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Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, 
kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR 
pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products 
(AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, 
mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays 
a huge role in various neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and 
Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of 
neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
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Abbreviations
4E BP1	� Eukaryotic translation initia-

tion factor 4E (elF4E)-binding 
protein 1

AD	� Alzheimer’s disease
AGEs	� Advances glycation end 

products
ALS	� Amyloid lateral sclerosis
AKT	� AK strain transforming
AMPK	� AMP-activated protein kinase
APP	� Amyloid precursor protein
APS	� Adaptor protein with Pleckstrin 

homology and Src homology 2 
domains

ATP	� Adenosine triphosphate
ATG​	� Autophagy-related gene
Bax	� Bcl-2 associated X protein
BBB	� Blood–Brain Barrier

BNIP 3	� BCL2/adenovirus E1B 19 kDa 
protein-interacting protein 3

CML	� Nε-carboxy-methyl-lysine
c-Myc	� Master Regulator of Cell 

Cycle Entry and Proliferative 
Metabolism

Cpd38	� 6-(2,4-difluorophenoxy)-
5-((ethylmethyl)pyridine-
3-yl)-8-methylpyrrolo[1,2-a] 
pyrazin-1(2H)-one

CREB	� cAMP-responsive element-
binding protein

CVD	�  Cardiovascular diseases
DEPTOR	�  DEP domain-containing inter-

acting protein
DPP4	� Dipeptidyl-peptidase 4
DM	� Diabetes mellitus
ERK	� Extracellular signal-regulated 

kinase
FOX O	�  Forehead box O transcription 

factor
FRK	� Fyn-related kinase
FUS/TLS	� Fused in sarcoma/translocated 

in liposarcoma
GLP 1	�  Glucagon-like polypeptide 1
GABA	� Gama-aminobutyric acid
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GLUT	�  Glucose transporter
GPCR	�  G protein-coupled receptor
GRB	� Growth factor receptor-bound 

protein
GSK	�  Glycogen synthase kinase
HD	�  Huntington’s disease
HIF1a	� Hypoxia-inducible Factor-1a
HTT	�  Huntington protein
IGF	� Insulin growth factor
IL	� Interleukin
IR	� Insulin receptor
IRS	� Insulin receptor substrate
JNK	� Jun kinase
MAPK	� Mitogen-activated protein 

kinase
MELAS	� Mitochondrial Encephalopathy, 

Lactic Acidosis, and Stroke-like 
episodes

MLST8	� Mammalian lethal with SEC18 
protein 8

mSIN- mLST 1- mTOR	� Mechanistic/mammalian target 
of rapamycin

NADPH	� Mitogen-activated protein 
kinase

NF κb	� Nuclear factor kappa-light 
chain-enhancer of activated B 
cells

Nrf	� Nuclear factor κ-light-chain-
enhancer of activated B cell

NMDA	� N-methyl-D-aspartate
PD	�  Parkinson’s disease
PDK	� Phosphoinositide-dependent 

Protein Kinase
Pkc	� Protein Kinase C
PI3K	�  Phosphatidyl inositol 3 phos-

phate kinase
PIP3	�  Phosphatidyl inositol 3,4,5 

triphosphate
PINK	�  PTEN putative kinase 1
PKB	�  Protein kinase B
PTEN	�  Phosphatase and tensin 

homolog
PTP1B	� Protein-tyrosine Phosphatase 

1B
PP-242	� mTOR inhibitor
PPAR	�  Peroxisome proliferator-acti-

vated receptor
PRAS 8	� Protease-activated receptors 8
RTK	� Receptor tyrosine kinase
RAGE	� Receptor for AGEs
RAPTOR	�  Regulatory associated protein 

of mTOR

RHEB	�  Ras homologous enriched in 
the brain

RICTOR	�  Rapamycin-insensitive com-
panion of mTOR

ROS	� Reactive oxygen species
RNS	� Reactive nitrogen species
RXR	�  Retinoid transcription factor
SREBP1	� Sterol regulatory element-bind-

ing transcription factor 1
SGK	� Serine/threonine-protein kinase
SR	� Scavenger receptor
S6K	� Ribosomal s6 kinase
SOXS3	� Suppressor of cytokine signal-

ing 3
SOD1	� Superoxide dismutase 1
STAT​	� Signal transducer and activator 

of transcription
SHcA	� SHC transforming protein 1
TDP-43	� TAR DNA-binding protein 43
TSC	� Tuberous sclerosis proteins
TNF	�  Tumor necrosis factor
VEGF	�  Vascular endothelial growth 

factor
Wnt	� Wingless-related integration 

site

Introduction

Insulin resistance is a condition where cells cannot respond 
to insulin, thus resulting in hyperglycemia and hyperinsu-
linemia [1]. Insulin resistance and hyperglycemia are associ-
ated with mitochondrial dysfunction, oxidative stress, and 
cell damage [2]. It is one of the common phenomena seen 
in metabolic diseases, obesity, Diabetes mellitus (DM), and 
neurodegenerative diseases (ND) [3]. It leads to impaired 
glucose metabolism, lipid metabolism, protein accumula-
tion, inflammation, etc. In advanced Parkinson's diseases 
(PD), Alzheimer's diseases (AD), Huntington's disease HD), 
DM, cardiovascular diseases (CVD), and other age-related 
diseases, insulin resistance effects are observed [4, 5]. 
Hyperglycaemia and insulin resistance induce complications 
such as protein deposition and mitochondrial dysfunction 
[6]. Amyloid β, Amyloid β precursor protein (APP), Tau, 
α-synuclein, and Huntington (HTT) depositions in neuro-
degenerative diseases. Initially, these proteins are involved 
in neural cell growth, repair, microtubule stabilization, etc. 
Later, when they go mutated or under physiological stress, 
they lose their function that which is neural autophagy [7, 8].

High circulatory glucose in insulin resistance tends to 
bind with proteins and lipids, thus forming the Advanced 
glycation end products (AGEs) and advanced lipoxida-
tion end products [9]. It also depends on reactive oxygen 
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species, reactive nitrogen species, blood glucose level, and 
intracellular and extracellular pressure [10]. AGEs such as 
methylglyoxal, pentosidine, pyrimidine, and carboxymethyl 
lysine progress apoptosis via binding with AGE (RAGE) 
receptors, AGE-R1/R2/R3, SR A/B, and triggering oxida-
tive stress [11]. AGEs such as methylglyoxal, pentosidine, 
pyrimidine, and carboxymethyl lysine progress apoptosis via 
binding with AGE (RAGE) receptors, AGE-R1/R2/R3, SR 
A/B, and triggering oxidative stress [12]. RAGE activates 
PI3K (Phosphatidylinositol 3 phosphate kinase)/Akt (AK 
strain transforming)/mTOR (mechanistic target of rapamy-
cin), JAK/STAT, and ERK signaling pathways. Age-related 
diseases, DM, renal disorder, cardiovascular diseases, and 
neurodegenerative diseases have overexpression RAGE and 
AGEs. Studies revealed that AGEs induce inflammation, 
oxidative stress, and apoptosis [13].

