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Abstract
Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if 
left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions 
in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is 
particularly important. Exosomes are a class of extracellular vesicles at 30–150 nm, which are secreted by various cells, 
tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. 
In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not 
only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility 
and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the 
blood–eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of 
posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and 
nano-delivery vehicles in posterior ocular diseases.
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Introduction

The eye is one of the most precious organs of the human 
body, and it is a unique sensory organ in both anatomy and 
physiology [1]. The eye is usually divided into the ante-
rior and posterior segments by lens interface. The anterior 
segment contains the cornea, conjunctiva, pupil, aqueous 
humor, iris, ciliary body, and lens, taking up about one-
third of the eye. And the posterior segment comprises about 

two-thirds of the eye, including the sclera, choroid, retina, 
Bruch membrane, vitreous, and optic nerve [2, 3]. At least 
2.2 billion people worldwide are visually impaired or blind, 
according to the World Health Organization. Of all oph-
thalmic diseases, 55% are posterior ocular diseases, which 
can lead to permanent vision loss if left without treatment. 
Posterior eye diseases mainly include age-related macular 
degeneration (AMD), diabetic retinopathy (DR), uveitis, 
diabetic macular edema (DME), cytomegalovirus retinitis 
(CMV), and retinitis pigmentosa (RP) [4–7]. Among them, 
AMD and DR are considered to be the leading causes of 
irreversible visual impairment. At present, the conventional 
treatment of the posterior ocular diseases are vitreous injec-
tion and implants [8]. Vascular endothelial growth factor 
(VEGF) inhibitors such as bevacizumab and ranibizumab 
are commonly used for the treatment of AMD by vitreous 
injection. The frequent vitreous injection can cause some 
risks such as endophthalmitis and retinal detachment, lead-
ing to poor patient compliance [9]. Implants overcome many 
disadvantages of intravitreal injection. However, the risk of 
surgical procedures and drug deposition may lead to adverse 
effects [10]. Topical administration can avoid the risk of 
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vitreous injections and implants, which is the simplest and 
most commonly used method.

Due to the special structure of the eye, there are various 
barriers for the local drug delivery. Various physiological 
structures and tear turnover result in low drug bioavail-
ability, poor tissue permeability, systemic side effects, and 
other problems. Traditional delivery systems, such as sus-
pensions, eye drops, and ointments, are rarely regarded as 
very effective dosage forms for the treatment of posterior 
ocular diseases [11]. The development of nanotechnol-
ogy makes it possible to overcome these obstacles. Due 
to their nanoscale size, nano-delivery systems facilitate 
drugs through tightly connected cells, thereby enhancing 
drug permeability and increasing drug bioavailability [12]. 
Nanomedicines can have the ability to target lesion sites 
through certain modification materials, which increase 
drug concentration in the local area [13]. In recent years, 
many promising nano-preparations have been developed 
and investigated for drug delivery to the ocular posterior 
segment, such as liposomes, lipid nanoparticles, polymer 
nanoparticles, nanoemulsions, nanomicelles, and den-
drimers [4, 14]. Various synthetic nanocarriers have been 
extensively researched and have shown potential thera-
peutic effects. However, these synthetic nanomaterials can 
induce unanticipated immune responses and interaction 
with protein, which may lead to toxicity and therapeutic 
failure [15–18].

Exosomes, the endogenous nanocarriers, avoid the prob-
lems mentioned above. They have the potential to interop-
erate with receptor cells, specifically, and penetrate tissues 
while protecting internal cargo from disintegration [19–21]. 
Recent studies have established that exosomes are able to 
carry small molecules such as drugs and biomolecules 
within cells [22]. Compared to synthetic nanocarriers, 
exosomes isolated from the patient’s cells have higher bio-
compatibility, lower toxicity, and lower immunogenicity [23, 
24]. More importantly, exosomes can cross the blood–brain 
barrier (BBB) [25]. Blood–eye barrier and the BBB have a 
similar neuroepithelial origin, microstructure, and vascular 
system and function [26]. The BBB and blood–eye barri-
ers are formed by polarized endothelial cells and epithelial 
cells and have similar transport proteins [27, 28]. The evi-
dence reveals its potential to penetrate the blood–eye barrier. 
Exosomes are vesicles of 30–150 nm [29]. A particle size 
of 20–200 nm is deemed to be the appropriate particle size 
to pass through the ocular barrier: less than 20 nm is easily 
cleared by the blood and lymphatic circulation, and more 
than 200 nm will decrease the permeability [14, 30]. It is 
obvious that exosomes are within this particle size range. 
In addition, exosomes carry certain molecules during their 
synthesis, making them therapeutic.

This review describes the current challenges in deliver-
ing drugs to the back of the eye based on the physiological 

barriers of the eye and summarizes the biogenesis, isolation, 
and engineering of exosomes. In addition, the review is to 
discuss the potential opportunities of exosomes including 
their therapeutic effects and as delivery vehicles in the treat-
ment of posterior eye diseases.

