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Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted consid-
erable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide 
variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly 
inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal 
myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect 
the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Impor-
tantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have 
made great progress and have epoch-making significance. All the great advance is discussed here.
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Introduction

Myosin which makes up the backbone of the sarcomere 
thick filament, plays a key role in the process of muscle cell 
contraction. Emerging evidence proved that hereditary myo-
sin myopathies are caused by mutations in skeletal muscle 
myosin heavy chain (MYH) gene family, including MYH1, 
MYH2, MYH3, MYH4, MYH8, and MYH13 on chromo-
some 17 expressed in skeletal muscles, as well as MYH6 
and MYH7 on chromosome 14, encoding two main types of 
cardiac muscle, alpha isoform and beta isoform, respectively 
[1]. Myosin is highly sensitive to the mutation of MYH gene 
family [2]. Consistent with the locations and predominate 
muscles of myosin, pathogenic variants in the respective 
genes are associated with distinctive phenotypes of cardiac 
and skeletal myopathies.

Myosin heavy chain (myosin-7), the same substance with 
cardiac muscle beta isoform as mentioned above, is a slow 
ATPase myosin and is encoded by MYH7 gene. Myosin-7 
is located in both ventricular muscle fibers and slow/type 1 
skeletal muscle fibers. Therefore, pathogenic mutations in 
MYH7 gene could cause cardiomyopathy, skeletal muscle 

myopathy, and both of them. Known human cardiomyopa-
thy includes hypertrophic cardiomyopathy (HCM), dilated 
cardiomyopathy (DCM), restricted cardiomyopathy (RCM), 
left ventricular non-compaction cardiomyopathy (LVNC), 
and other less common congenital cardiomyopathies. The 
common skeletal muscle myopathy includes myosin stor-
age myopathy (MSM), Laing distal myopathy (LDM), and 
congenital fiber-type disproportion (CFTD). Compound 
MYH7 mutations increase the severity of disease and the 
risk of sudden cardiac death (SCD). The variable clinical 
phenotypes and coexisting multiple mutations increase the 
difficulty and complexity of clinical work.

In this review, we summarized the structure of MYH7 
and provide a brief overview of the relationship between 
the mutations in MYH7 and its disorders, as well as updat-
ing the latest research progress on diagnose methods and 
target therapy.

Structure

The structure and sequence of MYH7 (MIM:160760) have 
been completely discovered in 1990 [3], which is 22,883 bp 
long and located on chromosome 14q11.2, 3.6 kb upstream 
from the MYH6 (MIM:160710) in a head-to-tail tan-
dem fashion [4, 5]. MYH7 is composed of 39 introns and 
40 exons, including 38 coding. The 5-prime untranslated 
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region, 86 bp long, is split by 2 introns and the 3-prime 
untranslated region (UTR) is 114 bp long. The translation 
start codon (ATG) is located in nucleotide position 9 of the 
third exon. Three Alu repeats (–GATC–) were identified 
within the gene and the fourth one is in the 3-prime flank-
ing intergenic region [3] (Fig. 1a).

Myosin-7 (P12833), a protein of 1935 amino acids and 
a chemical mass of 223,097 Da, is encoded by the MYH7 
gene. It is also known as heart muscle beta-myosin heavy 
chain, myosin heavy chain 7, myosin heavy chain slow iso-
form. According to Geeves et al. [6], myosin-7 is composed 
of a Src homology 3-like (SH3-like) domain, a head motor 

Fig. 1  a Schematic of MYH7 gene, mRNA and protein, its inter-
actomes. MYH7 is composed of 39 introns and 40 exons, whose 38 
are translated into a 223,097 Da peptide called myosin-7, containing 
1935 amino acids. The exons are drawn as black boxes. Locations 
of the TATA box, translation start codon (ATG), and poly (A) sig-
nal (AAT AAA ), two “active thiols” (SHl, SH2), and the S2-hinge, 
S2:LMM are illustrated, in addition to promoter indicated by a trian-
gle and 4 Alu repeats by asterisks in MYH7. b Representation of S1 
constructed by Swiss Model. Using amino acid sequence of human 
myosin-7 as target (sequence identity: 78.88%), the N-terminal 
25  kDa, central 50  kDa which are functionally divided into upper 
50  kDa and lower 50  kDa domains, and C-terminal 20  kDa, are 
indicated with corresponding colors. Loop1 connecting the 25  kDa 

and 50  kDa, loop 2 connecting the 50  kDa and 20  kDa, and the 
cleft formed by numerous α-helix surrounding a 7-stranded β-sheet 
core are illustrated. (https:// swiss model. expasy. org/). c The proteo-
lytic cleavage form of S1. It contains the N-terminal 25 kDa, central 
50  kDa, and C-terminal 20  kDa. The locations of loop1 and loop2 
are indicated. SH3-like domain Src homology 3-like domain, IQ motif 
isoleucine–glutamine motif, HMM heavy meromyosin, LMM light 
meromyosin, S1 subfragment 1, S2 subfragment 2, ELC essential 
light chain subunit, RLC regulatory light chain subunit, Unc-45 unco-
ordinated mutant number-45, MyBP-C myosin binding protein-C, 
MyBP-H myosin binding protein-H, AMPD1 adenosine monophos-
phate deaminase 1, MuRF1 muscle RING dinger protein1, MuRF3 
muscle RING dinger protein3, Interactome interaction partner

https://swissmodel.expasy.org/
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domain, a lever arm, and a coiled-coil “tail.” Proteolytic 
cleavage yields myosin-7 into two parts: heavy meromyosin 
(HMM) and light meromyosin (LMM). HMM can be further 
digested into subfragment 1 (S1) and subfragment 2 (S2). S1 
contains the SH3-like domain in N-terminus, the motor head 
domain containing a converter segment in the C-terminus 
via a relay helix, and the lever arm compounded from two 
isoleucine–glutamine (IQ) motifs. The two IQ motifs extend 
to the “tail” structure of myosin molecular, containing S2 
and LMM. S2 and LMM contain the NH2- and COOH-ter-
minal regions of the α-helical rod domain, respectively, and 
these two α-helical heavy chains dimerize to form a coiled-
coil in the “tail” (Fig. 1a). The motor head region has the 
actin binding site and the ATP binding site. And the region 
is composed of a 7-stranded β-sheet core surrounding by 
numerous α-helices, which forms a cleft stretching between 
these two binding sites. Furthermore, S1 can be cleaved to 
3 subdomains by trypsin, the central 50 kDa, the N-termi-
nal 25 kDa, and the C-terminal 20 kDa [7]. The N-terminal 
25kD contains the SH3-like domain. The central 50 kDa 
domain is further functionally divided into upper and lower 
50 kDa regions [8]. The ATP binding site is located in the 
cleft which is formed between the upper and lower 50 kDa 
subregions, and the actin binding site is in the central 50 kDa 
domain, mostly the lower 50 kDa subregion [9, 10] (Fig. 1b). 
Moreover, these two binding procedures are implemented 
in a well-defined coupling process in which when the ATP 
binds to the head region, the actin binding cleft is controlled 
to open, which is the pre-requisite for functioning effectively 
[11]. In addition to two active thiols (SH1 and SH2), the 
ATP and actin binding sites, are all well conserved, and there 
are also several variable subregions, including N-terminus 
of S1, the hypervariable loop1 and loop2, the S2-hinge and 

the S2:LMM junction. Loop1, which connects the 25 kDa 
and 50 kDa, sets above the nucleotide binding pocket, and is 
suggested to be essential in modulating the ATPase kinetics. 
Loop 2, connecting the 50 kDa and 20 kDa, involves in actin 
binding step [12]. The S2 hinge and the S2:LMM junction 
are located in the linking area between the head and the 
rod, and exert to mediate the flexibility between them [3] 
(Fig. 1c).

