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Abstract
Aging is intrinsically related to metabolic changes and characterized by the accumulation of oxidative and inflammatory 
damage, as well as alterations in gene expression and activity of several signaling pathways, which in turn impact on homeo-
static responses of the body. Hypothalamus is a brain region most related to these responses, and increasing evidence has 
highlighted a critical role of astrocytes in hypothalamic homeostatic functions, particularly during aging process. The purpose 
of this study was to investigate the in vitro effects of a chronic treatment with resveratrol (1 µM during 15 days, which was 
replaced once every 3 days), a recognized anti-inflammatory and antioxidant molecule, in primary hypothalamic astrocyte 
cultures obtained from aged rats (24 months old). We observed that aging process changes metabolic, oxidative, inflamma-
tory, and senescence parameters, as well as glial markers, while long-term resveratrol treatment prevented these effects. In 
addition, resveratrol upregulated key signaling pathways associated with cellular homeostasis, including adenosine receptors, 
nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α), and phosphoinositide 3-kinase (PI3K). Our data corroborate the glioprotective effect 
of resveratrol in aged hypothalamic astrocytes, reinforcing the beneficial role of resveratrol in the aging process.
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Introduction

The hypothalamus is an important brain region that con-
trols several physiological processes, including metabo-
lism, reproduction, circadian rhythm, and homeostasis [1]. 
These intricate and complex processes are controlled by 
appropriate cellular communication at different levels and 
cellular circuits, which rely on the proper functioning of 
astrocytes [2]. In addition, changes in hypothalamic func-
tion are closely associated with aging and the progression of 
neurodegenerative diseases, particularly regarding to energy 
homeostasis, endocrine and inflammatory responses [3–5]; 
thus, hypothalamus has been hypothesized to regulate the 
process of aging of the body.

Astrocytes are abundant cells throughout the central nerv-
ous system (CNS) that make intimate contacts with syn-
apses, blood vessels, and other glial cells. Thus, they are 
involved in many fundamental processes such as synaptic 
transmission, maintenance of blood–brain barrier (BBB), 
and sensing nutrients and hormones [6, 7]. Astrocytes 
also participate in ionic homeostasis and the metabolism 
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of neurotransmitters, particularly glutamate [8]. In the 
hypothalamus, all these characteristics are essential for 
controlling energy homeostasis [9]. However, during meta-
bolic stresses and aging, astrocytes may adopt an activated 
phenotype, with increased secretion of pro-inflammatory 
cytokines, excessive production of reactive oxygen/nitrogen 
species (ROS/RNS), and eventual changes in the expression 
of glial fibrillary acidic protein (GFAP) [3, 9, 10], which 
potentially lead to the occurrence of neurotoxicity and neu-
roinflammation [11].

Resveratrol (3,5,4′-trans-trihydroxy-stilbene) is a poly-
phenol that naturally occurs in grapes, wines, peanuts, and 
berries [12, 13] that has been recognized as a multi-target 
molecule that displays several beneficial effects on the CNS, 
mainly associated with its antioxidant, anti-inflammatory, 
and anti-aging properties [14–19]. These effects are asso-
ciated with different signaling pathways, including nuclear 
factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 
1 (HO-1), sirtuin 1 (SIRT1), phosphoinositide 3-kinase 
(PI3K), AMP-activated protein kinase (AMPK), nuclear 
factor kappa B (NFκB), and adenosine receptors [15, 16, 
20, 21], which may directly or indirectly influence cellular 
metabolism and mitochondrial function. Resveratrol can 
activate SIRT1 and then upregulate peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) [22, 
23]. In mice, chronic treatment with resveratrol had posi-
tive effects on metabolic health [13], but to our knowledge, 
there are no studies about the chronic effects of resveratrol 
in hypothalamic astrocytes from aged animals.