Obstruction of drug administration 
in posterior ocular disease

Local administration mainly delivers drugs to the poste-
rior ocular tissue through the following three pathways: (i) 
corneal pathway: The drugs pass through the cornea, into 
the aqueous humor, lens/iris, vitreous, and eventually into 
the retina; (ii) conjunctiva-sclera pathway: the drugs pass 
through the conjunctiva, sclera and then enter the choroid 
and retina; (iii) other pathways: The drugs penetrate to the 
systemic cycle by nasolacrimal drainage/corneal capillaries 
and then reach the retina through the blood–retinal barrier 
(BRB) [31, 32]. However, various physiological barriers of 
the eye can lead to low drug bioavailability and difficulty in 
reaching the lesion site. We briefly discuss the challenges of 
drug delivery to fundus lesion sites (Fig. 1).

Tear film barrier

The tear film is the outermost membrane of the eye, which is 
the first barrier. The tear film with a thickness of 3 μm con-
sists of three layers: the outermost layer is a lipid membrane, 
the middle layer is composed of water and protein, and the 
mucin layer is at the base [33]. Therefore, the hydrophilic/
lipophilic nature of the drugs affects their ability to penetrate 
the tear film barrier. Meanwhile, mucins are electronega-
tive, so the electrical charges between the drug molecules 
and carriers determine how the drugs interact with the eye 
surface [34]. Tear film turnover (1–2 μL·min−1) reduces drug 
retention time on the corneal surface, which is the main fac-
tor limiting the local retention time [35]. Human tear volume 
is about 7 μL, and the volume of eye drops can reach 50 μL. 
Although the capsule tail can temporarily stay at 30 μL, most 
of the drugs through nasolacrimal drainage enter directly 
into the systemic circulation, resulting in low drug bioavail-
ability [36]. Therefore, the physicochemical properties of 
drug molecules and their carriers, as well as their interac-
tions with the tear, determine whether the drugs can cross 
the tear membrane barrier and enter the subsequent tissues.

Cornea barrier

The cornea is the second major barrier for drug penetration, 
which is a transparent avascular connective tissue, consisting 
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of 5 layers, respectively, epithelium, stroma, endothelium, 
Bowman membrane, and Descemet membrane [37]. The 
surface of the cornea is lined with closely connected hydro-
phobic epithelial cells, which prevents hydrophilic sub-
stances such as tears and macromolecular substances from 
entering the intercellular space [38]. The stroma accounts 
for approximately 90% of the corneal thickness and is made 
up of collagen fibrils and glycosaminoglycans. The highly 
hydrated structure of the stroma is a rate-limiting barrier to 
the penetration of lipophilic drug molecules [39]. Thus, the 
drugs entry into the corneal barrier depends on their hydro-
philicity/hydrophobicity and molecular weight. In addition, 
the drug delivery systems with both hydrophobic and hydro-
philic structures are more likely to enter the eye through the 
corneal pathway.

Conjunctiva barrier

The conjunctiva is a thin and translucent vasiform mucus 
membrane that surrounds the cornea. The conjunctiva is 
divided into the epithelium, the basement membrane, and 
the lamina propria [40]. The epithelium consists of goblet 
cells and lamellar cells that are closely connected. It oper-
ates as a barrier for the transport of hydrophilic substances 
by the side of the cell. One of its main functions is to help 

maintain the tear film [41]. Lamina propria is a loose layer 
of fibrous vascular connective tissue [42]. The conjunctiva 
surface is larger than the cornea, its permeability is 2–30 
times higher than the cornea, and its absorbable diameter is 
less than 300 nm [43]. Therefore, the conjunctiva absorbs 
more drugs than the cornea. However, the conjunctiva still 
absorbs very few drugs. The conjunctiva contains abundant 
lymphoid tissue, which is involved in the immune defense 
system of the ocular surface and resists the entry of drugs 
[40].

Len barrier

The lens is a double convex and transparent tissue, held sus-
pended by the suspensory ligaments between the iris and 
vitreous chamber [44]. It is the only refractive substrate of 
the eyeball with accommodative capacity [45]. Hence, it is 
a major instrument for vision formation.

Sclera barrier

The sclera, which is composed of non-keratinized laminated 
squamous epithelium and goblet cells, is covered by con-
junctiva. Microscopically, the sclera is made up of dense fib-
ers of different diameters that are interlaced with each other. 

Fig. 1   A graphical depiction of the vital ocular barriers that provide the challenge of drug delivery to posterior eye segment
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Collagen fibers and proteoglycans in the interfibrous matrix 
of the sclera allow hydrophilic substances to diffuse through 
the scleral tissue [46]. The sclera is highly permeable, and its 
penetration primarily depends on the molecular radius of the 
drugs rather than the lipophilicity of the drugs. Moreover, 
the permeability of the sclera does not significantly decrease 
with age [43]. The sclera has a large surface area. Few pro-
teolytic enzymes or protein-binding sites can degrade or 
isolate drugs, which facilitates drug transport [47].