In addition to ATP and actin binding sites, myosin-7 also 
react with several interaction partners (interactomes) in sta-
ble or transient forms to properly complete its functions, 
including essential light chain subunit (ELC) and regulatory 
light chain subunit (RLC) binding to the NH2- and COOH-
terminal IQ motifs of lever arm, respectively, myosin bind-
ing protein-C (MyBP-C) and MyBP-H binding to the coiled-
coil tail containing both S2 and LMM [13, 14], myomesin 
and M-protein binding to the LMM [15, 16], titin binding to 
S1 and LMM [17, 18], nonerythroid 4.1 protein, MuRF1 and 
MuRF3 binding to HMM [19, 20], AMPD1 binding to S2 
[19], and Unc-45 binding to the head domain [21] (Fig. 1a). 
There are also multiple posttranslational modifications 
(PTMs) in myosin-7, most of which are phosphorylation 
sites, followed by acetylation, ubiquitylation, and a limited 
O-glycosylation and methylation sites (Fig. 2).

In striated muscles, two myosin heavy chain subunits 
(myosin-7), along with 4 light chain subunits, 2 of which 
are ELC subunits and the others are RLC subunits, compose 
the sarcomeric myosin, the main component of thick myosin 
filament. A number of highly ordered bipolar thick myosin 
filaments, together with thin actin filaments, in addition to 
several accessory proteins, comprises the sarcomere, the 
fundamental contractile unit of striated muscle containing 
both cardiac and skeletal muscle. Thousands of sarcomeres 

Fig. 2  Sites of PTMs in 
myosin-7. The many PTMs 
published in papers, which 
affect myosin-7 are represented 
by variously colored circles, 
and the PTMs with more than 5 
references are shown in detail, 
required from PhosphatePlus 
database (https:// www. phosp 
hosite. org/ homeA ction). PTMs 
posttranslational modifications, 
Other O-glycosylation, and 
methylation sites

https://www.phosphosite.org/homeAction
https://www.phosphosite.org/homeAction


396 Molecular and Cellular Biochemistry (2024) 479:393–417

1 3

make up myofibrils, which come together to form myofibers 
that give rise to mature muscles (Fig. 3). Consequently, the 
thick filaments slide past the thin filaments orderly, con-
suming ATP and phosphate and driving the contraction of 
muscles.

MYH7 and inherited cardiomyopathies

Sarcomere is the basic unit of the contraction in cardiac mus-
cles. Genetic mutation in genes coding sarcomeric proteins 
can exactly cause the impairment of the integrity of structure 
or function of sarcomere. Those disorders can hinder myo-
cardial contraction greatly and are predominant with fam-
ily clustering, thus classified as inherited cardiomyopathy. 
The two majors of MYH7-related inherited cardiomyopathy 
include HCM and DCM. RCM, LVNC, congenital heart 
defects (CHD), arrhythmia, etc., can be affected as well.

MYH7 and hypertrophic cardiomyopathy

HCM (MIM#192,600), the most common family cardiovas-
cular disease, with a prevalence of at least 1:500 in global 
population [22, 23], is characterized by significant ven-
tricular hypertrophy, usually asymmetric and frequently 
involving interventricular septum, with disorganized myo-
cytes and diastolic dysfunction but without elevated loading 

conditions. The symptoms between inter- and intra-family 
vary exceedingly from benign to malignant kinds with a con-
siderable risk of heart failure and SCD in younger adults 
and athletes [24]. Majority of HCM are single-gene heredi-
tary, in an autosomal dominant mode or a de novo muta-
tion fashion displaying family HCM or sporadic HCM, and 
more than 1500 mutations involved in at least 11 cardiac 
sarcomeric genes have been identified [25]. The missense 
variant p.R403Q in MYH7 is the firstly found pathogenic 
gene related to family HCM [5, 26]. Gradually, other genes, 
which are mostly sarcomeric protein encoding genes, have 
been successively found and MYH7 ranks the second fre-
quently pathogenic gene in HCM followed MyBP-C3 [27, 
28]. Besides, MYH7 variants are highly related to evolute 
toward impaired systolic function and end-stage HCM [29]. 
The disease-relevant missense variants are enriched in S1 
and S2 [9], and it is supported by a recent study, which 
showed the converter domain and residues in myosin mesa, 
a single flat surface on myosin head, are the common sites of 
MYH7-associated HCM mutations [30]. Moreover, patients 
with variants in these enriched regions tend to develop an 
earlier-onset disease compared with HCM patients carrying 
mutations in elsewhere of MYH7 [30]. Furthermore, mutants 
in converter region are associated with adverse prognosis 
and overlapping phenotypes of other cardiomyopathies [31]. 
The phenotypic diversity and the relationship between vari-
ation and clinical characteristics are described herein after.

Fig. 3  The composition of striated muscle, the schematic drawing of 
sarcomere and thick myosin heavy chain. The thick myosin filaments 
and thin actin filaments, together with the binding proteins of myo-
sin are represented in corresponding colors. The area between two 
adjacent Z lines is called a sarcomere, which consists of a dark band 
chiefly containing thick myosin filaments (myosin-7, MyBP-C, etc.) 
anchored to M line in center and two 1/2 light bands only containing 

part of thin actin filaments anchored to Z line in lateral sides. The M 
line, which contains myomesin and M-protein et al., is the center of 
the dark band and the H band is the relatively bright region in dark 
band as a result of consisting of only thick filaments. The schematic 
illustration of a thick myosin heavy chain composed of two myosin-7 
and 4 light chain subunits (2 ELC and 2 RLC) is indicated in different 
colors
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MYH7 mutations

The groupwork enrolling the American College of Medi-
cal Genetics and Genomics (ACMG), the Association for 
Molecular Pathology (AMP), and the College of American 
Pathologists (CAP), recommended a guideline, giving five 
classifications of variants transmitted in Mendelian inher-
ited pattern in addition to mitochondrial variants, “patho-
genic (P),” “likely pathogenic (LP),” “uncertain significance 
(VUS),” “likely benign,” and “benign” [32]. This classifica-
tion framework has been applied universally in MYH7-asso-
ciated cardiomyopathies. The major known “P” and “LP” 
mutations of MYH7 associated with HCM are missense vari-
ants [33], with a small proportion of nonsense, frameshift, 
and splice variants which are predicted to produce loss-of-
function (LOF) proteins or unstable transcripts. These mis-
sense mutations have been reported in numerous cases and 
recoded in ClinVar (https:// www. ncbi. nlm. nih. gov/ clinv ar/) 
with variable degree of confidence (Table 1), and they occur 
more common in the head and neck than the tail of MYH7 
[34]. Despite the knowledge of LOF variants in MYH7 is 
still incomplete, reports of its potential pathogenicity have 
sprung up. To date, the ClinVar records a total of 25 LOF 
variants in MYH7 tabbed as “P” or “LP,” among which 7 
are considered to be related with HCM (Table 2). Addition-
ally, two protein-truncating variants in MYH7 were found. 
c.3562_3574delACT GCC GCG GCC C/p.T1188Cfs*22 is a 
sporadic 13 base pairs deletion variant in the tail domain 
and is predicted to produce a truncated protein resulting 
in dysfunction to dimerize to coiled-coil tail, manifesting 
both HCM and RCM [35]. And p.Lys1173ArgfsTer41 is a 
frameshift variant found in 2 HCM carriers and is consid-
ered to lead to a truncated protein [36].