PI3K/Akt /mTOR pathway plays a significant role in 
cell growth, cellular aging, apoptosis, glucose, protein, and 
lipid metabolisms [14, 15]. This pathway interrupts reactive 
oxygen species (ROS), mitochondrial stress, endoplasmic 
reticulum stress (ER stress), oxidative stress, mutations, and 
inadequate ligand–receptor interaction [16]. Dysregulation 
of PI3/Akt/mTOR causes various diseases such as metabolic 
diseases [17], aging, diabetes mellitus, neuron degradation, 
cancer, delayed wound healing [18], and psychological dis-
orders. Insulin and insulin-like growth factors (IGF) regulate 
this pathway [19]. Increased activation of Akt (AK strain 
transforming) reduces the degradation of the neural cells 
as well as prevents diabetes mellitus [20]. Deterioration 
of PI3K/Akt/mTOR pathway induces the pro-apoptosis, 
apoptosis, autophagy [21], protein misfolding, formation 
of advanced glycation end products, and insulin resistance 
in cells like neurons, pancreatic cells, hepatocytes, and 
nephrons [15]. Glucose and its related metabolism are vital 
for normal and healthy body functions; defects in this path-
way cause various diseases. This review intended to summa-
rize how insulin resistance is associated with the disoriented 
PI3K/Akt/mTOR signaling pathway, its close relationship 
with AGEs, and the effect of RAGE–AGE interaction in the 
PI3K/Akt/mTOR pathway. Furthermore, it discusses these 
aspects with diabetes mellitus and common neurodegenera-
tive diseases.

Mechanism of action of insulin via PI3/AKT/
mTOR pathway

Insulin, insulin-like growth factors (IGF), and insulin-like 
hormones are primary activators for the induction of the 
PI3K/AKT/mTOR pathway and mitogen-activated protein 
kinase pathway (MAPK) [1, 22]. Insulin signaling starts 
with the binding of insulin with insulin receptor (IR) (IR-A 
and IR-B), insulin-like growth factor receptor (IGF-IR), 

and insulin receptor-related receptor (IRR). It simultane-
ously activates Insulin receptor substrate (IRS), extracellu-
lar signal-related kinase (ERK), mitogen-activated protein 
kinase (MAPK), and glycogen synthase kinase 3 (GSK 3) 
[23]. Brain, adipocytes, and hepatocytes express IR highly 
[24]. Depending on the binding of the IR receptor, different 
pathways get activated; if insulin bind with IR-A, it activates 
the c-jun N-terminal kinase (JNK) pathway via SHcA. In 
case it is IR-B, it would initiate IRS [22]. Deactivation of 
IR might incite insulin resistance and obesity, but it does 
not affect development, while overexpression might cause 
hypoglycemia [25]. Deactivation of IR might instigate insu-
lin resistance and obesity, but it does not affect growth, while 
overexpression might cause hypoglycemia [17]. This family 
of insulin receptors contains a heterodimeric structure of 
two α subunits in the extracellular matrix and two β subunits 
in the transmembrane region. Ligand molecule binds with 
the α subunit of the receptor and induces the changes in the 
β subunit, which leads to autophosphorylation of Tyr1162, 
Tyr1158, Tyr1163, and Tyr972 [26]. Subsequently, this initi-
ates the phosphorylation of the IRS family proteins, APS, 
GRB 10/14, SH2B1, and SH2B2. Protein-tyrosine phos-
phatase (PTP1B) regulates IR by dephosphorylation. Ironi-
cally, IR inhibits PTP1B by activating NAD(P)H oxidase 
through a feedforward mechanism [27, 28].

So far, studies have revealed six members of the IRS fam-
ily proteins (IRS1 to IRS 6), but IRS-1 and IRS-2 are the 
most explored substrates [29, 30]. IRS acts as a regulator for 
insulin signaling; it mediates the phosphorylation of other 
kinases involved in insulin signaling [31]. Irs-1−/− knockout 
mice did not show diabetic symptoms, while Irs-2−/−-deleted 
mice presented with the symptoms of T1DM, reduced neural 
proliferation, and infertility. But interestingly, Irs-2−/− mice 
lived longer than the Irs-1−/− knockout mice. This outcome 
exposed the relation between the IRS and liver metabolism, 
glucose utilization, and glycogen biosynthesis [25] [24]. 
PI3K, Grab-2, SHP-2, Fyn, c-Crk, CrkII, and Nck are major 
regulators for Akt/mTOR pathway. It mainly begins with the 
IR receptor activation in mammals [32]. Drosophila and C.
elegans have receptor proteins similar to the IR, namely, 
INR and Daf 2 [33]. IRS is a primary mediator of glucose 
metabolism and expresses in various types of cancer [23]. 
Phosphorylation of IRS1 in the Ser/Thr amino acid sequence 
may suppress the activation of PI3K [32].

PI3K is a secondary messenger and lipid kinase with 
class I, II, and III subtypes. But PI3K class I was the most 
analyzed subtype; it is composed of regulatory and cata-
lytic subunits, respectively, P85 (α, β, and γ) and P110 (α, 
β, γ, and δ) [34]. P110 α and P110 β expression are largely 
seen in most of the tissues, while leucocytes were highly 
expressed P110 γ and P110 δ. P110 α and P110 β subu-
nits play an important role in embryonic development [35]. 
Platelets-like growth factors and insulin receptor signaling 
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activate PI3K. When it is activated, it converts phosphati-
dylinositol 4,5 bisphosphate (PIP2) to phosphatidylinositol 
3,4,5 triphosphate (PIP3) [36]. PTEN dephosphorylates 
PIP3 to PIP2 [37]. It regulates many downstream pathways, 
including the Akt signaling pathway. It is one of the major 
targets for PI3K. PTEN inhibits Erk and Frk kinase pro-
teins activation, which are involved in energy impairment 
and neuron degeneration [38]. Defect in this gene induces 
insulin resistance and hyperlipidemia [39]. Receptor tyrosine 
kinase (RTK) and G protein-coupled complex (GPCR) also 
upregulates PI3K [40].

The protein kinase B (PKB) or Akt belongs to the ser-
ine-threonine kinase family. It has three subtypes Akt 1—
expressed in all cells, Akt 2—majorly in insulin-sensitive 
cells, and Akt 3—elevated in brain and reproductive organs 
[41]. Akt 2 knockout mouse express diabetic-like charac-
teristics. Akt participates inactivation of mTOR complexes, 
phosphatidylinositol 3 phosphate, caspase 9, p21, p27 NFκ 
B, and Bad. It inhibits FOX O, GSK 3, and caspases [42]. 
Akt is an upregulator of mTOR 1, while it is activated by 
mTOR 2 and PDK 1 [27, 43]; PP2A, PHLPP, inhibits it. 
Akt stimulates the GLUT 2 and 4 receptor translocation, 
which plays a significant role in glucose uptake and metabo-
lism [37, 44]. Akt inhibits TSC 2 by phosphorylating and 
activates Ras homologous enriched in the brain (RHEB) to 
stimulate mTOR 1 activity [45, 46]. Akt plays a crucial role 
in neurodevelopment and survival through the P13K/Akt 
pathway and the Akt/ERK pathway [47].