Regarding to aging process, mature astrocytes present an 
overall increase in the expression of inflammatory signal-
ing components and a decrease in cytoprotective pathways 
[3, 24]. Therefore, we hypothesized that these changes in 
hypothalamic astrocyte could be prevented by long-term 
exposure of resveratrol, which mediates glioprotection in 
several experimental models. In this sense, the aim of this 
present study was to evaluate the effects of chronic res-
veratrol treatment in the expression of glial markers and 
molecular pathways associated with inflammatory response 
and redox homeostasis in hypothalamic astrocyte cultures 
of aged Wistar rats. With this approach, we reinforced the 
glioprotective role of resveratrol contributing to characterize 
its potential mechanisms in the aging process focusing on 
hypothalamus.

Methods

Reagents

Resveratrol was obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Dulbecco’s modified Eagle’s medium/F12 
(DMEM/F12) and other materials for cell culture, TRIzol 

reagent, and ELISA kits for tumor necrosis factor-α (TNF-
α) and interleukin-1β (IL-1β) were purchased from Gibco/
Invitrogen (Carlsbad, CA, USA). High Capacity cDNA 
Reverse Transcription kit, Taqman Universal PCR Master 
Mix, and TaqMan® Assays were purchased from Applied 
Biosystems (Foster City, CA, USA). All other chemicals 
were purchased from common commercial suppliers.

Animals

Male Wistar rats (24 months old) were obtained from the 
breeding colony of the Department of Biochemistry (Fed-
eral University of Rio Grande do Sul, Porto Alegre, Bra-
zil) and maintained under a controlled environment (12 h 
light/12 h dark cycle; 22 ± 1 °C; ad libitum access to food 
and water). All animal experiments were performed by 
following the National Institutes of Health (NIH) Guide 
for the Care and Use of Laboratory Animals and were 
approved by the Animal Care and Use Committees of 
Federal University of Rio Grande do Sul (process number 
35387).

Primary hypothalamic astrocyte cultures 
preparation and maintenance

Hypothalamic astrocyte cultures were performed with our 
previous publication [3]. Thirty Wistar rats (24 months old) 
were anesthetized with isoflurane and after the hypothala-
mus was aseptically dissected, and the meninges removed. 
The tissue was enzymatically digested in Hank’s balanced 
salt solution (HBSS) containing 0.05% trypsin at 37 °C 
for 7 min. The tissue was then mechanically dissociated 
for 7 min using a Pasteur pipette and centrifuged at 100×g 
for 5 min. The pellet was resuspended in HBSS and again 
mechanically dissociated with a Pasteur pipette until com-
plete homogenization, and then centrifuged at 100 × g for 
5 min. After mechanical dissociation and centrifugation, the 
cells were resuspended in DMEM/F12, supplemented with 
10% fetal bovine serum (FBS), 15 mM HEPES, 14.3 mM 
NaHCO3, 1% Fungizone®, and 0.04% gentamicin. Cells 
were seeded in 6- or 24-well plates pre-coated with poly-
l-lysine and cultured at 37 °C in a 5% CO2 incubator. The 
cells were seeded at a density of approximately 2–4 × 105 
cells/cm2. After 24 h, the culture medium was exchanged; 
during the first week, the medium was replaced once every 
2 days, and from the second week on, once every 3 days. 
From the second week on, the astrocytes received medium 
supplemented with 20% FBS until they reached confluence 
(at approximately the fourth week). Morphological analysis 
was performed as control of hypothalamic aged astrocyte 
cultures in agreement with our previous study [3].
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Cellular treatments

Long-term treatment of hypothalamic astrocytes with res-
veratrol (1 µM) was performed for 15 days [25], a half of the 
time required for cultured astrocytes reach the confluence. 
From the second week of culture on, resveratrol was added 
in the culture medium (DMEM/F12 20% FBS), which was 
replaced once every 3 days until the cells reached conflu-
ence, when the analyses were carried out (Fig. 1). Resvera-
trol was diluted in 0.005% ethanol. It is important to mention 
that cells exposed to ethanol were not different from those 
obtained at basal conditions without vehicle, which is in 
accordance with our previous publication [26].