Furthermore, several founder mutations which are not 
common in MYH7 have been discovered in specific commu-
nities and nations, where they account for a sizable propor-
tion of HCM instances. The missense variant p.G584R found 
in two families in 1993 with a putative Portuguese ancestor 
is the first mutation believed to have a founder impact [37]. 
The missense variants p.A797T and p.R403W, accounting 
for 25% and 5% HCM cases of a subpopulations in West-
ern and Eastern Cape provinces in South Africa, respec-
tively, in addition to p.R249Q, p.R719Q, and p.Glu499Lys 
accounting for 7.5% altogether, are assumed to exert founder 
effects, originating from mixed ancestors [38]. The variant 
p.N1918K is the first founder mutation found in Dutch, caus-
ing a variable phenotype, with a relatively early-onset age 
in period of childhood but with a generally benign outcome 
[39]. The missense variant p.A797T is a founder mutation, 
accounting for 25% probands in the panel of South Africa, 
resulting in a poor outcome and a high risk of SCD [40]. 
The missense variant p.E894G has been found in 6 unre-
lated families worldwide [41–44], a novel missense variant 

p.R652K, a significant methylation site, was found in Spain 
[45], and the deletion variant p.K847del found in Manaus 
[46]. Whether they are founder mutations is still an unsolved 
issue. Therefore, these founder genes are more frequently 
sequenced in individual communities and the existence of 
them would play a key role in saving cost and time in the 
program of molecular diagnose.

Mutation of MYH7 in pediatric cardiomyopathy

Variants found in childhood are largely associated with 
early-onset age, complicated manifestations, and high risk 
of adverse cardiovascular events [47, 48]. A hebetic girl, 
identified a “P” missense variant p.R719W, experienced 
combined symptoms, including non-obstructive HCM, 
RCM, complete left bundle branch block and intermittent 
third-degree atrioventricular block [49]. A 7-year-old boy 
with a “P” missense variant p.R453C, presented HCM and 
WPW with increased likelihood of SCD syndrome [50]. A 
9-month female newborn carrying a “LP” missense variant 
p.Y386C suffered SCD with the diagnose of RCM compa-
nied with coronary artery bridging [51]. Moreover, child-
hood with MYH7 variants-related CHD would manifest more 
complexly, displaying a couple forms of CHD and other car-
diovascular diseases simultaneously, including ventricular 
septal defect (VSD), Ebstein anomaly (EA), hypoplastic left 
heart syndrome, Taussig–Bing type double-outlet right ven-
tricle, LVNC, arrhythmias, and so forth [52]. The complex 
clinical phenotypes and adverse cardiovascular events are 
associated with the onset of disease in childhood.

Compound MYH7 mutations

Evidence has proved that compound variants with more 
than one allelic mutation often develop a more complex 
and severe phenotypes. In comparison to compound het-
erozygous diallelic mutations with double mutations in 
two alleles, the clinical manifestation, severity of disease, 
and prognosis of monoallelic double mutations illustrated 
in a cis-manner in MYH7 are thought to be better [53, 
54]. Cumulative effect is thought to exist when another 
mutation occurs, presenting a more severe clinical phe-
notype, such as an earlier-onset age, a higher chance of 
SCD, and a worse prognosis in MYH7-related HCM, 
than that generated by each of the single one [55–67]. A 
mouse model reconfirmed the addictive effect that mouse 
with single missense variant p.Val606Met manifested a 
relatively benign phenotype, but when mouse model was 
introduced by dual “P” variants p.V606M & p.R453C or 
p.V606M & p.R719W, it developed a more hypertrophic 
phenotype [, 67, 68]. In the same family, the members 
carrying homozygotes variant p.R869G developed a more 
severe phenotype than it in heterozygous individuals, also 

https://www.ncbi.nlm.nih.gov/clinvar/
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indicating a dose-dependent effect [69]. All evidence indi-
cate that compound variations are related with poor prog-
nosis, thus comprehensive and precise genetic sequencing 

is necessary in patients with complex and severe clinical 
manifestations.

Table 1  The “P” and “LP” missense variants in MYH7-related cardiomyopathy recorded in ClinVar

The confidence of pathogenicity is classified into 4 degrees, ***reviewed by expert panel; **reviewed by two or more submitters with ascer-
tain criteria and evidence providing the same interpretation; *reviewed by multiple submitters with assertion criteria and evidence but existing 
conflicting interpretations, or one submitter providing an interpretation with assertion criteria and evidence; None: reviewed with no ascertain 
criteria
The variants related to more than one cardiomyopathy and/or skeletal myopathy are indicated by underlines

Disease Pathogenicity Confidence Variant

HCM P *** R1712Q, T1377M, E1356K, R1053Q, L908V, D906G, E894G, R870H, K847E, G741W, 
G741R(c.2221G>C), I736T, R723G, R723C, R719Q, R719W, G716R(c.2146G>A), R663H, 
G584R, R453H, R453S, R453C, R403Q, R403W, I263T

** E930K, R904C, D778E, G768R(c.2302G>A), R694H, R663C, R652G, R442C, K351E, G256E
* L1793P, E1752K, Q1865P, L1805P, E1801K, L1597P, R1500P, R904P, R904H, P838L, G823R, 

M822V, A820D, L804P, D778V, G768R(c.2302G>C), F764L, G741E, G716R(c.2146G>C), 
R712H, L601F, F540L, S532P, E525K, I467N, R403L, R369Q, A254E, I201T

LP *** R1712W, R1420W, R1193H, G1057S, R1045L, E949K, R870C, R869H, A868P, K865E, P710H, 
I457T, V440M, V338M, D239N, R143Q

** E927K, L915P, R869C, M849T, R719P, I702N, Y609C, H576R, G407V
* Q1794K, T1760R, A1603P, Q1598P, S1550P, R1500W, R1434P, E1120K, E965K, E924G, 

E921K, D896, V878A, M877I, M877K, L859P, R858P, M852R, A843T, S842G, P838Q, 
K837R, F834L, R807P, A797P, R783P, S782N, F764Y, Q734P, Q734E, I730N, I730T, G641A, 
K615T, D587H, G584C, M539L, L517M, M515R, M515T, I511L, M493I, M493V, L476F, 
K450N, R442L, M439V, R403G, K397E, D382Y, F341I, E328G, V320E, T318P, L267V, 
F252C, R249L, F247L, A199T, R169S

P/LP ** A1379T, E930Q, D928N, E924K, Q882E, K865R, R858C, M852T, E848G, A797T, 
G741R(c.2221G>A), P731S, N696S, V606M, G584S, E497D, N479S, D394E, A355T, V320M, 
R249Q, R243C, A199V, K146N, R143W

DCM P *** R904H, R904C, S532P
** R719W

P * E930Q, E924K, D906G, E894G, P838L, A797T, G741R(c.2221G>C), I736T, R723C, R694H, 
R663H, R663C, L655M, R453C, R403Q, R403W, R249Q

LP *** E1914K, E1801K, R369Q
** R1500P, R1500W, E921K, E525K
* A1906G, R1712Q, R1420W, T1377M, R1193H, R1045L, Q882E, L881R, R870C, R869H, 

K865E, R858C, R783P, R783G, C705Y, G641A, P600S, N597K, H576R, C520F, L517M, 
M515T, E497D, I457T, K397E, F341I, R243C, D239N, I201T, Q172E, R143Q

RCM P *** P838L
* G768R(c.2302G>A)

LVNC P * E1801K, E924K, R369Q, R281T
LP * A428D, Y350N, Y283D

Cardiovascular
phenotype

P ** R663H, V606M, R369Q
* A1379T, T1377M, R1053Q, E924K, L908V, D906G, R904H, R904C, E894G, K847E, A797T, 

D778E, G768R(c.2302G>C), G768R(c.2302G>A), G741R(c.2221G>A), G741R(c.2221G>C), 
G741W, I736T, R723C, R719Q, R719W, D717A, R663C, R652K, R652G, G584R, S532P, 
E497D, R453H, R453C, R403L, R403Q, R403W, A355T, I263T, G256E, R249Q, D239N