There are two types of mTOR identified so far: mTOR 1 
(sensitive to rapamycin) and mTOR 2 (insensitive to rapa-
mycin). Both mTOR 1 (6 subunits) and mTOR 2 (7 subu-
nits) present as dimers but perform different functions in 
the presence of subunit proteins [48]. mTOR 1 complex 
consists of regulatory associated protein of mTOR (RAP-
TOR), DEP domain-containing interacting protein (DEP-
TOR), MLST8, PRAS 8, and mTOR 1. While mTOR 2 com-
plex contains rapamycin-insensitive companion of mTOR 

(RICTOR), DEPTOR, mSIN 1, mLST 1, and mTOR 2 [14, 
39]. It belongs to Ser/Thr kinase protein family. Both mTOR 
proteins have different downstream proteins, upstream regu-
lators, and functions [39]. PTEN, AMPK, ATP deficiency, 
and TSC 2 repress the mTOR 1 activity. TSC 2 is phos-
phorylated by AMPK when the ATP concentration is low. 
Moreover, TSC1/TSC2 knockout mice showed better β cell 
proliferation, increased size, and hyperinsulinemia [49]. 
Growth factor-induced PIP3 activates mTOR 2. It is also 
positively regulated by Akt [50]. mTOR 1 initiates trans-
lation, cell growth, lipogenesis, and regulates autophagy, 
while mTOR 2 regulates cytoskeleton organization, anabo-
lism, cell survival, and cell proliferation by regulating Akt, 
PPAR, SREBP1, Sgk, 4E BP1, and Pkc [49, 51]. Both com-
plexes activate transcription factors, for example, c-Myc and 
HIF1a—these genes overexpression in hypoxia and diabetes 
(Fig. 1). In cancer and dementia, it induces tumorigenesis by 
inhibiting autophagy; even though rapamycin therapy might 
help due to S6K intervention, Akt is getting reactivated [52, 
53]. Later, Torin 1 and PP- 242 were developed to tackle this 
issue [54]. mTOR has a huge part in immune response (mul-
tiplication and maturation of dendritic cells and T cells), 
sensing growth factors, and nutrition availability [55].

Insulin resistance

Numerous hormones work to maintain metabolism, growth, 
and other cellular processes. Insulin, glucagon, thyroid hor-
mones, and catecholamines are some of the best-known 
examples. Insulin was familiar for diminishing glucose 
concentration in blood by increasing glucose uptake in cells 
which is a direct antagonist to glucagon, cortisol, adrenalin, 
and growth hormones. Later hormones can prompt hyper-
glycemic conditions [28]. All these hormones, including 
leptin, ghrelin, amylin, and thyroid hormones, regulate 
homeostasis, energy metabolism, and appetite [56]. Insulin 

Fig. 1   PI3K/Akt/mTOR signal-
ing pathway. Insulin transmits 
growth, survival, and metabolic 
regulatory signals through IR-A 
and IR-B receptors. Then it 
activates JAK-STAT, Ras-Raf, 
ERK, PI3K/Akt/mTOR signal-
ing pathways
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is a peptide hormone it has A (21 amino acid residues) and 
B (30 amino acid residues) subunits [57]. Insulin performs 
various functions such as glycogen synthesis, protein synthe-
sis, lipogenesis, reduced lipolysis, increased glucose trans-
port, lowering gluconeogenesis, and so on [58]. It can pass 
through the blood–brain barrier; in the case of IGF, it can 
be synthesized in all most all cells [59]. Even though insulin 
is sufficient or has a higher concentration, cells would not 
be sensitive enough to carry out different signaling mecha-
nisms in specific circumstances called insulin resistance 
[57]. Insulin resistance decreases the ability of the cell to 
uptake glucose. It progresses into hyperglycemia and also 
causes hyperinsulinemia. Because of that, glucose metabo-
lism would negatively impact [60]. Insulin resistance leads 
to T2DM, obesity, gestational DM, pregestational maternal 
obesity, metabolic syndrome, and diabetic complications 
[61]. In the absence of insulin activity due to insulin resist-
ance, insulin antagonist hormones glucagon, corticoids, and 
catecholamines treat the cell as if it were fasting. It promotes 
gluconeogenesis, glycogen lysis, keto lysis, lipolysis, etc. 
[62]. Further, this would induce cell stress, apoptosis, oxi-
dative stress, endoplasmic reticulum stress, lipid accumula-
tion, AGEs formation, inflammation, and protein misfolding 
[63]. It also promotes the destruction of the Blood–Brain 
Barrier (BBB) via Endothelial Adora 2a activation, increas-
ing vascular inflammation, synaptic plasticity, and cognitive 
impairment [64].

Insulin resistance cells would be unable to import glu-
cose, while vascular endothelial cells would observe glu-
cose by passive diffusion. Thus, the entered intracellular 

glucose would be converted into secondary metabolic 
products like sorbitol. Metabolism of secondary metabo-
lites leads to AGEs [65]. AGEs are an oxidant it promotes 
oxidative stress, inflammation, and endothelial dysfunc-
tion [66]. ROS plays a considerable part in inducing insu-
lin resistance through inflammation and influencing the 
electron transport chain. ROS and oxidative stress impact 
cellular signaling pathways, for instance, AMP-activated 
protein kinase (AMPK), ERK, JNK, cb1/CAP, MAPK, 
etc. (Fig. 2) [67, 68]. Mutations or inactivation of pro-
teins in the insulin signaling pathway and downstream 
proteins induces insulin resistance [69]. Since IRS is a 
secondary messenger, and with the phosphorylation of 
IRS insulin signaling pathway begins. Impairment in irs1 
and irs2 genes induces insulin resistance; the higher the 
mutations that occur in the gene increases the possibility 
of getting DM [70, 71]. Cellular molecules like free fatty 
acids, acetyl CoA, glucose, carbohydrate metabolic inter-
mediates like diacylglycerol, and inflammatory molecules 
inhibit the activation of IRS [72]. Brain insulin resistance 
in AD and PD is closely related to PI3K/Akt/mTOR sign-
aling pathway [73]. Besides, it obstructs the NO pathway, 
elevates inflammation, and causes insulin resistance [29]. 
Inhibition of these pathways increases autophagy markers 
(Atg5, Atg7, and Beclin-1), downregulation of cell sur-
vival markers, and mitophagy marker proteins like PINK1, 
BNIP 3, and HIF 1α [74]. PTEN is a regulatory protein for 
the insulin signaling pathway.