MTT reduction assay

MTT (methylthiazolyldiphenyl-tetrazolium bromide, Sigma-
Aldrich) was added to the culture medium at a concentration 
of 50 μg/mL and cells were incubated for 3 h at 37 °C in 
an atmosphere of 5% CO2. Subsequently, the medium was 
removed and the MTT crystals were dissolved in dimethyl-
sulfoxide. Absorbance values were measured at 560 nm and 
650 nm [16].

Lactate dehydrogenase (LDH) assay

The release of the enzyme LDH was assessed measuring its 
activity in the culture medium (100 μL) of astrocytes using 
a commercial UV assay (Bioclin, Brazil).

Extracellular lactate levels

Lactate levels in the extracellular medium were quantified 
by a commercial kit from Bioclin (Belo Horizonte, MG, 
Brazil). The results are expressed in mmol/L.

RNA extraction and quantitative RT‑PCR

Total RNA was isolated from astrocyte cultures using TRI-
zol Reagent. Extracted RNA (1 μg) was submitted to cDNA 
synthesis by High Capacity cDNA Reverse Transcription 
Kit. Quantitative PCR determination of the messenger 
RNAs (mRNAs) encoding GFAP (#Rn00566603_m1), 
vimentin (#Rn00667825_m1), nestin (#Rn00564394_m1), 
connexin-43 (Cx43; #Rn01433957_m1), glutamate aspar-
tate transporter (GLAST; #Rn00570130_m1), glutamate 
transporter 1 (GLT-1; #Rn00691548_m1), aquaporin 4 
(AQP4; #Rn00563196_m1), glutamine synthetase (GS; 
#Rn01483107_m1), p21 (#Rn 00589996_m1), tumor necro-
sis factor-α (TNF-α; #Rn99999017_m1), interleukin-1β 
(IL-1β; #Rn00580432_m1), NLR family pyrin domain 
containing 3 (NLRP3; #Rn04244620_m1), interleukin-10 
(IL-10 (#Rn00563409_m1), NFκB p65 (#Rn01502266_
m1), cyclooxygenase 2 (COX2; #Rn01483828_m1), glu-
cocorticoid receptor (GR; #Rn00561369_m1), toll-like 
receptor 4 (TLR4; #Rn00569848_m1), toll-like receptor 
2 (TLR2; #Rn02133647_s1), receptor for advanced gly-
cation end products (RAGE; #Rn01525753_g1), S100 
calcium-binding protein B (S100B; #Rn04219408_m1), 
high mobility group box 1 (HMGB1; #Rn02377062_g1), 
adenosine receptor A1 (#Rn00567668_m1), adenosine 
receptor A2a (#Rn00583935_m1), adenosine receptor A2b 
(#Rn00567697_m1), adenosine receptor A3 (#Rn00563680_
m1), glutamate-cysteine ligase (GCL; #Rn00689046_ m1), 
superoxide dismutase 1 (SOD1; #Rn00566938_m1), super-
oxide dismutase 2 (SOD2; #Rn00690588_g1), PGC-1α 
(#Rn00580241_m1), Poly (ADP-ribose) polymerase (PARP; 
#Rn00565018_m1), inducible nitric oxide synthase (iNOS; 
#Rn00561646_m1), HO-1 (#Rn01536933_ m1), Nrf2 
(#Rn00582415_m1), SIRT1 (#Rn01428096_ m1), PI3K 
(#Rn01769524_m1), AMPK (#Rn00576935_m1), β-actin 

Fig. 1   Timeline of experimental design. The hypothalamus of male 
Wistar rats (24  months old) was dissected and processed to obtain 
the primary astrocyte cultures. Astrocytes were maintained in culture 

medium (DMEM/F12) for 15 days and then resveratrol (1 µM) was 
resuspended in this medium for the chronic treatment (15 days). d.i.v. 
days in vitro
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(#Rn00667869_m1) were performed using the TaqMan real-
time RT-PCR system with inventory primers and probes pur-
chased from Applied Biosystems (Thermo Fisher Scientific), 
as referred for each gene. Target mRNA levels were normal-
ized to β-actin levels. Results were analyzed employing the 
2−ΔΔCt method [27].