LP ** R1712Q
* R1712W, R1500W, E1356K, G1057S, R1045L, E930K, D928N, E927K, E921K, R904P, R904L, 

M877I, R870C, R869H, R869C, A868P, R858P, R858C, M852T, M849T, S782N, D778H, 
L749Q, P710H, R694H, A649V, Y609C, G584D, G584S, H576R, F540L, M493V, N479S, 
I457T, R442C, G407V, G407C, K351E, V338M, V320M, R281T, R249L, F247L, R243C, 
I201T, A199V, R143Q, R143W
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MYH7‑associated pathomechanisms

The molecular pathogenic mechanisms of HCM have been 
detailed described in a review by Norbert Frey et al. [25], 
including impaired calcium cycling and calcium sensitiv-
ity, increased myocardial fibrosis, disturbed biomechani-
cal stress sensing, and altered cardiac energy homeostasis. 
MYH7-associated pathomechanisms also have been gradu-
ally revealed, but it has not been completely elucidated. 
Increased actin-activated ATPase activity, higher average 
force generation and faster actin filament sliding velocity 
[70, 71], diastolic dysfunction [72] and impaired cardiac 
relaxation [73], abnormal  Ca2+ response [74], cardiac 
fibrosis and remodeling [75], and a series of differences in 
gene transcription factors [76] were all observed in mouse 

models harboring p.R403Q, which is a known “P” variant. 
As mentioned above, the major “P” and “LP” mutations in 
MYH7-related HCM are missense variants, which encode 
stable proteins which are anticipated to be integrated into 
sarcomeres, disturb normal motor function, and trigger path-
ologic signals. The motor activity is predicted to be either 
enhanced [77] or reduced [78] in MYH7-related HCM. Cur-
rently, the gain-of-function pathophysiologic mechanism 
associated missense variants in MYH7 is widely accepted, 
which proposed the poison peptides produced by MYH7 
incorporating into the sarcomere and perturbing the forma-
tion of proper and functional sarcomere, leading to elevated 
contractility and relayed relaxation. As a result, destabiliza-
tion of interacting-heads motif (IHM) irregulates the bal-
ance of increased numbers of myosin in disordered relaxed 

Table 2  The “P” and “LP” LOF variants including frameshift, nonsense, and splice in MYH7-related disorders with different degrees of confi-
dence

Consequence Name Protein change Condition(s) dbSNP ID

Frameshift c.5659del (p.Glu1887fs) E1887fs Not provided (LP*) rs730880892
c.3985dup (p.Leu1329fs) L1329fs MYH7-Related Disorders (LP*) rs1566526391
c.2563_2656del (p.Glu855fs) E855fs HCM(LP*) rs1892625481

BVNC(LP*)
c.2366del (p.Gln789fs) Q789fs Familial cardiomyopathy(P) rs606231337
c.2028del (p.Asn676fs) N676fs Familial cardiomyopathy(P) rs606231331
c.1858_1859del (p.Leu620fs) L620fs DCM(LP) rs1566533919

Nonsense c.3349G>T (p.Glu1117Ter) E1117* Cardiomyopathy (LP*) rs141735183
c.2443C>T (p.Gln815Ter) Q815* Not provided (LP*) rs1064797184
c.195T>G (p.Tyr65Ter) Y65* MYH7-Related Disorders(P) rs934278063

Splice c.5655+1G>T – HCM(LP*) –
c.5655+1G>C – MSM(LP*) rs1892079951
c.5560-2A>C – MYH7-related skeletal myopathy (LP*) rs1566521710

– CFTD(LP*)
c.4954-15_4958del – Not provided (LP*) -
c.4522_4524del – HCM(P*) rs397516220

– Cardiovascular phenotype(P*)
– LDM(P*)
– MYH7-related skeletal myopathy (LP*)

c.3336+1G>C – Not provided (LP*) rs1892449432
c.2163-1G>A – DCM(P*) rs606231334
c.1956+2T>G – Familial cardiomyopathy(P) rs606231329
c.1000-1G>A – LVNC(LP) rs113392527
c.732+2T>G – HCM(P*) rs1555338658

– LVNC(LP)
c.732+1G>T – HCM(P*) –
c.732+1G>C – HCM(P*) rs730880850
c.732+1G>A – LVNC(P**) rs730880850

– HCM(P*)
c.640-1G>A – Familial cardiomyopathy (LP) rs606231315
c.640-2A>T – DCM(LP) –
c.346-1G>A – Not provided (LP*) rs1057519221
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state (DRX) and decreased number of it in super relaxed 
state (SRX), consequently excessing mitochondrial quantity, 
energetic consumption, metabolic stress, and remodeling of 
cardiomyocytes with hypertrophy [79]. The IHM has already 
been found in all human muscle myosins, and is definitely 
a conserved motif, playing an important role in conserving 
ATP consumption [80]. Myosin in DRX conformation con-
sumes five times energy than it in SRX state [81, 82].

HCM patients with “P” and “LP” variants in MYH7 are 
sequenced that those variants are significantly enriched in 
the interacting region with IHM [83]. Two human-induced 
pluripotent stem cell-cardiomyocyte (iPSC-CM) models 
harboring missense variant p.P710R and p.R723C, respec-
tively, and both of them are located in converter domain, 
observed prolonged myosin working time and slowed relaxa-
tion, emphasizing the key role of dysregulated SRX state 
in hypercontractility [84, 85]. The hypercontractility has 
also been verified in molecular level by using microscale 
thermophoresis technique based on four variants p.R249Q, 
p.H251N, p.D382Y, and p.R719W [86]. Mutations in S2 
domain are assumed to interfere the normal interaction of 
this domain with C0-C2 domain of MyBP-C by decreasing 
the phosphorylation lever of MyBP-C, eventually inhibit-
ing myosin transforming into the SRX state, thereby lead-
ing to sarcomeric hypercontractility, impaired full relaxa-
tion and increased energy consumption, in a vitro test using 
three known variants associated with HCM in this region, 
p.R870H, p.E924K, and p.E930del [87].

Furthermore, it has long been believed that the quantity of 
toxic peptides acts as a significant risk factor for the severity 
of disease. However, recently, this hypothesis has gradually 
rectified, as the variable genotype–phenotype relationship 
emerged, even exhibiting heterogeneity in a family with the 
same mutation. The latest studies about the mechanism of 
genotype–phenotype relationship of different mutations in 
heterozygous HCM patients highlight the allelic expression 
imbalance of mutant and wildtype mRNA in cell level, in 
a stochastic switch on–off, burst-like transcription pattern, 
resulting in imbalance of proteins eventually, which gen-
erate distinct contractile force from cell to cell, leading to 
different force generation in myofibril level and developing 
to cardiac hypertrophy in different degrees [88–90]. A pair 
of monozygotic twins with the same “P” variant p.G768R 
demonstrated different clinical manifestations and tissue 
characteristics increase the credibility of the mechanism 
[91]. Another possible intrinsic process involved in the 
allelic imbalance is presumed that different mutations in 
coding regions of MYH7 could alter the secondary structure 
of mRNA, affecting its stability and lifetime and leading to 
allelic imbalance, which was proposed from an experiment 
in vivo according to a “P” variant p.R723G [92].

Besides, the variable clinical phenotypes demonstrated 
by patients from SCD to lifetime survival, and even 

asymptomatic, with the same variant, indicated diverse addi-
tional mechanisms should have taken part in the regulation 
of allelic imbalance, including environment factors, epige-
netic factors, etc. [40, 93–98]. The considerable phenotypic 
heterogeneity of HCM has been explained by a number of 
moderating factors, including lifestyle [99], gender [100], 
genetic background [, 94, 101], and so on. Additionally, 
the discrepancy of level between the protein/gene and their 
regulatory factors, such as microRNAs, probably plays a 
conceivable role in diversity of genotype–phenotype [102]. 
MyBP-H is validated to be a modifier gene in HCM patients 
with the “P”/“LP” missense variant p.A797T [103]. The 
genetic polymorphism of renin–angiotensin–aldosterone 
system is predicted as a modifier factor for the penetrance 
and severe degree of HCM [104, 105]. The conceivable 
pathogenetic mechanisms correlated in patients carrying a 
same variant, suffered from HCM to DCM, and even heart 
failure, are proposed to include impaired energy generation, 
dose addictive effect of the poison proteins, environmental 
factors, the modifier factors of gene, and so on [106, 107]. 
Virus infection is also considered to deteriorate the condi-
tion of a patient with HCM [108]. The factors involved in 
the diversity of genotype–phenotype needs further explo-
ration for clarifying the mechanism of clinical phenotypic 
variability.