Choroid barrier

The choroid is a flexible layer of blood vessels adjacent to 
the sclera. Its main function is to provide nutrition to the 
retina [48]. Moreover, choroidal clearance is based on the 
high plasma flow and the porous leaky structures of choroi-
dal capillaries that prevents the transport of macromolecular 
drugs [49, 50].

Blood–eye barrier

The blood–eye barrier consists of a blood–aqueous barrier 
(BAB) located in the anterior uveal membrane and a BRB 
located in the retro-ocular region. It has three key functions: 
maintaining tissue and fluid components, producing aqueous 
humor, and preventing pathogens from entering the eye [7]. 
BAB and BRB, due to their tight connections between cells, 
not only limit the invasion of pathogens to protect the retina 
but also limit the circulation of drugs from the body to the 
eye and from the eye to the body [51].

The BAB is composed of the compact capillary endothe-
lium of the iris and ciliary epithelium [52]. Tight junctions 
act as gatekeepers for paracellular transport, restricting the 
selective diffusion of ions and small solutes through the 
spaces between adjacent cells [53]. Drug transporters in the 
iris and ciliary body not only reduce the penetration of drugs 
into the aqueous humor but participate in the elimination of 
aqueous humor drugs, thereby reducing the bioavailability 
of drugs [54].

The BRB is made up of two successive monolayer cells 
with unique spatial orientation and construction. The retinal 
pigment epithelium cells (RPEC) are the main constituent 
of the outer BRB (oBRB), and the retinal microvascular 
endothelial cells (RMEC) are the core component of the inner 
BRB (iBRB) [55]. They have tight intercellular connections 
and thus form a powerful barrier for drug penetration [56]. 
However, the retina has selective permeability [57]. The tight 
connections of cells in iBRB limit the penetration of hydro-
philic drugs into the retina, whereas hydrophobic drugs pen-
etrate more freely. And the permeability of the drugs through 
the oBRB decreases as the molecular radius increases [58, 
59]. In general, lipophilic drugs and lower molecular weight 
drugs have higher permeability in BRB.

To sum up, the corneal route is the primary route of local 
drug delivery to the eye. The conjunctiva-sclera local admin-
istration route is short [7], so it is considered to be the main 
route of local administration. In addition, due to the presence 
of the blood–eye barrier, drugs are limited to reaching the 
retinal region on account of nasolacrimal drainage and capil-
lary penetration. In order to achieve therapeutic intraocular 
concentrations, high doses of drugs are required. As a result, 
drugs are distributed and accumulated in the tissues of the 
body, causing side effects. Although it is difficult to treat 
ocular diseases with topical eye drops, it is still the safest, 
most convenient, and highly compliant way. Therefore, ocu-
lar preparation technology with strong permeability, good 
retention, and even targeted release is urgently needed.

Exosome‑a lipid bilayer nanostructure

Exosomes are extracellular vesicles (EVs) of 30–150 nm and 
have a lipid bilayer structure, which contains many impor-
tant bioactive molecules such as proteins, enzymes, and 
nucleic acids (mRNA, miRNA, DNA) in the interior and 
surface [29, 60, 61]. Some specific physiological functions 
such as therapeutic effects and targeting properties are given 
by these active molecules. Their nano-lipid bilayer structure 
allows them to cross ocular barriers. Therefore, exosomes 
have the potential as drugs and carriers in posterior ocular 
diseases [62]. Recently, researchers are not only limited to 
studying natural exosomes as drugs and carriers. In order to 
give exosomes more functions, engineered exosomes have 
aroused the great interest of researchers.

Exosome biogenesis

Exosomes are a sort of EVs, the phenomenon of sheep 
reticulocytes secreting nanovesicles during maturation was 
detected as early as the 1980s after these vesicles became 
known as exosomes [63, 64]. Exosome biogenesis is a 
successive cytological process depending on endosomes 
(Fig. 2). Firstly, cytoplasmic membrane endocytosis can 
form early endosomes. As early endosomes mature, RNA, 
DNA, and proteins are encapsulated in the cytoplasm to form 
late endosomes [65]. Then late endosomes form multive-
sicular bodies (MVBs), which include intraluminal vesicles 
(ILVs) that are created by budding inward through the mem-
brane of late endosomes [66, 67]. The optimal mechanism 
for MVBs and ILVs formation is driven by the endoplasmic 
sorting complex required for transport (ESCRT) [68]. Sub-
sequently, MVBs with the highest cholesterol content merge 
with the cytoplasmic membrane to expel ILVs out of the cell 
to form exosomes, which are consistent with the cholesterol-
rich exosomes [69]. Another avenue for MVBs is to fuse 
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with lysosomes and are later degraded, which is the main 
fate of MVBs [70, 71].