Inflammatory response measurement

Cytokine levels were measured in the extracellular medium 
using ELISA kits for TNF-α and IL-1β from Gibco/Invitro-
gen (Carlsbad, CA, USA). The results are expressed in pg/
mL and the average minimum sensitivity of the ELISA kits 
detection was: 25 pg/mL for TNF-α and 12 pg/mL for IL-1β.

Western blot analysis

Astrocytes were solubilized in a lysis solution containing 
4% SDS, 2 mM EDTA, and 50 mM Tris–HCL (pH 6.8). 
Samples were heated at 100 °C for 10 min, fractionated by 
SDS-PAGE (30 µg protein per sample) and electro-blotted 
onto nitrocellulose membranes. Protein loading and electro-
blotting efficiency were verified through Ponceau S stain-
ing. The membrane was blocked in 5% albumin prepared 
in Tween-Tris-buffered saline (TTBS; 100 mM Tris–HCl, 
pH 7.6, containing 70  mM NaCl and 0.1% Tween-20), 
incubated overnight at 4 °C with the primary antibodies 
anti-NFκB (1:1000, Cell Signaling, Massachusetts, USA), 
anti-PGC-1α (1:1000, Invitrogen, Massachusetts, USA), 
anti-β-actin (1:20,000, ProteinTech Group, Illinois, USA) 
and washed with TTBS. The membrane was incubated with 
anti-IgG from rabbit or mouse (1:5000, Cell Signaling, Mas-
sachusetts, USA) according to the species that originated 
the primary antibody linked to peroxidase for 2 h at room 
temperature and washed with TTBS again. The immunore-
activity was detected by enhanced chemiluminescence using 
Millipore Immobilon™ Western chemiluminescent HRP 
substrate in a CCD camera (GE Image Quant LAS4000). 
Densitometric analysis of the membranes was performed 
with ImageJ software. Blots were developed to be linear in 
the range used for densitometry. The representative images 
of Western blot analysis are in the Supplementary Material 
(Fig. S1).

Statistical analysis

Data were statistically analyzed using Student’s t-test. p 
values < 0.05 were considered significant. *Indicates dif-
ferences between control and resveratrol groups (n = 10 
independent astrocyte cultures and, at least, duplicate of 
treatments). All analyses were performed using GraphPad 
Prism 9.

Results

Resveratrol modulates important glial parameters

First, we tested three concentrations of resveratrol (1, 10 
and 100 µM) in accordance with previous studies in astro-
glial cells [26, 28]. Chronic treatment of aged hypotha-
lamic astrocytes with 1 and 10 µM of resveratrol did not 
change cellular viability measured by MTT reduction, nei-
ther LDH activity (data not shown). However, 100 µM of 
resveratrol decreased MTT reduction, but not the activity 
of LDH (data not shown). Therefore, we choose the safely 
applicable concentration of 1 µM of resveratrol, since 
it may be more compatible with those obtained in vivo 
and it is in a range of concentrations that have been used 
in long-term in vitro studies [25, 29–31]. Moreover, the 
extracellular levels of lactate, measured as an indicative 
of metabolic functionality of the cells, were not altered 
(data not shown).

We then determined the effects of resveratrol on glial 
markers. Chronic resveratrol exposure decreased the 
mRNA levels of GFAP (p < 0.05; Fig. 2A) but did not 
change vimentin, nestin, and Cx43 (Fig. 2B–D, respec-
tively), while the expression of AQP4 was decreased 
(p < 0.0001; Fig. 2E). In addition, the main glutamate 
transporters, GLAST and GLT-1, had a significant increase 
after resveratrol treatment (p < 0.05; Fig. 2F, G). GS, an 
important enzyme in glutamate metabolism, was signifi-
cantly increased after resveratrol treatment (p < 0.0001; 
Fig. 2H).