Several assumptions for the mutations in specific regions 
of MYH7 have risen. The mutations in the promoter region 
of the gene are presumed to perturb the formation of triple-
stranded G-quadruplex, which is enriched in this region and 
nears a variety of transcription factors, affecting the process 
of protein expression [109]. And the mutations located in 
the promoter domain are predicted to be a hazard to develop 
HCM, nevertheless no evidence of disease-causing effect for 
mutations in the introns and 3-prime UTR has been found 
[110]. Mutations located close to the SH1 or SH2 cysteine 
are speculated to generate disulfide crosslinking, resulting 
in non-functional proteins [111]. More researches about the 
specific regions-related pathogenic mechanism and clinical 
characteristic are needed.

Diagnosis tools for MYH7‑associated HCM

Genetic testing, predominantly whole-exome sequencing 
(WES), next genetic sequencing (NGS), has been widely 
used in HCM. For the past 20 years, the estimated preva-
lence of MYH7-related HCM was about 0.2% in adult [112]. 
Moreover, with the widespread application of genetic test-
ing, in addition to taking the analysis of family information, 
sex, specific ethnic, and locational backgrounds into account, 
the detectable rate in general population is elevated to 1:250 
[113]. The most common sequence variants in human are 
single-nucleotide polymorphisms (SNPs) [114]. Primer 
extension technique by labeling the dideoxynucleotides 
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(ddNTPs) is proposed an appropriate tool to detect disease-
specific SNPs with individual mutation [115]. Recently, a 
novel platform using ferrocene-labeled oligonucleotides 
was validated on the basis of primer elongation to electro-
chemically detect SNPs in MYH7, just depending 10 μL 
fingerprick blood sample, which facilitates the efficiency 
of detecting SNP [116]. Those novel detection techniques 
are important impetus for genetic testing and worth further 
developing.

Although the category provides convenience for clini-
cal experts to make good judgment and offer useful advice 
for patients and their families, variants of VUS still cause 
misjudgment and delayed judgment, leading to delay in 
treatment. A new PE-MYH7-ACMG tactics which adds 
the phenotype-enhanced criteria (PE-ACMG) using the 
HCM Genotype Predictor Score (HGPS) on the basis of the 
MYH7-specific ACMG guidelines is considered as avail-
able criteria for the designation of VUS in order to better 
use genetic testing, with a considerably reduced VUS of 30 
to 16 in a cohort of Australia and 49 to 27 in Mayo Clinic 
[117]. Moreover, the modified ClinGen’s guideline confirms 
a professional guidance for clinical experts to give more 
accurate classification diagnose of the variants than ACMG/
AMP framework, with increased variants of 65% contrast 
to 54% and a decreased VUS number of 30% compared to 
42% [118]. While about 181 missense variants have been 
recorded in ClinVar database classified as “P” or “LP” vari-
ants, REVEL score sets a threshold with 0.05 REVEL that 
warrants a new predicting index for recognizing deleterious 
variants of MYH7 associated with HCM [119]. Diagnose 
criteria mentioned above provide a new efficient idea to 
identify VUS for early treatment.

Researchers also devoted to pursue the difference meth-
ods for MYH7 and other sarcomere encoding gene-associ-
ated HCM to simplify the process of diagnosis. In spite of 
different onset age, the degree of cardiac hypertrophy and 
prognosis in adult, MyBP-C3 and MYH7 variant carriers are 
observed with no significant difference not only in the echo-
cardiographic parameters reflecting the degree of myocardial 
deformation, of both right and left ventricle, but also CMR 
imaging [46, 120–124]. Nevertheless, Radiomic Analysis of 
Native T1 Mapping Images makes it possible to distinguish 
these two genotypes with subtle clinical phenotypic differ-
ence, and importantly, it could be a potential tool to predict 
and provide prescient treatment [125]. The level of circulat-
ing miR-499a-5p in the plasma of patients with “P” or “LP” 
MYH7 mutation is considered to be a potential biomarker 
as well, with higher level than both non-HCM patients and 
MyBP-C3-related HCM patients [126]. Whether there is sig-
nificant clinical target difference to distinguish MYH7 and 
MyBP-C3 needs large-scale study in future.

Clinical manifestations and auxiliary examinations also 
provide useful information for physicians to evaluate the 

severity of disease and prognosis of patients, and to offer 
proper and timely treatment. Patients with the variants 
located in the enriched mutation region suffered from higher 
incidence of AF than those with not-enriched region. Moreo-
ver, patients with mutations are in higher risk of SCD when 
they suffered AF at an early age [127]. Pediatric patients 
with MYH7-related HCM always suffered from severe phe-
notype and a higher risk of SCD, so an implantable car-
dioverter defibrillator (ICD) placement is suggested to be 
a feasible intervention treatment and should be adopted 
in early stage [128]. Due to the adverse effect of this gene 
mutations, left ventricular global longitudinal strain, using 
3D speckle tracking imaging technique is considered as a 
valuable parameter to predict adverse cardiovascular event 
of HCM patients carrying MYH7 mutations [129]. The 
changes of parameters in ECG appear earlier than that in 
echocardiography, divulging the importance of using ECG 
to assist in diagnosing the mutations carriers in early stage 
and screen condition progression [130, 131]. Two cases of 
patients carrying variant p.Leu517Arg and p.Arg858Leu, 
respectively, both suffered from cardiac arrest caused by 
ventricular fibrillation before demonstrating HCM, and a 
case with identified “P” / “LP” p.A1379T variant presented 
AF and atrial fibrosis as the first clinical manifestation, all 
emphasizing the significance of ECG [132, 133]. All cases 
above proved that highly efficient use of clinical manifesta-
tion and auxiliary inspection could facilitate the diagnosis 
and treatment.

Besides, researchers identified a promising hallmark 
for inherited cardiomyopathy, including genetic HCM and 
DCM, that the shortened telomere is an abnormal feature 
of CMs, which is illustrated in iPSC-CM models in vitro 
harboring mutations associated with both HCM and DCM, 
significantly decreased by 26% and 40%, respectively [134]. 
The shortening of telomeres is proposed to be essential in 
developing into the dysfunction of mitochondria, which is 
the important pathogenic link in HCM and DCM [135]. 
Although there is no difference between MYH7 and other 
genetic variants, the important role of telomere is undoubt-
able and needs to be further elucidated.