Natural exosomes

Exosomes are secreted by a variety of cells, including epi-
thelial cells, mesenchymal stem cells, dendritic cells, neu-
rons, reticulocytes, cancer cells, B and T cells, and astro-
cytes, under normal or pathological conditions [72–76]. 
They are widely present in plasma [77], urine [78], milk 
[79], saliva [80], nasal secretion [81], amniotic fluid [82], 
and cerebrospinal fluid [83]. Exosomes are promising natu-
ral therapeutic agents, due to the variety of biomolecules in 
the synthesis process.

A variety of methods have been used to isolate exosomes. 
The most common method of isolation is ultracentrifuga-
tion, which is based on the difference in density and size 
between exosomes and impurities [84]. The methods of rep-
resentative ultracentrifugation for exosomes are differential 
ultracentrifugation and density gradient ultracentrifugation 
[85]. Ultracentrifugation is able to collect a large number 
of exosomes [86]. Polymer-based precipitation separation 
is also commonly used to isolate exosomes [87]. The highly 
hydrophilic polymers associated with water molecules 
around exosomes to form a hydrophobic microenvironment, 
which causes the exosomes to precipitate. Both ultrafiltra-
tion and size exclusion chromatography are dependent on 
the size difference between exosomes and other components 

in the sample [88]. In addition to the strategy of isolating 
exosomes based on their sizes, densities, and other physical 
properties. There are other methods for isolating exosomes, 
such as immunoaffinity capture through interaction between 
antibodies and some specific proteins, lipids, and polysac-
charides on the surface of exosomes [89]. Each method has 
its advantages and disadvantages (Table 1). The combined 
application of multiple methods has been widely studied and 
applied to adapt to mass production. Moreover, there are no 
established standards for the isolation and purification of 
exosomes, which is also an important research direction for 
researchers in the future.

Engineered exosomes

Due to the limited tissue and cell-specific targeted proper-
ties, there are many challenges when considering natural 
exosomes as therapeutic drugs and delivery carriers, so it is 
necessary to modify exosomes according to physiological 
requirements. At this time, engineered exosomes emerged 
to meet specific therapeutic purposes. Engineered exosomes 
adopt two modification strategies, namely cargo engineering 
and surface engineering (Fig. 3).

Cargo engineering

Cargo engineering refers to the loading of therapeutic drugs 
into exosomes, including pre-loading and post-loading. 

Fig. 2   Biogenesis and secre-
tion of exosomes. Exosome 
formation originates from 
early endosomes formed by 
endocytosis in the cytoplasmic 
membrane. The membranes of 
late endosomes buss inward to 
form ILVs and convert them 
into MVBs. After MVBs merge 
with the cytoplasmic membrane 
to expel ILVs out of the cell to 
form exosomes
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Pre-loading is the loading of drugs before exosome separa-
tion, and post-loading is the loading of drugs after separa-
tion [90].

Pre-loading uses therapeutic drugs to treat donor cells 
so that the cells secrete drug-laden exosomes. It is mainly 
through the co-incubation with the donor cells to secrete 
the corresponding exosomes. This approach aims to cause 

the donor cells to accumulate therapeutic compounds and 
secrete exosomes that contain the therapeutic compounds. 
Due to its non-targeting property, the yield of this method 
is low [91]. Another approach is gene editing, which uses 
genes to modify parental cells so they overexpress thera-
peutic RNA, proteins and peptides, and then load them into 
exosomes [92].

Table 1   The different isolation methods and their advantages/disadvantages

C Principle Advantages Disadvantages References

Ultracentrifugation The difference in density and 
size

Mature technology, large pro-
duction, cheap

The long time for prepara-
tion, lower purity, damage 
of exosomes by high-speed 
centrifugation

[85]

Polymer-based precipitation The influence of highly 
hydrophilic polymers on the 
solubility of exosomes

Simple, fast and convenient, 
without the requirement of 
special equipment

Cost of a large number of 
initial samples

[148]

Ultrafiltration The difference in molecular 
weight and size

Simple, fast and without the 
requirement of special equip-
ment

Low recovery rate [89]

Size exclusion chromatography The difference in size The preservation of the integ-
rity and biological activity of 
the exosome

The long time for preparation [84]

Immunoaffinity capture The interactions between 
proteins on the surface of 
exosomes and antibodies

Specificity and simple techno-
logical process

Expensive antibodies and low 
efficiency

[84]

Fig. 3   Engineering exosomes via cargo engineering and surface engi-
neering. Cargo engineering encapsulates proteins, DNA, RNA and 
other therapeutic drugs into exosomes via different methods. Suface 

engineering modifies different targeting molecules to give exosomes 
stronger targeting properties by genetic engineering and chemical 
modification
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Post-loading is the loading of therapeutic molecules 
such as DNA, RNA, proteins, and small molecules directly 
into exosomes. For the post-loading of exosomes, passive 
and active-loading techniques are usually used. Passive-
loading involves the co-incubation of drugs and exosomes, 
with the drugs diffusing into the exosomes along a concen-
tration gradient. This passive-loading strategy is based on 
the concentration gradient and the hydrophobicity of the 
cargos, as hydrophobic drugs may interact with the lipid 
bilayer membrane of the vesicles. This method usually 
has a low loading capacity [93]. Active-loading allows 
the drugs to diffuse into the exosomes by temporarily dis-
rupting the exosomal membrane through external forces. 
Active-loading mainly includes ultrasound, extrusion, 
electroporation, freeze–thaw cycles, and permeabiliza-
tion [94]. Compared to passive-loading, active-loading 
capacity can be increased by a multiple of approximately 
11 [95].