Resveratrol modulates inflammatory response 
and adenosine receptors

Next, we evaluated the effects of resveratrol on inflam-
matory response. Resveratrol decreased mRNA levels of 
p21 (p < 0.0001; Fig. 3A), an important regulator of senes-
cence and inflammation. In addition, resveratrol decreased 
mRNA expression and extracellular levels of TNF-α 
(p < 0.05; Fig. 3B and C, respectively), while decreased 
only the mRNA expression of IL-1β (p < 0.0001; Fig. 3D). 
The release of IL-1β (Fig. 3E) was not affected. In con-
trast, resveratrol increased the expression of the anti-
inflammatory cytokine IL-10 (p < 0.0001; Fig. 3F) and the 
mRNA expression of NLRP3 (Fig. 3G), which is involved 
in IL-1β processing, were not affected.

Potentially mediating these inf lammatory events, 
we verified a downregulation of NFκB p65 and COX-2 
(p < 0.05; Fig. 3H and J, respectively). However, NFκB 
p65 protein levels were not changed (Fig. 3I). Chronic 
treatment with resveratrol also modulated the expression 
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of receptors involved in the regulation of inflammatory 
responses. GR and TLR4 were downregulated (p < 0.05; 
Fig. 3K and L, respectively), while TLR2 levels were not 
significantly different (Fig. 3M). Although the mRNA 
levels of RAGE (Fig. 3N) were upregulated (p < 0.05), 
resveratrol decreased the expression of S100B (p < 0.05; 
Fig. 3O), a potential RAGE ligand, and did not change 
HMGB1 expression (Fig. 3P).

We also evaluated the expression of adenosine recep-
tors, which are recognized for their important inflam-
matory and neuromodulatory activities. Resveratrol 
increased the mRNA levels of A1, A2a, and A3 receptors 
(p < 0.05; Fig. 4A–C), but did not change the expression 
of A2b receptor (Fig. 4D).

Resveratrol changes redox homeostasis

Subsequently, we evaluated the expression of genes associ-
ated with redox homeostasis after chronic treatment with res-
veratrol. We observed an upregulation of GCL, SOD1, SOD2, 
and PGC-1α (p < 0.0001; Fig. 5A–D). The protein levels of 
PGC-1α were not significantly changed (Fig. 5E). Further-
more, the enzyme PARP and iNOS were downregulated by 
resveratrol (p < 0.0001; Fig. 5F and G, respectively).

Fig. 2   Changes in classical 
glial parameters after chronic 
treatment with resveratrol in 
cultured hypothalamic astro-
cytes. The cells were incubated 
with resveratrol (1 µM) in the 
culture medium for 15 days 
and the mRNA expression of 
GFAP (A), vimentin (B), nestin 
(C), Cx43 (D), AQP4 (E), 
GLAST (F), GLT-1 (G), and 
GS (H) were evaluated. The 
data represent the means ± S.D., 
analyzed by Student’s t-test. 
p values < 0.05 were consid-
ered significant. *Indicates 
differences between control 
and resveratrol groups (n = 10 
independent cultures and, at 
least, duplicate of treatments). 
RSV resveratrol
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Fig. 3   Effects of chronic resveratrol treatment on inflammatory 
parameters in cultured hypothalamic astrocytes. The cells were incu-
bated with resveratrol (1 µM) in the culture medium for 15 days and 
the mRNA of p21 (A) and TNF-α (B), TNF-α release (C), mRNA 
of IL-1β (D), IL-1β release (E), mRNA of IL-10 (F), NLRP3 (G), 
NFκB (H), NFκB protein levels (I), mRNA of COX-2 (J), GR (K), 

TLR4 (L), TLR2 (M), RAGE (N), S100B (O), HMGB1 (P) were 
evaluated. The data represents the means ± S.D., analyzed by Stu-
dent’s t-test. p values < 0.05 were considered significant. *Indicates 
differences between control and resveratrol groups (n = 10 independ-
ent cultures and, at least, duplicate of treatments). RSV resveratrol
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Signaling pathways associated with glioprotective 
effects of resveratrol

Finally, we analyzed important signaling pathways that can 
mediate the glioprotective effects of resveratrol. The expres-
sion of HO-1 (p < 0.05; Fig. 6A), Nrf2 (p < 0.0001; Fig. 6B), 
SIRT1 (p < 0.05; Fig. 6C), and PI3K (p < 0.05; Fig. 6D) was 
upregulated by resveratrol. However, resveratrol decreased 
the mRNA levels of AMPK (p < 0.05; Fig. 6E).