MYH7‑targeting therapy for HCM

Therapies according HCM have been systematically 
reviewed by Ali J. Marian, M.D et al. [136]. Nowadays, 
many novel ideas about MYH7 gene or base targeting ther-
apy for HCM patients have been put on. Experimental data 
from a cell and mice model indicated that YTHDF2, which 
is a m6A reader protein, plays a protective role in the regu-
lation of cardiac hypertrophy and heart failure, expression 
upregulating in a self-regulation mechanism, by interact-
ing with m6A site of MYH7 mRNA via its YTH domain, 
and promoting its degradation to alleviate cardiomyocyte 
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hypertrophy [137]. As the switch from fetal dominant MYH7 
phenotype to MYH6 is considered to be completed during 
the maturation period, the MYH7 gene targeting therapy to 
delete the re-expressed MYH7 is supposed to be effective 
after its transformation [138], and it is proved available by 
an iPSC model harboring MYH7/MYH6 mutations [58]. An 
mice experiment both in vitro and in vivo provided a feasi-
ble targeting therapeutic option, selective knocking down of 
rs7157716, which is a common SNP with high heterozygo-
sity using antisense oligonucleotides technique [139]. And 
another group identified it in a further human-cell model, 
which also studied the short hairpin RNA method in this 
hiPSC-CM model [140]. Moreover, cationic porphyrins are 
speculated to destabilize the G-quadruplex as said before, by 
binding to the structure, which proposes a sight in drug des-
ignation [141]. The telomere shortening as previously stated 
is also a challenging drug target. For a fetus suffered from 
high risk of familial HCM accompanied by diastolic dys-
function, intrauterine treatment using beta-receptor blockers 
is recommended as an optional treatment [142]. Although 
more and more new notions emerged and have been vali-
dated to be feasible and effective, MYH7 gene therapy has 
not been used clinically. Whether those therapies are practi-
cally available needs further research.

Models for studying MYH7‑associated HCM

A number of animal models have been used for studying the 
pathogenic mechanism of MYH7-associated HCM. The first 
animal model is a transgenic mouse model according to a 
missense variant, p. R403Q, the first found mutation related 
to HCM, also the most common used [143]. For a long time, 
researchers preferred mice model to imitate human HCM 
cases and investigate the possible pathogenic mechanisms. 
However, a significant limitation has also merged that human 
express slow beta-myosin heavy chain but mouse models 
encode fast alpha-myosin, which do not result in the typical 
phenotype found in human with HCM [144]. Therefore, sev-
eral alternative models have been found. Transgenic rabbit 
carrying the variant p.R403Q precedes the understanding 
of molecular mechanism in human HCM [145]. The genetic 
editing pig model with the knock-in orthologous “P” point 
variant p.R723G based on somatic cell nuclear transfer 
technique provided a more suitable large animal model to 
investigate the pathogenic mechanism of human HCM than 
mouse model, with more similar cardiovascular physiology 
to human [146]. Another group proved that zebrafish is also 
an alternative animal model for the study of cardiomyopa-
thy caused by the mutant of MYH7, and confirmed that the 
inhibition of mTOR and MAPK signal pathway had a thera-
peutic effect using the zebrafish homolog of human MYH7-
based cardiomyopathy model [147]. A human orthologous 

“VUS” variant p.E1883K has been found in a cat suffered 
from HCM, making it possible that the cat with HCM is an 
optional model as well [148]. Those new animal models are 
all alternative to study the molecular pathogenic mechanism 
and therapeutic tools in future.

Meanwhile, a number of iPSC-CM HCM models, har-
boring a number of well-known HCM-causing heterozygote 
variants, including “P” p.R403L, p.R719Q, p.Ala355Thr, 
p.R723G, p.R663H, p.E1356K, p.R1712Q, p.R723C, and 
“VUS” p.M659I and p.E1462K, using CRISPR/Cas-9 edit-
ing protocol, could be an useful tool for the future study of 
the molecular mechanism of HCM [149–159]. Also, using 
the same editing tool, a homozygous knockout human 
embryonic stem cell (hESC) line of MYH7 gene has been 
produced [160]. Genome-editing technique combining 
with iPSC-CMs provides a practical platform  to guide the 
understanding of mechanism and evaluation of precision 
drug. Isogenic genome-edited human pluripotent stem cell-
cardiomyocytes (hPSC-CMs) using CRISPR/Cas-9 editing 
protocol, produced 11 isogenic variants centered on “P” 
p.R453C and comprehensively phenocopied the features of 
adult hypertrophic cardiomyocytes [161]. Ioannis Karakikes 
et al. produced a transcription activator-like effector nucle-
ases (TALEN)-instructed knocking out iPSC-CMs line 
[162]. Those iPSC lines models provide an available, valu-
able, and validated opportunity for studying the pathogenic 
mechanisms and therapeutic tools of HCM in vitro in future.

MYH7 and other cardiomyopathies

Increasing evidence has revealed that MYH7 could also 
lead to many other kinds of cardiomyopathies except HCM, 
including DCM, RCM, LVNC, arrhythmogenic cardiomyo-
pathy, and other types of CHD. Majority of them are identi-
fied in family cases, also predominantly in an autosomal 
dominant transmitted Mendel pattern, and also involving 
autosomal recessive, X-linked, and mitochondrial inherited 
mode [163–166].

DCM and RCM are two well-known cardiomyopathies. 
DCM (MIM#613,426) is a kind of relatively rare cardio-
myopathy, about 1:2500 [167], with the characteristics of 
ventricular enlargement predominantly in left ventricular 
with systolic dysfunction [168]. MYH7 gene is ranked the 
third common pathogenic gene of idiopathic DCM [169] and 
most of them are non-truncating variants with a high pen-
etrance in family, with a relatively high proportion of pedi-
atric patients [170–172]. Fifty-nine “P” and “LP” missense 
variants are recorded in ClinVar with at least one submitter, 
among which 6 are with high confidence (Table 1), in addi-
tion to 3 LOF variants (Table 2). DCM is the leading rea-
son for congestive heart failure and patients are at high risk 
of SCD [173, 174], predominantly in working people with 
early age [175]. Unlike HCM, MYH7 mutations associated 
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with DCM are scattered throughout entire length of the gene 
without a significant enriched region, like IHM interacting 
residues. The biological mechanism in DCM is opposite to 
HCM, with a decreased sarcomeric contractility as a result 
of impaired ATPase activity and reduced velocity sliding 
along actin filaments [176], ultimately triggering the process 
of remodeling, which is tested in mouse models by knocking 
in the “P” missense variant p.S532P in actin binding domain 
and “P” p.F764L in converter domain which are recognized 
pathogenic MYH7 mutation in human DCM [177]. Same 
with HCM, digenetic mutations involving a variant in MYH7 
gene and the other gene predispose to a severe phenotype 
of DCM, leading to an addictive effect [178–180]. Further-
more, the variable manifestations of DCM patients with a 
causative-variant in MYH7 are also presumed to attribute to 
environmental and genetic modifiers [166]. RCM, least com-
mon cardiomyopathy with unknown prevalence [181, 182], 
with the estimated 5% in pediatric cardiomyopathies [183, 
184], is characterized by diastolic dysfunction but without 
impaired systolic function, in the condition of stiffed ven-
tricular walls but not necessary for thickening, leading to 
lower the appropriate filling of ventricular [185, 186]. Idi-
opathic RCM is predominantly an inherited ailment [187]. 
Most of mutations in MYH7-related RCM are inherited in an 
autosomal dominant pattern and are missense variants [185]. 
There are 2 “P” and “LP” missense variants in ClinVar with 
more than one submitter, and 1 of them has high confidence 
with a number of references (Table 1). Unexpectedly, RCM 
is related with the worst prognosis among cardiomyopathy 
[188].