Fig. 2   AGE–RAGE complex 
interaction induces apoptosis. 
AGE–RAGE complex blocks 
the insulin signaling pathways. 
It induces apoptosis by causing 
mitophagy, ER stress, pro-
tein misfolding, aggregation, 
and blocking of cell survival 
pathways
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AGE–RAGE Interaction with signaling 
pathways

Synthesis and accumulation of AGEs increased with 
aging, hyperglycemia, and hyperlipidemia. There are 
more than 20 products synthesized out of a reaction 
between sugar moiety, lipids, proteins, and nucleic acids. 
Moreover, they tend to bind with the proteins like elastin 
and collagen [75, 76]. Synthesis of AGEs occurs through 
various pathways, including non-enzymatic (Maillard 
reaction) and enzymatic reactions (polyol pathway and 
lipid peroxidation). Besides these pathways, carbohy-
drates undergo a series of modifications and rearrange-
ments through the Namiki pathway, Wolff pathway, 
Hodge pathway, and carbonyl stress pathway to produce 
AGE derivatives [9, 77]. Additionally, the glucose meta-
bolic pathway and its intermediates also play a part in 
AGEs synthesis, for instance, methylglyoxal derived from 
glyceraldehyde 3 phosphate or its isomer dihydroxyac-
etone phosphate [76]. Reversible Schiff base (Amadori 
product) synthesized by these pathways forms a bond with 
them as lysine, arginine, alkylamine, and ribose. Pentosi-
dine, Pyrraline, glyoxal/methylglyoxal lysine dimer, and 
carboxymethyl lysine (CML) are some typical AGEs in 
in-vivo. These compounds must undergo a series of gly-
cation, oxidation, dehydration, condensation, and transi-
tion before finally becoming AGE products [78]. This 
structural modification assists in the glycation and oxi-
dation of biomolecules in the cell [77, 79]. High-fat diet 
processed high protein diet, and cigarette smoking was 
known to improve the deposition of AGEs in tissue. A 
high concentration of AGE and its Interaction with RAGE 
encourage elevating the ROS and intracellular calcium 
level that incites endoplasmic reticulum stress, inflam-
matory pathways, protein misfolding, and apoptosis 
[13, 76]. RAGE is a multiligand transmembrane recep-
tor member of the immunoglobin superfamily with 344 
amino acids. Interaction of RAGE with its ligand (AGE) 
linked with ERK, PI3K, JAK/STAT, MAPK, Wnt sign-
aling, and inflammatory pathways [10, 12]. Other than 
AGEs, it binds with cytokine S100 family, amphoterin, 
and amyloid β. Endothelial, kidney, glial, and astrocytes 
indicate the RAGE [80]. In contrast to the AGE–RAGE 
signaling interaction between AGE-R1 and AGE-R3, the 
latter seems responsible for the proinflammatory signal-
ing pathway. Moreover, these interactions reduce AGE-
mediated ROS, RAGE signaling, oxidative stress, and cal-
cification, yet with age and higher AGEs concentration, 
these functions are declined [9, 81]. A study by Hu et al. 
indicated that AGEs-mediated autophagy by inactivating 
Akt and activating ERK that cells survived when treated 
with Akt activator and ERK inhibitor [82].

Insulin resistance, AGE‑mediated 
diseases, and PI3K/Akt/mTOR signaling 
as comorbidities

Insulin resistance impacts numerous cellular, metabolic, 
inflammatory, etc. These conditions promote the diseases 
like diabetes mellitus, neurodegenerative diseases, athero-
sclerosis, obesity, renal diseases, liver diseases, and infection 
[63]. Evidence indicates the relationship between insulin 
resistance and AGEs (Fig. 3). Neurons are more sensitive 
to insulin; it aids neurons in synaptic development, neu-
ral remodeling, and memory deterioration and damages 
the blood–brain barrier [75, 83]. The emergence of insu-
lin resistance in the brain cell loses a significant energy 
source and induces apoptosis. More precisely burden for the 
mitochondria to compensate for the absence of the energy 
requirement increases. Insulin resistance and AGEs raise the 
probability of triggering oxidative stress: brain magnetic res-
onance image PD and AD patients pointed out these changes 
[4, 84]. Impaired IRS restrain the synaptic plasticity and 
impose synaptic loss and dysfunction [75]. Insulin signal-
ing impairment induced neurodegeneration in AD, PD, and 
Huntington's diseases [85]. Decreased insulin signaling in 
the brain altered glucose homeostasis, which might have led 
to cognitive dysfunction [41]. Increased amyloid β deposi-
tion due to hyperglycemia can potentially increase insulin 
resistance [86]. While AGEs form the cross-linking with 
the proteins by glycation and oxidation. It triggers β sheet 
formation in amyloid β, α synuclein, hemoglobin albumin, 
and prion proteins [87]. Apart from the natural tendency of 
AGEs to elevate ROS, it damages and oxidizes the protein 
in the typical scenario that the ubiquitin-proteasome system 
would degrade. But the presence of AGEs inhibits it and 
further promotes the aggregation of proteins, thus also con-
tributing to the ROS and reactive nitrogen species (RNS) 
formed by nitric oxide synthase and NADPH oxidases. 
Insulin resistance mediated by PI3/Akt/mTOR pathway 
facilitates the AGEs synthesis and accumulation [9, 79]. It 
further raises the ER stress and therefore develops protein 
misfolding.

Various disease conditions like DM, DM-associated 
comorbidities like neuropathy, nephropathy, retinopathy, 
cardiovascular diseases, cataract, PD, AD, and ALS were 
associated with AGEs deposition. Since AGEs share a fair 
role in age-related diseases, metabolic diseases, cardiovascu-
lar diseases, and neurodegenerative diseases, it has the excel-
lent ability to act as a biomarker [76, 88]. Mitochondrial 
mutations also cause insulin resistance; in that case, it can 
affect the expression factors, transcription factors, protein 
synthesis, etc., that may induce diseases like AD, PD, mito-
chondrial encephalopathy, lactic acidosis, and stroke-like 
episodes (MELAS) [4]. A study in England disclosed that 
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T2DM patients are more likely to get AD, PD, and CVD 
[89]. In contradicting a piece of recent evidence suggested 
that PD and insulin resistance does not have any relationship 
based on HOMO-IR, motor symptoms, non-motor symp-
toms, glucose, and insulin concentration in a fasting and 
fed state. They also concluded that Tau and blood amylin in 
the pancreas of DM patients causes neurodegeneration [90]. 
Apoptosis of neurons and Pancreatic β-cell destruction were 
observed in the streptozotocin-treated rat when PI3K/Akt/
mTOR pathway was suppressed [41]. A study concluded 
that comorbid DM in severe PD patients worsens the cog-
nitive impairment independently [91]. Depending on the 
treatment type, those patients who received DPP4 inhibi-
tors and GLP1 agonists reduced the probability [92]. Some 
studies suggested that DM and neurodegenerative diseases 
may be comorbid conditions due to the common pathway 
they share, but managing neurodegeneration with insulin is 
not presented [93].