Surface engineering

Apart from achieving specific efficacy by loading drugs, 
exosomes can also be engineered. Although exosomes 
are natural carriers, surface modifications still be easily 
performed. The modified strategies can be divided into 
two types, genetic engineering and chemical modification 
[93]. Genetic engineering makes proteins or peptides fuse 
with membrane proteins on the surface of the exosomes 
by co-incubation. Genetic engineering has its intrinsic 
drawbacks, such as the complexity of the operation and the 
limited range of proteins that can be applied [96]. Chemi-
cal modification refers to modifying a diversity of chemi-
cal ligands or functional molecules onto the surface of 
exosomes by covalent linkages or non-covalent interactions 
[96, 97]. In addition, other methods such as electrostatic 
interactions, ligand-receptor interactions, and aptamer-
based surface modification were performed by anchoring 
CP05 peptides that have been used for surface modification 
of exosomes [98]. All of the methods mentioned above 
are used to empower exosomes with targeting functions 
by modifying specific molecules onto the surface of the 
exosomes.

As mentioned above, exosome is an endogenous sub-
stance with targetability and adequate security. Exosomes 
are endowed with some therapeutic effects because they 
carry signaling molecules during synthesis. And exosomes 
are good drug carriers due to their lipid bilayer structure 
and their ability to cross multiple physical barriers. Hence, 
exosomes are promising drug carriers for delivering various 
drugs to the posterior segment of the eye through the ocular 
barriers [39]. Meanwhile, exosomes themselves are easy to 
be modified to achieve stronger targeting.

Application of exosomes in posterior ocular 
disease

Many studies have demonstrated that exosomes play sig-
nificant roles in the treatment of many diseases, including 
cancer [99], cardiovascular diseases [100, 101], neurode-
generative diseases [102], and tissue injury [103, 104]. And 
some studies based on exosomes to treat diseases are already 
in clinical trials, for example, cancer and COVID-19 pneu-
monia [105]. In a prospective clinical trial of dry eye dis-
ease, miR-204-containing exosomes as eye drops notably 
alleviate GVHD-associated dry eye disease by suppressing 
inflammation and improving epithelial recovery. This study 
suggests that exosomes as eye drops are feasible and effica-
cious in treating GVHD-associated dry eye disease [106]. 
The eye, due to its unique sensitivity and multiple barriers 
to postocular administration, requires a highly specific, pen-
etrative, and non-toxic therapeutic strategy. Exosomes are a 
potential “cell-free” therapy that is suitable for the treatment 
of posterior ocular diseases due to their ability to cross barri-
ers, migrate to the targets, and their safety is also confirmed 
[107]. Meanwhile, exosomes are ideal vehicles because of 
their higher biocompatibility and lower immunogenicity. In 
addition, the exosome membrane prevents the degradation 
of their molecular contents before arriving at the target cells 
[62]. In this section, we will discuss application of exosome 
in posterior ocular disease, including them as therapeutic 
agents and carriers.

Exosomes as targeted drugs to treat posterior 
ocular disease

Due to the variety of biological information they carry, 
the function of exosomes is mainly determined by the sub-
stances they carry [108]. Exosomes provide a novel perspec-
tive and potential therapeutic approach for treating posterior 
ocular diseases.

Exosomes for the treatment of AMD

AMD is a progressive degenerative disease of the macula, 
the region of the retina in charge of vision and color. It is 
divided into dry AMD and wet AMD, and wet AMD is the 
leaking AMD, which is characterized by abnormal growth 
of new blood vessels invading the retinal pigment epithelium 
(RPE) from the choroidal layer [109, 110]. In recent years, 
the use of exosomes to treat AMD has received more and 
more attention from researchers.