LVNC (MIM#613,426), resulting of the incomplete or 
arrested development and compaction of human myocar-
dium during the  5th to  8th week of embryonic development 
[181], is the third common genetic cardiomyopathy, char-
acterized by the presence of numerous thickened trabecula-
tions and deep recesses, prominent in the left ventricular 
with a spongy like, with a risk of developing to HCM and 
DCM [189–191]. MYH7 is one of the pathogenic gene for 
LVNC [192]. Unlike HCM and DCM, except point muta-
tion, truncating variants in MYH7 are thought to be patho-
genic in LVNC [193], with a relatively high proportion of 
pediatric patients [194]. In addition to 7 “P” and “LP” mis-
sense variants (Table 1), 4 “LP” LOF mutants (Table 2) are 
documented in ClinVar. Patients in LVNC with MYH7 muta-
tions are prone to have a low risk of adverse cardiovascular 
events [195], and the proportion of asymptomatic individu-
als accounts for a significant ratio, about 8% subjects meet-
ing the criteria for LVNC in high-trained athletes from UK 
and France [196]. The risk of adverse cardiovascular event is 
also considered lower in LVNC with MYH7 mutations com-
pared with patients carrying other gene variants [197]. The 
potential mechanism for the development of irregular trabec-
ulations and deepened recesses is interpreted by the notion 

that variants in MYH7 may increase apical–basal polariza-
tion, resulting in the delamination of compact layer cardio-
myocytes [198]. Moreover, the too-early isoform switch 
from MYH7 to MYH6 which are programed to be finished 
at birth may trigger pathological remodeling and abnormal 
sarcomere assembly, leading to impaired trabeculation and 
compaction of myocardium, possibly accompanied by spe-
cific modulator of gene expression, such as G-quadruplex 
resolvase RNA helicase associated with AU-rich element 
[199]. Like HCM, coexistence of digenic mutations is prone 
to develop an early-onset age, severe phenotype, and poor 
outcome [200]. Although LVNC is often exist individually, it 
sometimes coexists with several CHD [191], most common 
one of which is EA [201], a relatively rare kind of CHD, 
with a prevalence of 1:200,000 in births [202], character-
ized by a lower position of tricuspid and malformed leaflets 
[203], leading to an enlarged right atrium, tricuspid regur-
gitation, and eventually heart failure [204, 205]. Moreover, 
variants in MYH7 are increasingly identified as the disease-
causative of the combination of LVNC and EA, sometimes 
incorporated with other CHD, also in a dominant autosomal 
pattern, and patients presenting variable manifestations too, 
significantly from asymptomatic, mild symptomatic to fetal 
[65, 206, 207]. Many other types of CHD and malformations 
also have been found in combination with LVNC, including 
bicuspid aortic valve, single umbilical artery [208, 209].

Besides, limited cases of rare CHD independently associ-
ated with MYH7 have been reported, such as double-cham-
bered right ventricle and double-chambered left ventricle 
[205, 210]. Additionally, a single variant also could develop 
to a complicated clinical phenotype, such as a young female 
identified with a novel missense “VUS” variant p.F252S 
manifested both RCM and left ventricular hypertrophy 
[211]. The phenotypes of patients with those kinds of cardio-
myopathies present variably and the conceivable mechanism 
of genotype–phenotype is still unclear [209, 212]. Mean-
while, pediatric patients suffered from a more severe degree 
of cardiomyopathies with more severe malformations or 
more coexist cardiomyopathies or poor prognosis [49, 209, 
213]. Interestingly, MYH7 variants in pediatric patients with 
both DCM and LVNC are totally located in residues among 
1 to 600 found in a large pediatric cohort [214]. A few cases 
of fetus with LVNC identified in the third trimester by using 
prenatal ultrasound technique, carrying mutations in MYH7, 
elucidate the importance of seeking the pathogenic gene and 
investigating the family disease history of suspicious fetus 
[215, 216].

Although the application of experimental models in these 
cardiomyopathies is relatively countless, human iPSC mod-
els and animal models also extended to this field, includ-
ing the iPSC model according to systolic cardiomyopathy 
derived from “P”/“LP” variant p.E848G, and zebrafish 
model which is considered an available animal platform to 
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investigate the pathogenic molecular mechanism of LVNC 
[198, 217]. Zebrafish has been found corresponding hom-
ologues according to 96% genes associated with DCM, 
therefore, zebrafish is a promising animal model for future 
research of cardiomyopathy [218]. To find more experimen-
tal models is necessary for better understanding the patho-
genic mechanism and clinical application.

MYH7 and skeletal muscle myopathy

MYH7 and Laing distal myopathy

LDM (MIM#160,500), a predominantly autosomal dominant 
condition, as a result of heterozygous mutations enriched 
in C-terminus of MYH7 [219], which affects the anterior 
compartment of the legs, with the characteristics of pro-
gressively progressing distal weakness, results in the recog-
nizable “hanging big toe” sign [220]. It is well recognized 
that the typical LDM phenotype exhibits an early-onset age 
but could also range from infancy to adult up to 45 years 
old [220–223], development of the foot dorsiflexors and 
big toe extensors, then a weakening of the proximal upper 
and lower limbs, cervical flexor muscles and finger exten-
sor muscles, even respiratory and cardiovascular system 
diseases, moreover, with substantial variability in clinical 
presentations and frequent histological morphologic changes 
in different instances [220, 224–227]. However, the footdrop 
is valid not a specific feature, the weakening of finger exten-
sion is thought to be more specific [226]. CFTD, cores and 
minicores, dystrophic alterations, and moderate unspecified 
abnormalities are only a few examples of the variety in mus-
cle histology in LDM [, 228, 229].

Often these LDM patients possess mutations in the mid-
rod domain of MYH7 gene within 32–36 exons includ-
ing p.E1508del, p.R1500P, p.Lys1617del, p.Ala1663Pro, 
p.Leu1706Pro, and p.Lys1729del, etc. [219, 224, 227], 
which interfere the normal process of tail forming coiled-
coil, whereas in a few limited cases, the globular head 
region has also been linked to the condition, including 
p.Tre441Met, p.R783P, and p.V606M [230–232]. The “P” 
and “LP” missense variants (Table 3) and LOF variants 
(Table 2) are recorded in ClinVar. The phenotype spectrum 
is also significantly variable, and the case in point is dele-
tion variant p.E1508del [224], which is a susceptible residue 
[233], and missense variant p. Leu1551Pro, located in the 
exon 34 of the MYH7 [234]. Furthermore, missense variant 
p.L1453P, located in exon 32, was found related to brain 
white matter lesions on imaging, but whether the mutation 
in MYH7 gene is to blame for the neurologic abnormali-
ties requires further research [235]. Moreover, patients with 
LDM, having the fatty atrophies and substitutions of the 
proximal or paraspinal muscles could be more severe and 
illness progression more quickly compared with that of the 
lower thigh muscles [236]. All cases above broadened the 
phenotype spectrum of MYH7-related LDM.

There are also founder-effect mutations which have been 
found in several regions. Geographically restricted to the 
South of Spain, the missense “LP” variant p.R1560P was 
confirmed to be a novel founder mutation linked to LDM 
[237]. The deletion variant p.K1729del was assumed to be 
a founder mutation in Safor of Spanish, being brought into 
the population around the start of the seventeenth century, 
having an origination of Italian, according to the mathemati-
cal method [238].

Table 3  The “P” and “LP” missense variants in MYH7-related skeletal myopathy recorded in ClinVar

The variants related to more than one cardiomyopathy and/or skeletal myopathy are indicated by underlines

Disease Pathogenicity Confidence Variant

MSM P * E930Q, E924K, D906G, E894G, A797T, G741R(c.2221G>C), R723C, 
R719W, R694H, R663H, R663C, R403Q, R403W, R369Q, R249Q

LP * E1801K, R1712Q, R1500W, R1420W, T1377M, R1045L, R870C, R869H, 
K865E, R858C, H576R, M515T, I457T, R243C, D239N, R143Q

CFTD P * E930Q, E924K, D906G, E894G, A797T, G741R(c.2221G>C), R723C, 
R719W, R694H, R663H, R663C, R403Q, R403W, R249Q

LP ** R858C
* R1712Q, R1500W, R1420W, T1377M, R1045L, M877I, R870C, R869H, 

K865E, P731R, H576R, I457T, R243C, D239N, R143Q
MYH7-related late-onset scapulopero-

neal muscular dystrophy
P * E930Q, E924K, D906G, E894G, A797T, G741R(c.2221G>C), R723C, 

R719W, R694H, R663H, R663C, R403Q, R403W, R249Q
LP * R1712Q, R1500W, R1420W, T1377M, R1045L, R870C, R869H, K865E, 

R858C, H576R, M515T, I457T, R243C, D239N, R143Q
Other MYH7-related skeletal myopathy P * E1801K, E930Q, E924K, D906G, E894G, A797T, G741R(c.2221G>C), 

R723C, R719W, R694H, R663H, R663C, R403Q, R403W
LP * R1712Q, L1629P, R1500W, R1420W, T1377M, R1045L, R870C, R869H, 

K865E, R858C, H576R, M515T, I457T, R243C, D239N, R143Q
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A fly model harboring the known LDM variant 
p.K1729del imitated the morphological feature and impaired 
muscle function as seen in human LDM, using CRISPR/
Cas-9 genome engineering protocol, indicated that the 
severity of disease is explained by the number of mutated 
alleles, illustrating a dose-dependent effect, and increasing 
the expression of protein Abba/Thin which are instrumental 
in maintaining the integrity of sarcomere could alleviate the 
phenotype [239]. It provides a potential treatment tool.