Diabetes mellitus

Diabetes mellitus (DM) is the most prevalent metabolic dis-
ease associated with insulin secretion and its mechanism of 
action. Insulin is the sole endocrine hormone responsible 
for decreasing glucose concentration in blood and glucose 
metabolism. Categories of DM include type 1 DM (T1DM), 
type 2 DM (T2DM), gestational diabetes, and pre-diabetic 
conditions (insulin resistance) based on age, obesity, and 
insulin association [25, 94]. In contrast, T1DM arises as 

pancreatic Langerhans' beta cells degrade (autoimmunity); 
T2DM rise due to insufficient synthesis of insulin, insulin 
resistance in the cells, and decreasing β cell mass with age 
[15, 17]. In most cases, mortality in T1DM depends on acute 
complications (children and young adults), while T2DM 
is related to chronic complications and relies on comor-
bidities [95]. Around 90% of the patients with DM suffer 
from T2DM, particularly youngsters [32, 96]. Around half 
(45.8%) of adult DM cases worldwide are not reported and 
are left untreated, leading to severe comorbidity conditions 
[97]. Insulin maintains glucose homeostasis via the insulin 
signaling pathway defect in this pathway is one of the major 
causes of insulin resistance which further leads to hypergly-
cemia and DM [1, 36]. Insulin activates IR, and then it phos-
phorylates IRS-2, which leads to the activation of PDK1, 
PI3K, and Akt simultaneously [1]. In most diabetic cases, 
being unable to phosphorylate IRS results in the deregula-
tion of the PI3K/Akt pathway [49].

Regulating this pathway will induce hepatocyte prolif-
eration, decrease blood glucose concentration, and regulate 
gluconeogenesis [25, 98]. Uncontrolled glucose concentra-
tion in DM patients leads to complications like neuropathy 
[99], nephropathy, stroke, cardiomyopathy, retinopathy, PD, 
vascular dementia, and AD, especially in chronic T1DM 
and T2DM [86]. There are two types of neuropathy: periph-
eral and autonomic neuropathy [100]. Diabetic neuropathy-
related foot ulcers lead to amputations and complications 
like paraesthesia [101]. Approx. 50% of patients with DM 
develop neuropathy over their lifetime. Error in the Insulin 
signaling pathway and autophagy induces neuropathological 

Fig. 3   RAGE–AGEs interac-
tion inhibits PI3K/Akt/mTOR 
and NF-κB signaling pathways. 
It affects cellular metabolism 
and protein folding, damages 
organelles, and causes diabetes 
mellitus, neurodegenerative dis-
eases, and endothelial diseases
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changes and neuropathic conditions [102]. 30% of T2DM 
and 20% of T1DM patients eventually develop renal com-
plications. Obesity, hypertension, memory impairment, 
anxiety, hepatopathy, organ damage microvascular, and 
macrovascular diseases are considered the comorbidity of 
DM [66]. It also gives rise to glucotoxicity, lipotoxicity, and 
proteotoxicity in β cells of the pancreas [2]. These all were 
closely associated with AGEs, ROS, RNS, oxidative stress, 
and hyperglycemia (Fig. 4) [25]. In diabetic nephropathy, 
AGEs stimulate TNFα and IL-6 by binding with RAGE; this 
instigates apoptosis of podocyte and glomerular heteropa-
thy. Biosa et al. mentioned in their review that glycosylation 
products such as methylglyoxal interfere with the dopamine, 
syncline, and other proteins involved in AD and PD [103]. 
PI3/Akt/mTOR signaling pathway involves pain mechanism 
hyperexpression of it which stimulates hyperalgesia [102].

Some studies indicated that PI3K/Akt/mTOR maintains 
the β cell volume, prevents apoptosis, induces β cell prolif-
eration, increases insulin secretion, and reduces endoplas-
mic reticulum (ER) stress autophagy and AGEs formation 
in β cells [44]. Irregulated PI3/Akt/mTOR pathway leads to 
hypoxic and reactive oxygen species (ROS)-induced apop-
tosis in myocardiopathy, nephropathy, and VEGF-induced 
atherosclerosis [104]. Suppression of this pathway nega-
tively affects glucose uptake, which reduces cell prolifera-
tion and regulation of this phenomenon observed in hepa-
tocellular carcinoma [105]. It also reduces lipotoxicity in a 
diabetic animal model by inhibiting Fox O1 [106]. PI3K/
Akt/mTOR stimulates antidiabetic activity by inducing the 
immune system against inflammation. It helps immune cell 
activation (natural killer cells, dendritic cells, macrophages, 
etc.) and increases the secretion of cytokines (interleukins, 
interferons, etc.) [49, 107]. Fluctuations in phosphorylation 
and dephosphorylation of the proteins in the PI3K-mediated 
insulin signaling pathway and tumor necrosis factor (TNF) 

cause insulin resistance, and proteins like Nrf 2, Nf-κb, 
PPAR, and apoptotic proteins (caspases) indirectly control 
this pathway [85, 108]. Impairment of Akt 2 downregulates 
ATP7A in T2DM [42]. Braun et al. stated that decreasing 
insulin resistance is associated with increasing AKT/pAKT 
concentration when they treated T2DM patients with resver-
atrol, an antioxidant drug [109]. Liuwei Dihuang decoction 
and tangganjian (traditional Chinese medicines) improve 
glucose uptake in the liver by regulating PI3K/AKT path-
way [1, 36]. Some experiments affirmed that IRS-2, AKT, 
PI3K, PPAR-γ, GLUT-4, Bax, Caspases, p62, mTOR, and 
INS-R protein downregulation increased haptic proliferation, 
reduced oxidative stress, and leads to depletion of glucose 
levels in the blood [21, 25]. GLUT-4 is a glucose undertak-
ing transmembrane protein. It was synthesis, activation, and 
transport induced by the downstream process of the Akt/
mTOR pathway [25, 67]. Akt 1 inhibits GSK 3 by phospho-
rylating, increasing glycogen synthesis, elevating glucose 
uptake, and improving wound healing properties [18].