Hajrasouliha et al. [111] injected of RAC-Exos by extro-
ocular and exosomes started to appear in the neural retina at 
15 min, gradually increased after 30 min, and then became 
more diffuse throughout the neural retina. This injection 
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method alleviates the side effects of intravitreal injection, 
such as intraocular inflammation, and the exosomes still 
reach the target tissue. Because exosomes have the abil-
ity to migrate to target tissues and target cells. RAC-Exos 
mainly targets macrophages and vascular endothelial cells, 
and inhibits angiogenesis by reducing the release of inflam-
matory and angiogenic factors [112, 113]. RAC-Exos con-
tained known anti-angiogenic proteins, such as endothelial 
inhibitors and PEDF, which may be operative in the inhibi-
tion of laser-induced choroidal neovascularization (CNV) 
in mice. RPE-Exos do not have this ability. But subretinal 
injection of RPE-Exos can diminish the apoptosis of photo-
receptors and inhibit the expression level of inflammatory 
cytokines, which can also achieve the effect of retinal protec-
tion [114]. Microglia-derived exosomes can also inhibit the 
expression of angiogenic factors such as VEGF and reduce 
retinal angiogenesis, thereby reducing visual damage [115]. 
During subretinal fibrosis secondary to neovascular AMD, 
RPE cells lose their characteristic epithelial morphology and 
function and then transform into myofibroblasts, which is 
known as epithelial-mesenchymal transformation (EMT). 
Another study demonstrated that the intravitreal injection of 
human umbilical cord MSC-derived exosomes (HUCMSC-
Exos) effectively ameliorated laser-induced CNV and sub-
retinal fibrosis via the suppression of EMT process [116]. 
In addition, it has been reported that intravitreal injection of 
MSC-derived exosomes (MSC-Exos) can ameliorate retinal 
laser damage by reducing damage and inhibiting apoptosis 
and inflammatory responses [117].

In summary, exosomes play a therapeutic role at various 
stages of AMD through anti-inflammatory, anti-angiogene-
sis, anti-apoptosis, and inhibition of fibrosis. Many studies 
have shown that exosomes play a similar role in the treat-
ment of diseases such as cancer and stroke and it is proven 
to have good therapeutic responses [118, 119]. The effective-
ness of exosomes in the treatment of AMD is supported by 
these evidences.

Exosomes for the treatment of DR

DR is a usual complication of diabetes mellitus and a pri-
mary reason for blindness and visual impairment in mid-
aged and elderly people, affecting their quality of life 
severely [120]. It is characterized by progressive changes in 
the retinal microvasculature, leading to increased vascular 
permeability, pathological intraocular hyperplasia, inflam-
mation, angiogenesis, and retinal ischemia. Consistent with 
AMD, anti-inflammation and anti-angiogenesis are also 
ways to treat DR. At the same time, DR can cause retinal 
neuropathy. Photoreceptor cells are a class of cells in the 
neural retina that play an important role in the retina [121, 
122]. Recently, the research on exosomes in the treatment 
of DR gradually has been increasing.

The study demonstrated that vitreous injection of MSC-
derived exosomes (MSC-Exos) reduced IL-B, IL-18, and 
caspase-1 levels after hyperglycemic stimulation. Further 
studies showed that miR-126 in MCS-Exos down-regulated 
the expression of high mobility group box 1 (HMGB1) pro-
tein and its downstream inflammatory factors [123]. There-
into, HMGB1 is a danger-associated protein pattern receptor 
which can sense high glucose as a stressor and HMGB1is 
a key player in retinal inflammation in DR [124]. Since 
retinal ischemia was a common underlying mechanism in 
DR. Vitreous administration of MCS-Exos can reduce the 
severity of retinal ischemia and neovascularization, and 
immunogenicity is not detected when exosomes are admin-
istered to mice with normal immune function [125]. The 
other study revealed that injection of 293 T cell-derived 
exosomes (293 T-Exos) into the vitreous fluid of ischemic 
eyes reduced the apoptosis of retinal cells and 293 T-Exos 
mainly ingested by retinal neurons and ganglion cells [126]. 
Therefore, 293 T-Exos have the potential to treat retinal dis-
eases. Dongyan Pan et al. also found that exosomes may 
exert neuroprotective effects by promoting the survival of 
retinal ganglion cells (RGCs) and activation of glial cells 
through the administration of HUCMSC-Exos in a mouse 
optic nerve crush model [127].

Exosomes may improve the occurrence and development 
of DR through anti-inflammatory, improvement of retinal 
ischemia and neovascularization, and protection of optic 
nerve. Meanwhile, exosomes did not show immunogenic-
ity, which is a very appealing novel non-cellular therapeutic 
approach that warrants further exploration in ophthalmology.

Exosomes for the treatment of autoimmune uveitis

Autoimmune uveitis is a disease characterized by intraocular 
inflammation, which can lead to visual impairment and even 
blindness if not diagnosed and treated appropriately [128]. 
Conventional treatment is the local or systemic use of corti-
costeroids and immunosuppressive agents, which are highly 
efficacious, but can be associated with serious systemic side 
effects [129]. New therapeutic approaches for attenuation of 
autoimmune uveitis are urgently needed.