MYH7 and myosin storage myopathy

MSM (MIM#608358) was first listed in 2003 [240], the 
first skeletal muscle myopathy found to be caused by MYH7 
gene, previously named as hyaline body myopathy due to 
sluggish myosin hyaline body accumulation seen in type 
1 muscle fibers in subsarcolemmal tissues displayed in 
histopathologic features, perturbing the assembly of thick 
filaments. Clinical features include mainly early-onset 
age predominantly in infancy and childhood, prominent 
axial and proximal weakening, spinal stiffness, severe sco-
liosis, accompanied by or without respiratory and cardiac 
involvement. Variants of MYH7-related MSM are mostly 
in an autosomal dominant inherence pattern with mutations 
in the distal rod region corresponding to 37–40 exons of 
MYH7 gene, including missense variant p.Arg1845Trp, 
p.His1904Leu, p.Leu1793Pro, p.Glu1883Lys [240–245], 
in-frame deletion variant p.K1784del [246] and a missense 
variant p.X1936WfsX32 changing the TAG to tryptophan 
(W), which leads to the elongation of the C-terminus [244]. 
Additionally, countless occurrences of recessive inherit-
ance have been documented, such as homozygous variant 
p.R1712W, heterozygous variant of truncating p.Gln1567*, 
and missense p.E1555G [247]. The clinical manifestations 
of MYH7-related MSM are incredibly varied from asympto-
matic to severe weakness [241, 248–252]. The mechanism of 
pathology could be interpreted by mutations perturbing the 
process of proteins to assemble to proper, stable, and func-
tional thick filaments, corresponding to variants enriched in 
distal rod [253, 254]. Different mutations interfere distinct 
steps in assembling process, including two α-helices prop-
erly folded into coiled-coils, then assembling to bundles of 
coiled-coils, and ultimately into thick filaments. An uncom-
mon missense variant p.Ile457Arg is located in the head 
domain, performing pronounced thigh weakness as well as 
respiratory and cardiac impairment, indicating the correla-
tion of variants location and its functional region [255]. The 
exact mechanism needs further exploration.

MYH7 and congenital myopathy with fiber‑type 
disproportion

CFTD (MIM#255,310), is an uncommon myopathy, defined 
by the characteristic pattern with a predominance of slowly 
contracting type I fibers in skeletal muscles seen by his-
tological analysis [256]. MYH7 is one of the pathogenic 
genes of CFTD, inherited in autosomal dominant, recessive 
or X-linked forms. Also, CFTD presents a variable range 
of clinical manifestations [257]. Moreover, the stop-loss 
variant p.X1936WfsX32 linked to CFTD is speculated to 
eventually develop to MSM later, as a result of the absence 
of stop signal and producing an elongated protein, leading to 
disturb the degradation of the protein, protein buildup, and 
accumulation in sarcomere, which caused the weakness of 
axial muscles, prominent neck muscle [244, 258].

MYH7 and other myopathies

MYH7 mutations were also identified in many other forms 
of myopathies, including usually scapuloperoneal myopathy, 
axial stiffness, drop-head syndrome, congenital core myopa-
thy, and asymptotic hyperCKemia accompanied by or with-
out hyaline bodies [259–262]. The variable phenotypes and 
muscle biopsy findings are postulated to have a relationship 
with  Ca2+ regulatory process by interfering the charge of 
residuals, leading to assembly destabilization or structural 
alterations, eventually perturbing the normal structure and 
stability of myosin [227].

There are also a variety of animal models used to study 
the molecular pathogenic mechanism of human myopathy 
related with MYH7 gene, including nematode model with 
the ortholog (unc-54) of human MYH7, pig model carrying 
an in-frame insertion variant [263, 264].

MYH7 with clinical phenotypic diversity

The clinical phenotype of patients with mutations in MYH7 
gene significantly vary from person to person, even with 
the same variant within a family, presenting either cardio-
myopathy or skeletal muscle myopathy independently, also 
showing an overlapping complex form of both of them, 
possibly accompanied by other complications [265], such 
as nonsense “VUS” variant p.Q1916* [266], deletion vari-
ant p.Glu1508del [267], and missense variant p.E1801K 
[268], p.E1856K [269], p.R1820W [270], p.R783P [231], 
p.V606M [232], p.R249Q [271], p.Arg1820Gln [272], 
p.Glu1883Lys [245], p.Leu1467Val, p.Arg1588Pro [273], 
and so on. The existence of clinical phenotypic diversity in 
MYH7-related diseases adds difficulty to clinical practice, so 
it is very important to find out the regular pattern between 
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mutation and phenotype, which needs more exploration in 
future.

MYH7 with tumorigenesis diseases

Additionally, MYH7 is also found in many tumorigenesis 
diseases. MYH7 has been found highly expressed in lung 
cancer, especially in cigarette smoking-associated lung ade-
nocarcinoma patients, 12% of which experiencing MYH7 
mutation. High expression of MYH7 is also considered to 
be related to cancer progression and poor prognosis, which 
indicated that MYH7 is a potential biomarker for smoking-
related lung cancer and a promising targeting-therapy point 
[274]. MYH7 is ranked in the top ten hub gene of pros-
tate cancer as well [275]. MYH7 is also found enriched 
in the biological processes of oral cancer [276]. A large-
scale research held in China identified MYH7 mutations in 
Epstein–Barr virus-associated intrahepatic cholangiocarci-
noma [277]. Both gene mutations and changes in expression 
can affect the occurrence and development of cancer. All 
the above results show the possible influence of MYH7 on 
tumorigenesis.

Conclusion

MYH7 is one of the most important sarcomere protein 
encoding genes, and its variants are disease-causative for 
a series of cardiomyopathy and skeletal myopathy, which 
sometimes exhibit clinical overlap. MYH7 can also affect a 
limited number of tumorigenesis diseases from expression 
change to base change. Better understanding of the struc-
ture of MYH7 and the functional regions of myosin-7 can 
improve the insight into its related disorders. Genetic testing 
provides and accelerates the accurate and early diagnosis 
of inherited diseases, especially in families. Deeper com-
prehension to the pathogenic mechanisms of cardiomyopa-
thy and/or skeletal myopathy as well as the investigation of 
variable genotype–phenotype is necessary. It is essential to 
extend application of iPSC models and animal models in 
all forms of MYH7-associated diseases and establish more 
suitable animal models to study the disease mechanisms and 
morphological performances. There are still several urgent 
questions to be resolved. More precise and cost-effective 
sequencing technology are needed to distinguish the VUS 
and missing variants, and re-evaluation is necessary prob-
ably, in addition to more sophisticated management of pedi-
atric patients. In conclusion, MYH7 is a potential biomarker 
to predict disease. Further work in the development of base- 
and gene-specific therapies are required for the pinpoint 
management of patients.
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