Neurodegenerative diseases

Neurodegenerative diseases (NDs) affect the nervous system 
primarily. Neuronal degradation occurs due to aging, genetic 
factors, neurotransmitter depletion, mutations, toxins, insu-
lin resistance, protein aggregation, and external factors like 
injury and pollution [110]. Regulation of neural signaling 
pathways, neurotransmitter synthesis, transport, cellular 
stress, and so on will aid in treating NDs Protein aggregation 
induces proteotoxicity in neural cells and promotes apopto-
sis in neural cells in many ways, for instance, via stimulat-
ing the RAGE-mediated cytotoxicity [79]. Fundamentally, 
RAGE involves in neural differentiation and proliferation 
via NF-κB, ERK, and JAK2/STAT3 pathways. RAGE plays 
a vital role in neuronal axon outgrowth and enhances neural 
survival [111]. When it activates AGEs, it damages neu-
rons, thus causing apoptosis [112]. Some of the common 
neurodegenerative diseases are PD, AD, HD, Amyotrophic 
lateral sclerosis (ALS), ataxia, spinal muscular atrophy, 
supranuclear palsy, and motor neuron diseases are observed 
to have insulin resistance, high AGEs as well as disoriented 
PI3K/Akt/mTOR pathway [20]. PI3K/Akt/mTOR pathway 
boosts the elongation and growth of the axons and dendrites. 
Brain-derived neurotrophic factor protein (BDNF), insulin 
and growth factors activate it in the brain [113]. Error in any 
proteins of the PI3K/Akt/mTOR pathway and its regulatory 
pathway reduces the survival rate and growth of the neurons 
[114]. AGE–RAGE Interaction and RAGE intervention in 
the PI3K/Akt/mTOR pathway involved mitochondrial dys-
function, autophagy, and apoptosis. It promotes neurodegen-
eration in AD, PD, HD, and ALS [115].

Fig. 4   Pancreatic β cells apoptosis. Insulin resistance, Advanced 
glycation end products, inflammation, obesity, hyperlipidemia, and 
hypertension stimulates ROS, oxidative stress, apoptosis, and dys-
function of pancreatic β cells. These conditions were also associated 
with Hypersecretion of insulin



1315Molecular and Cellular Biochemistry (2023) 478:1307–1324	

1 3

Alzheimer’s diseases

AD is identified as T3DM because the neuron's resistance 
to insulin influences AD [116]. Insulin encourages the 
formation of synapses and dendrites, stem cell activation, 
neuro production, neural repair, and growth [24, 103]. D 
is mainly associated with aging and age-related conditions 
like reduced neural & synaptic plasticity, neural inflamma-
tion, depletion of neurotransmission, mitochondrial dysfunc-
tion, oxidative stress, and errors in DNA repair [33, 86]. AD 
symptoms comprise dementia, cognitive impairment, behav-
ior changes, and psychological and mood disorders [6]. In 
AD, neuron degradation mainly occurs because of protein 
plaque formation (APP, Amyloid, Tau, and α synuclein), 
synaptic loss, and entanglement of neurofibrils [8]. Deposi-
tion of amyloid and tau proteins is known as amyloidoma, 
and tauopathy, respectively. Even though synuclein is a char-
acteristic feature of the PD, detectable amount of deposition 
was noticed in AD [117]. Processing errors in APP seem to 
worsen AD progression and cause synaptic changes in AD-
like mice [118, 119]. Deposition of these proteins in neurons 
induces neurotoxicity and further promotes inflammation 
and apoptosis [120]. Moreover, misfolded amyloid β binds 
with RAGE receptors and promotes neural degradation 
[121]. APP was a transmembrane protein; furthermore, it is a 
precursor molecule for amyloid β [8, 122]. Post-translational 
modifications of APP produce the isoforms of Amyloid β 
1-40, 1-42, 1- 17, 1-15, and 1-14. Generally, it contributes 
to tumor suppression, is anti-microbial, prevents the leakage 
of Blood-borne solutes, and enhances brain injury recovery 
[8, 14]. Different cell types like platelets, immune cells, and 
fibroblast cells also expressed Amyloid β [123]. Tau (352 to 
441 amino acid residues) is a microtubule-associated protein 
(MAP) present in the axonal compartment of neurons, and 
it works together with MAP 2 protein [7].

Investigations revealed the correlation between insulin, 
IGF, and its signaling pathway interference with AD-asso-
ciated comorbidities such as DM, Amyloid accumulation, 
vascular inflammation the cognitive dysfunction for years. 
Insulin, IGF 1, and IGF 2 concentration seems to be low in 
AD patients even before they show their symptoms [124, 
125]. Other related genes of the insulin signaling pathway, 
such as IRS, PI3K, Akt, GSK3, and PTEN, are low in activ-
ity [75]. Mutations in PTEN and SHIP2 dysregulate the 
insulin signaling pathway because it interferes with Akt and 
simultaneously causes insulin resistance. It affects glucose 
uptake and elevates tau phosphorylation in neural cells [38]. 
Akt mediates the activation of GSK3β, which is involved in 
the phosphorylation of APP, Tau, and amyloid β. Increased 
amyloid β (deposited) stimulates the activity of the GSK3β 
that interferes with the PI3K/Akt/mTOR pathway [14, 126]. 
Hypo-expression of mTORC1 and mTORC2 were observed 
with amyloid accumulated AD model [127]. JAK, SOCS 3, 

and PTPN1 promote APP's phosphorylation via Bcl-2 and 
Bax [128]. It also indicated that reduced insulin activity 
decreases amyloid protein degradation by inhibiting the α 
amyloid degrading enzyme and increases the extracellular 
α and β amyloid secretion and depletion in amyloid clear-
ance in CNS fluid Deposition of amyloid and APP induces 
cytotoxicity and inflammation response by activating cas-
pases, cytochromes, and NFκB [129]. A study pointed out 
that amyloid and tau protein clearance occurred via PI3/
Akt/ mTOR/GSK 3β pathway (Fig. 5). Injecting melatonin 
in mice reduces the accumulation of beta-Amyloid and Tau 
in neurons by regulating PI3/Akt/ GSK 3β pathway [130]. 
Akt 1 phosphorylates GSK3β, which further activates Tau. 
Inactivated mTOR mediates amyloid clearance by stimulat-
ing autophagy in neurons [45].

AGEs contribute to APP, amyloid β, and tau accumula-
tion and phosphorylation by glycating the respective pro-
teins. It results in misfolding and aggregation in cells, thus 
promoting neuroinflammation. It also causes damage to 
Blood–Brain Barrier (BBB) and therefore encourages neu-
roinflammation by permitting the inflammatory cytokines 
and other molecules into the CNS and brain [11, 75]. It also 
has an adverse impact on memory and intellectual and cog-
nitive ability [131]. Besides, AGEs glycate tau protein at the 
N-terminal site where tubulin has to bind, and this causes 
destabilization of the microtubule [78]. A study proved that 
the presence of AGEs depends on gender. For example, car-
boxymethyl lysine is in higher concentration in AD female 
patients than in male patients [11]. Pentoside and Upregu-
lation of RAGE promote the extracellular amyloid β inva-
sion into the neural cell. RAGE inhibitors inhibit by reserv-
ing amyloid β influx, reducing inflammation by regulating 
NF-κB signaling [123]. Elevated RAGE and its ligands are 
closely associated with cognitive impairment, Tau, and 
amyloid β accumulation which showed a closed relationship 
with the Akt/mTOR signaling. Increasing RAGE expression 
elevates the Akt phosphorylation and S100B expression; it 
promotes inflammatory cytokines and apoptosis of neurons 
[132].