Lingling Bai et al. [130] proved that MSC-Exos effi-
ciently alleviated experimental autoimmune uveitis (EAU), 
established murine model of autoimmune uveitis, indicat-
ing their potential therapeutic use in the treatment of this 
disease. Both clinical and histological analysis revealed that 
periocular injection of MSC-Exos significantly improved 
EAU, and protected retinal function in experimental rats. 
Subsequently, the proportion of Gr-1+, CD161+, CD68+, 
and CD4+ cells in the inflamed retina decreased. CCL2 and 
CCL21 chemokines are involved in chemotaxis of inflam-
matory cells in the injured eyes. But MSC-Exos suppressed 
effects of CCL2 and CCL21 chemokines. Mice treated with 
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exosomes that contain IL-35 (i35-Exos) by retro-orbital 
injection showed only mild EAU compared to control mice 
(PBS). The results of optical coherence tomography (OCT) 
analysis revealed substantial accumulation of inflammatory 
cells in vitreous and optic nerve head of control untreated 
eyes compared to mice treated with i35-Exos. Meanwhile, 
reduction of Th17 cells in eyes of mice treated with i35-
Exos but not to control mouse eyes. Th17 cells are closely 
related to the production of EAU [131]. In another study, 
circulating exosomes were isolated from the blood of rats 
with EAU (EAU-Exos) induced by immunization with IRBP 
R16 peptide. However, EAU-Exos selectively suppressed the 
immune response of R16-specific T cells in vitro. Afterward, 
naive Lewis rats were pre-inoculated with EAU-Exos and 
these rats were induced to recur EAU, the results showed 
that EAU-Exos could reduce the frequency and severity of 
EAU recurrence. Therefore, the use of autologous circulat-
ing exosomes as a vaccine has the potential to inhibit the 
recurrence of autoimmune uveitis [132]. Results obtained 
above strongly suggest that exosomes efficiently suppress 
inflammatory response in inflamed retina, should be further 
explored as novel therapeutic agents for the treatment of 
human autoimmune uveitis.

To sum up, exosomes have shown outstanding therapeu-
tic effects as a cell-free therapy in ophthalmology and their 
safety and targeting ability have been affirmed. In addition 
to the above major retinal pathologies, exosomes have also 
demonstrated positive therapeutic effects in foundational 
studies of other retinal diseases such as DME [133]. Due 
to the sensitive physiology of the eye, the development of 
topical formulations that can be administered as eye drops 
without the risk of injection needs to be further explored.

Exosomes as targeted delivery vehicles to treat 
posterior ocular disease

There are different nanocarriers with both natural and syn-
thetic origins that have been developed for the treatment 
of a wide variety of diseases. These nanocarriers present 
different matrix compositions, highlighting liposomes, 
nanoparticles, nanomicelles, or dendrimers [134]. As men-
tioned above, exosomes have a lipid bilayer nanostructure 
secreted by various cells [22, 29]. Compared with synthetic 
nanocarriers, exosomes have lower immunogenicity and 
higher biocompatibility. Exosomes represent a promising 
nanomedicine strategy mainly due to their ability penetrate 
the most difficult barriers to penetrate, including the BBB 
[25]. Moreover, exosomes are easily modified to achieve the 
desired function. They have intrinsic targeting and promis-
ing physiological features to be used as a nanocarrier for 
delivering therapeutic molecules to the posterior segment of 
the eye [135]. The therapeutic molecules including various 
types of nucleic acids, proteins, and small-molecule drugs 

can be loaded into the exosomes as cargo to treat posterior 
ocular diseases.

Delivery of nucleic acid

A variety of miRNAs have been shown to play important 
roles in inflammation regulation, angiogenesis, tissue repair 
and regeneration. Exosomes can transport miRNAs to tar-
get sites through barriers, where they are taken up by cells 
and subsequently regulate the receptor cells. The photo-
toxin N-methyl-Nnitrosourea (MNU) was used to establish 
a photoreceptor-specific injury model in mice. The study 
discovered mesenchymal stem cell transplantation (MSCT) 
counteracted photoreceptor apoptosis and alleviated reti-
nal morphological and functional degeneration in a mouse 
model. Interestingly, effects of MSCT were inhibited after 
blockade of exosomal generation. Therefore, it is specu-
lated that exosomes alleviate and inhibit the damage of 
photoreceptors. By studying the potential mechanisms of 
exosomes, the researchers identified that miR-21 critically 
maintained photoreceptor viability against MNU injury by 
targeting programmed cell death 4 (Pdcd4) and was trans-
ferred from MSC-derived exosomes in vivo for functional 
regulation [136]. Pakravan et al. [137] showed that miR-100 
was enriched in bone marrow MSC-Exos and transferred by 
exosomes to inhibit angiogenesis by downregulating VEGF 
in breast cancer cells in vitro. Anti-VEGF therapy plays an 
important role in abnormal neovascularization of ocular pos-
terior segment diseases such as AMD and DR. This study 
provides a direction for exosomes to transport miRNAs to 
targeted VEGF in the posterior segment of the eye to inhibit 
angiogenesis.

Therefore, it is possible to use exosomes to deliver nucleic 
acid to treat posterior ocular diseases, especially with their 
unique miRNA cargo. Many studies showed the role of 
miRNA in the function and survival of different retinal cells 
such as photoreceptors or Müller glias, and they are related 
to many diseases [138]. Here, exosome-delivered miRNA 
has been widely studied in the treatment of various diseases.

