitochondria with some extent 
of ER/SR contacts in crude mitochondrial fractions) was 
reduced by AMPD3 overexpression in H9c2 cardiomyo-
blasts and HEK293 cells, while the levels of mPTP regula-
tory proteins, cyclophilin D, GSK-3β, and Ser9-phospho-
GSK-3β, in the mitochondrial fractions were unchanged 
[39]. Furthermore, ROS-induced mPTP opening, which was 
determined by the loss of mitochondrial membrane potential, 
was augmented by the overexpression of AMPD3 and con-
versely suppressed by the knockdown of AMPD3 expression 
in H9c2 cardiomyoblasts [39]. Consistent with these find-
ings in cell lines in vitro, the CRC of mitochondria isolated 
from OLETF rat hearts was significantly lower than that 
of mitochondria from nondiabetic control hearts, although 
the change in CRC is likely partially due to a reduced level 
of Ser9-GSK-3β phosphorylation in mitochondria [162]. 
Future studies using a specific inhibitor of AMPD [18] or 
deletion of AMPD genes are necessary to elucidate the rela-
tive importance of AMPD among other regulatory factors 
in mPTP regulation. Nevertheless, it is important to note 
that detrimental effects exerted by upregulated AMPD on 
adenine nucleotides [23], tissue biomarkers of ROS [37], 
and mitochondrial Ca2+ levels [39] were undetectable under 
the baseline condition but were detected after an increase in 
cardiac workload. Thus, the impact of AMPD upregulation 
on the propensity for mPTP-mediated cell death is likely to 
depend on factors modulating cardiac work.

AMPD in human heart diseases

Mutations in AMPD2, which is predominantly expressed in 
the heart, brain, and liver, were found to cause pontocerebel-
lar hypoplasia without gross abnormalities in the heart [166, 
167]. In contrast, the C34T (Glu12Stop) mutation in exon 
2 of human AMPD1 was found to be associated with lower 
cardiac AMPD activity in heart failure patients; cardiac 
AMPD activity in patients with CT or TT genotypes was 
approximately 50% lower than that in patients with the wild-
type CC genotype [168, 169]. Possible explanations for the 
lower cardiac AMPD activity include the heteromeric com-
position of cardiac AMPD and/or a change in the expres-
sion pattern induced by heart failure since the expression of 
AMPD1 and AMPD3 transcripts can be detected in human 
hearts [170]. Whether the CT or TT genotype is resistant to 
diabetic cardiomyopathy is an interesting question that, if 
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answered, can provide insight into the role of AMPD in the 
human diabetic heart.

Although the concept of diabetic cardiomyopathy in the 
human heart has not been established as that in animal mod-
els, diabetes is clearly a major risk factor of both heart fail-
ure with preserved ejection fraction and heart failure with 
reduced ejection fraction. In light of complex mechanisms 
that have been shown in animal models of diabetic car-
diomyopathy and human diabetic hearts [28–32], multiple 
approaches to different targets are currently employed in pre-
vention and management of heart failure in diabetic patients 
[171, 172]. Whether a therapy targeting AMPD significantly 
protects hearts from diabetic cardiomyopathy remains to be 
further investigated.

Summary and conclusion

Multiple AMPD genes are expressed in the heart, while 
AMPD3 and AMPD2 are predominantly expressed in the rat 
heart and human heart, respectively. In the rat heart, AMPD3 
was found to localize in the cytosol, SR/ER, and MAM, 
while its presence in mitochondria appears to be very low 
or negligible. The localization of AMPD overlaps with that 
of AK, which is consistent with the functional relationship 
between AMPD and AK. Circumstantial evidence suggests 
that AMPD negatively regulates BCAA-BCKA catabolism 
by suppressing BCKDH activity in the ER and AMPK sign-
aling pathways when not only AMP levels but also AMP/
ATP ratios are increased in cardiomyocytes. The physiologi-
cal significance of the two AMPD functions is unclear. How-
ever, because ATP is an activator of AMPD, it is possible 
that the suppression of BCKDH and AMPK by activated 
AMPD, leading to reduced catabolism of energy substrates, 
is a feedback mechanism for fine-tuning the rate of ATP 
synthesis while sparing BCAAs for protein synthesis.

Upregulation of AMPD activity in myocardial tissue 
has been observed in different models of type 1 and type 
2 diabetes. However, its pathophysiological role has been 
characterized only in one model of type 2 diabetes, OLETF 
rats. In this model, AMPD protein levels were increased in 
the cytosol, ER, and MAM but not in mitochondria. AMPD 
upregulation was associated with enlarged areas of mito-
chondria-ER/SR contact, which might be a compensatory 
response to the reduction in mitochondrial Ca2+ uptake in 
diabetic hearts. Diastolic dysfunction induced by ventricular 
pressure loading in OLETF rats was correlated with deple-
tion of ATP and adenine nucleotides, increased generation of 
ROS, and augmented elevation of mitochondrial Ca2+ levels. 
Most of the detrimental effects of AMPD upregulation are 
attributable to increased XOR-derived ROS production as a 
result of increased flux from AMP to uric acid and depletion 
of adenine nucleotides, although enhanced mitochondrial 

Ca2+ influx via remodeled MAMs is possibly an addi-
tional mechanism (Fig. 2). Increased generation of ROS 
and modulation of mitochondrial Ca2+ handling by AMPD 
upregulation increase the propensity for necrotic cell death 
by lowering the threshold for mPTP opening (Fig. 2). As a 
major limitation, the proposed roles of upregulated AMPD 
in diabetic cardiomyopathy are based on findings in cultured 
cells with manipulated AMPD expression and metabolomic 
analyses in OLETF rat hearts. The findings need to be fur-
ther confirmed by the use of specific inhibitors of AMPD 
and AMPD knockout mice, which would provide insight 
into a role of AMPD as a therapeutic target in the diabetic 
heart. However, cardiac-specific knockout of a single AMPD 
gene may provide results that are difficult to interpret, as did 
the effect of AMPD1 knockout on the contractile function of 
skeletal muscle [10, 14, 173], because of the compensatory 
function of co-expressed AMPD genes. Nevertheless, it is 
important to note that significant roles of AMPD in a rat 
model of diabetic cardiomyopathy were undetectable at the 
baseline condition and manifested in conditions of increased 
cardiac work. Thus, levels of physical activity and cardiac 
workload would need to be taken into account to character-
ize the roles of AMPD in human heart diseases in future 
investigations.
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