Further analysis confirmed that cytoplasmic amyloid 
β-RAGE binding promotes the autophagosome, which leads 
to autophagy and neural apoptosis via dysregulating MAPK 
and inactivating mTORC 1 [12]. Synthetic RAGE targeted 
therapy against amyloid β interaction indicated that it can 
indeed prevent the caspase 3-mediated cell death. But they 
also stated that this need to be evaluated further since their 
mechanism seems a bit completed [121].

Parkinson’s disease

Parkinson's disease is the most prevalent neurodegenerative 
disease among older adults worldwide after Alzheimer's 
[133]. It occurs due to the degradation of the dopaminergic 
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neuron in the brain's substantia nigra pars compacta because 
of the Lewy body formation (α synuclein deposition) [3, 
134]. Dopamine is a dual neurotransmitter that has both 
exhibitory and inhibitory functions. As a consequence of 
the neural degradation, it instigates hyperactivity and a lack 
of inhibitory activity [135]. The Synuclein protein family 
consists of α synuclein, β synuclein, and γ synuclein. α and 
β synuclein located in the presynaptic nerve boutons and its 
deposition in dopaminergic neurons are typical characteris-
tics of the PD brain.

The breast, colon, and pancreas also express γ synuclein 
[87, 117]. Synuclein has more lysine residue AGEs tend 
to bind with it. It goes through several post-translational 
modifications and unstable structural folding, thus revealing 
that it has more lysine residues [78, 87]. A study showed that 
lysine 58, 60, 80, 96, 97, and 102 positions of fructosamine 
have a high affinity towards it when treated with D-ribose. It 
shows that α synuclein tends to bind with AGEs [87, 136]. 
Similar synuclein dopamine derivative quinolones are also 
most likely to form a bond with AGEs like CML. Further-
more, it affects the homeostasis of the neurons and leads to 
apoptosis. Dopamine derivatives aggregation is associated 
with synuclein aggregation (Fig. 6) [136, 137]. Yang et al. 
proposed that mitochondrial stress or mitochondrial protein 
impairment also plays a significant role in neural degrada-
tion, specifically in energy-producing pathways [5]. Motor 
dysfunction, cognitive impairment, hallucination, mood 
disorders, and dementia are the most common symptoms of 
PD [3, 138]. In some cases, misdiagnosis of PD and move-
ment disorder happens. They added because of the shared 

pathways, genetic mutations, and similar symptoms [89]. 
The executive dysfunction rate is higher in patients with DM 
comorbidity [138].

A study in China revealed that DM patients with a long 
history have a 23% chance of developing PD and risk with 
age and gender (female), financial status, and occupation [5]. 
Some other experiments established that up to 8–30% of Par-
kinson's patients develop diabetes over time, and 50–80% of 
patients seem to have higher glucose concentrations during 
glucose tolerance tests. Magnetic resonance spectroscopy 
and Positron emission tomography results indicated glucose 
depletion and increased lactate concentration in substantia 
nigra [4]. The reduction of dopamine synthesis is associated 
with depleted insulin sensitivity [139]. For the patients who 
were under treatment for idiopathic PD with levodopa causes 
hyperglycemia and hyperinsulinemia, some studies suggest 
it may increase sensitivity towards insulin [140]. Magnetic 
resonance of the Parkinson's brain showed a decrease in glu-
cose metabolism and ATP synthesis (Complex 1 of electron 
transport chain) [141]. The close bond between diabetes and 
PD indicates that these diseases might have a common phe-
nomenon. To bring up the fact that insulin resistance and 
AGEs have a considerable role in PD progression [142], 
AGE–RAGE also contributes to the degradation of dopa-
minergic neurons by dysregulating the NF-κB signaling 
pathway, elevating inflammatory cytokine [143].

There seem to be an exciting interaction between PRRK7 
and AGEs, specifically CML and methylglyoxal glycation 
of synuclein proteins. Increasing the expression of PARK 7 
lessens the glycation and aggregation of α synuclein [144]. 

Fig. 5   Amyloid β-RAGE 
and AGE–RAGE interaction. 
Extracellular amyloid β invades 
the neurons through vesicles 
and aggregates as the result of 
dysregulating the amyloid β 
clearance. Besides, the AGE–
RAGE signaling inhibits the 
PI3K/ Akt/mTOR pathway
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PARK family proteins are commonly involved in PD pathol-
ogy. PTEN is inhibited by PTEN-induced kinase 1 (PINK 1) 
or PARK 6, which influences the phosphorylation of Akt via 
PIP3 to PIP2 conversion for normal cell survival and growth 
regulation in the absence of growth factors. In the presence 
of IGF 1, PINK 1 increases the PIP3 concentration.

Further, PINK 1 increases the Akt expression via mTOR 
2 phosphorylating RICTOR [43, 145]. PINK 1 and Akt reg-
ulate each other reciprocally. Research disclosed the role 
of Akt, PINK 1, and parkin (PARK 2) in mitophagy. Erk 
and Akt/mTOR pathways modulate autophagy [146]. When 
mitochondria get damaged, PINK 1 and Akt will accumu-
late in the mitochondrial outer membrane and cytoplasm, 
respectively. It attracts the binding of the parkin to induce 
autophagy [115] (Fig. 6 PI3K/Akt pathway interferes with 
PD pathogenesis, including neurotransmitter synthesis 
and secretion via Cpd38 regulation, calcium channels, and 
NMDA glutamate receptor. Mediate neural survival, protein 
aggregation, and mitochondrial function through modulating 
the activity of FOX O, GSK 3β, and PARK [14, 134]. GLP 1 
receptors are used in neuroprotective treatments in diseases 
like AD and progressed PD [133]. Interlink between PI3K/
Akt/mTOR pathway and AGEs role in PD is not widely 
studied. Various scenarios explored the correlation between 
AGEs, insulin resistance, and its signaling pathway. Addi-
tionally, to add to this point, insulin resistance has an inevi-
table role in PD progression.