Delivery of proteins

Besides the use of nucleic acid in the treatment of pos-
terior ocular diseases, exosomes can be used to deliver 
small proteins and peptides. These proteins and pep-
tides with properties including anti-angiogenesis and 
anti-inflammatory can be explored. Xue Dong et  al. 
[139] constructed an EXO-linked peptide (EXOKV11) to 
inhibit pathological retinal angiogenesis. EXOKV11 and 
KV11 were injected by retro-orbital method. The results 
showed that the signal of EXOKV11-injected group was 
stronger than that of KV11-injected group and signals 
were still detectable in the retina 12 h after injection, 
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which demonstrated that EXOKV11 was delivered into the 
eye more efficiently than KV11 and the EXOKV11 had 
high stability. In the oxygen-induced retinopathy (OIR) 
mouse model, EXOKV11 showed a stronger inhibitory 
effect on neovascularization and endothelial cell (EC) 
proliferation. In the mouse OIR model, increased VEGF 
secretion caused by hypoxia is the major cause of neo-
vascularization and vascular leakage. However, EXOKV11 
effectually suppressed VEGF-induced vascular leakage 
in mouse model by retro-orbital injection. In addition, 
bevacizumab, a very commonly used VEGF antibody 
against AMD, has been found to be partially taken up by 
RPE cells after intravitreal injection and then re-released 
by exosomes to produce therapeutic effects [140]. Vitre-
ous injection is commonly used in clinical administration 
of bevacizumab, but there are many side effects in this 
way. The above studies suggest that it is feasible to use 
exosomes as the carrier of bevacizumab in a less invasive 
way such as retro-orbital injection.

It revealed that investigators could develop exosomes 
encapsulating some proteins such VEGF inhibitors for 
ocular delivery in a less invasive way to reduce the 
adverse effects of vitreous injections and enhance patient 
compliance. Meanwhile, the development of topical non-
invasive formulations that can be administered as eye 
drops needs to be further explored. There have been stud-
ies about intranasal delivery of protein-based drugs cross 
the BBB by exosomes in Parkinson’s, which offers strong 
implications for the various drugs to passage through the 
ocular barriers into the posterior ocular segment.

Delivery of chemical drugs

Due to the specific physiology of the eye, targeted deliv-
ery of small molecules to fundus lesion sites remains 
challenging. The ocular biocompatibility of systemi-
cally administered drugs is still poor, and topical drops 
are insufficient to achieve therapeutic concentrations of 
drugs in the posterior ocular lesion site [141]. Exosomes 
can not only encapsulate hydrophobic drugs but also 
hydrophilic drugs due to the fact that exosomes have a 
hydrophobic lipid membrane and a hydrophilic core [142, 
143]. Curcumin interferes with the progression of AMD 
by inhibiting oxidative stress, inflammation, and angio-
genesis [144]. The hydrophobicity of curcumin leads to 
its low bioavailability in vivo. However, encapsulation 
of exosomes improved the solubility and stability of cur-
cumin, thus boosting its anti-inflammatory properties 
[145]. Surface-functionalized MSC-Exos with curcumin 
were able to distribute in ischemic brain tissue [146]. 
Owing to its poor pharmacokinetics, peroxidase has dif-
ficulty crossing the BBB, but its distribution in the brain 

has been observed by intranasal and injectable admin-
istration via exosomal delivery [147]. Since the BBB is 
the most difficult barrier to penetrate and the blood–eye 
barrier is similar to the BBB, so it is possible to deliver 
drugs into the blood–eye barrier via exosomes.

Exosomes have a great potential for drug delivery 
because of their good tissue targeting, good biocompat-
ibility, and membrane permeability. Along this pathway, 
we can go further to explore its application in the novel 
topical drug delivery systems to delivery various drugs 
for the treatment of the posterior ocular diseases.

Conclusions

Diseases of the posterior segment of the eye, including 
AMD and DR, are major threats to vision. Although most 
of these diseases can be avoided, eye diseases are still a 
crucial study considering the proliferation of electronic 
products. The current review summarizes the various 
barriers of the eye and exosome generation, and more 
importantly, the potential applications of exosomes in 
the treatment of posterior ocular diseases. It highlights 
and summarizes the results of recent and past studies and 
acknowledges the great potential of exosomes for target-
ing the posterior segment of the eye, including therapeu-
tic drugs and delivery vehicles. The increasing attention 
towards the exosomes is highly praiseworthy, considering 
their abilities contacted with specificity towards a lot of 
diseases that affect the human physiological system. As 
therapeutic molecules, exosomes can modulate posterior 
ocular diseases through the contents they carry. As car-
riers, exosomes are expected to be able to cross multiple 
barriers to reach the ocular lesion in a less invasive or even 
non-invasive way. And exosomes have good biocompat-
ibility and immunogenicity. This potential can be seen in 
diseases of the posterior ocular segment, as well as in dif-
ficult diseases such as cancer and cardiovascular disease, 
where exosomes can play a huge role and have immeasur-
able promise.
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