Huntington’s diseases

Huntington's disease (HD) is a chronic and progressive auto-
somal dominant disorder. Apoptosis of neurons in medium 
spiny neurons, mainly GABA, dopamine, and acetylcholine-
producing neurons, due to the aggregation of Huntington 

protein (HTT) and APP reduction progress to HD [59, 147, 
148]. Degeneration of the neurons occurs in the brain's stria-
tum, hypothalamus, and cortex parts. HTT participates in 
various development-related pathways, such as hemopoiesis 
and embryonic development, and prevents apoptosis [147, 
149]. Since it is associated with mitochondria, endoplasmic 
reticulum, and the Golgi complex, due to this HTT aggre-
gation HD, patients show cognitive impairment, dementia, 
motor abnormalities, behavioral irregularity, psychiatric 
symptoms, and involuntary muscle movements (Chorea) 
[150]. Mutation in the CAG triplet repeats (more than 35 
repeats) of the htt gene results in the polyglutamine (poly Q) 
synthesis in the N-terminal of HTT. Spinocerebellar ataxias, 
HD, dentatorubral–pallidoluysian atrophy, and spinal and 
bulbar muscular atrophy are some known poly Q diseases 
[151, 152]. HTT will act as a scaffold to interact with motor 
proteins to regulate protein transport, such as brain-derived 
neurotrophic factor (BDNF). Instead, the mutation in HTT 
reduces the protein transport [150]. HTT mutation may lead 
to transcriptional dysregulation, misfolding, aggregation, 
and neural dysfunction, which leads to apoptosis. Studies 
conducted on Drosophila manifested the same results [148]. 
At the same time, AGEs promote the glycation of HTT pro-
tein in HD patients [152]. Ehinger et al. confirmed that phos-
phorylation of HTT reduced motor coordination and did not 
cause any changes in the transportation of the brain-derived 
neurotropic hormones [150].

In a study with HD model mice, insulin, IGF, and magne-
sium participate neural survival, proliferation, and produc-
tive properties [147]. Akt phosphorylates the HTT protein, 
which regulates amyloid precursor protein (APP). APP 
maintains the density and quantity of the synapsis [118]. 
Moreover, they proposed that controlling Akt-HTT via 
PI3K, ERK, and JNK in HD and AD might reduce APP 

Fig. 6   AGEs glycation of α synuclein and interfere with proteasomal 
degradation of misfolded proteins. α Synuclein glycated with carbo-
hydrate moiety during post-translational modifications leads to mis-

folding and elevates the ER stress. Thereupon misfolded α Synuclein 
will be degraded by proteasomal degradation



1318	 Molecular and Cellular Biochemistry (2023) 478:1307–1324

1 3

depletion. Reduced Akt-HTT has been seen in animal mod-
els and the brain of HD patients [59]. Few studies demon-
strated that IGF 1 phosphorylates the Akt, caspases, BAD, 
and FOX O proteins to prevent autophagy and provide neuro 
productivity in the HD model. GSK 3β may induce apoptosis 
by inhibiting proteins like Camp-response element-binding 
protein and heat shock [153]. Reversing or inhibiting the 
Akt/mTOR-influenced autophagy by targeting metabotropic 
glutamate receptor subtype 5 (mGLUR5) in HD model ani-
mals reduced autophagy [154]. A study stated that manga-
nese has a considerable part in regulating Akt by phospho-
rylating it. Akt and mTOR would phosphorylate HTT at Ser 
421, which maintains mitochondrial autophagy and reduces 
the accumulation of proteins and axonal transport [147].

Amyloid lateral sclerosis (ALS)

ALS is a progressive degradation of motor neurons in 
the spinal cortex and anterior with sclerosis. It occurs 
through familial and sporadic history. The standard clini-
cal features of ALS are muscular atrophy, spasticity, and 
respiratory failure due to paralysis of respiratory muscles 
and diaphragm [111, 155]. It is one of the fast progressive 
diseases; within five years after the diagnosis, most ALS 
patients lose their life [48]. Insulin resistance worsens mus-
cular atrophy simultaneously with the gradual reduction in 
GLUT receptors; patients also showed abnormal glucose 
homeostasis [88, 156]. Superoxide dismutase 1 or Cu/Zn 
superoxide dismutase (SOD1), TAR DNA-binding protein 
(TDP-43), deposition, positive ubiquitin protease inclusion 
and mutations in C9orf72, and FUS/TLS were observed in 
motor neurons when/as ALS progression [155]. Most of the 
sporadic ALS seemed to have elevated SOD1. On the other 
hand, TDP mutations and deposition were seen in familial 
ALS [157]. Mutation in SOD 1 increases neural toxicity 
and neural loss by increasing ROS, nitrous oxide, glutamate 
toxicity, enzymes like nitric oxide synthase, cyclooxygenase, 
and inflammatory cytokines such as TNFα and IL1 stir up 
damage in neural cells. Mutation in SOD1 is more common 
in sporadic ALS (15–20%), whereas familial ALS patients 
showed 5–10% [112, 158]. Disease advanced with oxidative 
stress, mitochondrial dysfunction, inflammation of neurons, 
neurofilament disorientation, and loss of axonal terminals 
[158].

Oxidative stress induced by ROS and RNS give rise to 
AGEs further in binds with RAGE that activates inflamma-
tory pathway like NF-κB. Amador products, CML, imida-
zole, pentosidine, and pyrraline, are present in the anterior 
horn of ALS patients' brains and cerebrospinal fluid and are 
considered a marker [159, 160]. AGEs are more tend to bind 
with the mutated SOD1. A study explained that blocking 
the activity of RAGE might be a helpful strategy to lessen 
the progression of ALS [158]. Even though ALS patients 

appear to have insulin resistance, some studies indicated no 
direct contact between the PI3K/Akt/mTOR pathway. Yet, 
gene analysis uncovered the dysregulation of Astrocyte ele-
vated gene 1 (AGE-1) ALS patients. The PI3K/Akt/CREB 
pathway regulates this protein. It is CREB that mediates 
the activation of AGE-1 [161]. While Tolosa et al. reported 
that VEGF reduces the SOD1-induced glutamate toxicity 
through PI3K signaling pathway. Notably, PI3K signaling 
pathway prevented the bcl-2-mediated apoptosis in the ALS 
model [162]. Although numerous studies explored protein 
deposition, insulin resistance, and AGEs, yet did not explore 
the interconnecting link between these conditions in ALS. 
Since there is a common pathway, we must investigate 
these parameters for possible correlation. Focusing on these 
aspects might help to develop a new treatment strategy.

Conclusion

This review discussed that insulin resistance induces the for-
mation of AGEs. It interferes with PI3K/Akt/mTOR path-
way that regulates cell growth, cell survival, metabolism, 
and proliferation. Insufficient insulin secretion and mutations 
in the PI3K/Akt/mTOR pathway decrease the metabolism, 
development, and transcription, which induces apoptosis and 
inflammation. It is also affected by the binding of AGEs 
with receptors since they impact many signaling pathways. 
AGEs through PI3K/Akt/mTOR boost amyloid β fibrils, 
α synuclein aggregation, tau hyperphosphorylation, and 
HTT deposition. Maintaining the proper glucose level and 
improving insulin sensitivity would aid in the reduction of 
the formation of AGEs. So, it is necessary to focus on the 
treatment for reducing the AGEs synthesis or a way to facili-
tate its interaction with its receptor. It might be helpful in 
the diseases like AD, PD, ALS, and HD, where AGEs play 
a significant role.
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