Discussion

Aging, a natural biological process, is characterized by a 
gradual accumulation of oxidized biomolecules and dam-
aged cell organelles, leading to progressive loss of struc-
tural and functional integrity of the cells. Metabolism and 
aging can affect each other mutually; during aging, there 
are massive changes in body energy metabolism, in which 
the hypothalamus plays an important role [32]. Accumulat-
ing evidence suggests that microinflammatory insults dis-
turb hypothalamic regulation, resulting in metabolic imbal-
ance and aging progression [33]. These processes involve a 
remodeling of the hypothalamus, which is closely related to 
astrocytic functionality and changes in gene transcription 
[3, 19, 34].

Aged human brains display heterogeneous changes 
in astrocyte morphology and GFAP levels, in addition to 

Fig. 4   Effects of chronic resveratrol treatment on adenosine receptors 
in cultured hypothalamic astrocytes. The cells were incubated with 
resveratrol (1 µM) in the culture medium for 15 days and the mRNA 
expressions of A1 (A), A2a (B), A3 (C), A2b (D) were evaluated. The 
data represents the means ± S.D., analyzed by Student’s t-test. p val-
ues < 0.05 were considered significant. *Indicates differences between 
control and resveratrol groups (n = 10 independent cultures and, at 
least, duplicate of treatments). RSV resveratrol

Fig. 5   Changes in redox homeostasis of hypothalamic astrocyte cul-
tures after chronic treatment with resveratrol. The cells were incu-
bated with resveratrol (1  µM) in the culture medium for 15  days. 
The mRNA expressions of the following enzymes were evaluated: 
GCL (A), SOD1 (B), SOD2 (C), PGC-1α (D), PARP (F), and iNOS 

(G), as well as PGC-1α protein levels (E). The data represents the 
means ± S.D., analyzed by Student’s t-test. p values < 0.05 were con-
sidered significant. *Indicates differences between control and res-
veratrol groups (n = 10 independent cultures and, at least, duplicate of 
treatments). RSV resveratrol
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mitochondrial/redox homeostasis dysfunction, neuroinflam-
mation, excitotoxicity, and alterations in glucose metabo-
lism [35, 36]. When we evaluated the glial markers in our 
study, we found a downregulation of GFAP after chronic 
resveratrol treatment. Because aging astrocytes have shown 
increased GFAP expression, which may be associated with 
reactive/activated astrocytes [37, 38], our finding sug-
gests that chronic resveratrol may exert a protective effect 
by attenuating aging-related astrocyte activation. Another 
important functional parameter of astrocytes is AQP4, a 
water channel protein expressed by these cells [39]. Previ-
ously, we showed a higher expression of AQP4 in mature 
astrocytes compared with neonatal cells [24]. In addition to 
its role in water homeostasis, AQP4 has been related to neu-
roinflammation and neurodegenerative processes [40, 41], 
being the downregulation of AQP4 observed in our study 
possibly related to the role of resveratrol in maintaining 
astrocyte homeostasis.

Glutamate is the predominant excitatory neurotransmit-
ter in the CNS. Particularly in the hypothalamus, glutamate 
has been associated with neuroendocrine regulation and 
feeding behavior [42]. However, it can be neurotoxic when 
inappropriately remaining at high levels in the synaptic cleft 
[43, 44], and hypofunction and downregulation of glutamate 
transporters may be associated with pathological conditions 
and aging. GLAST is an important glutamate transporter 
present in glial cells, but the major glutamate transporter in 
the brain is GLT-1, responsible for more than 90% of gluta-
mate uptake [44]. Here, we observed that chronic treatment 

with resveratrol increased the expression of both GLAST 
and GLT-1 in aged hypothalamic astrocytes. Resveratrol-
induced improvement in glutamate uptake has been reported 
in previous studies by our group [14, 28, 45], which may be 
related to the increased expression of glutamate transport-
ers found in the current study. It is important to note that 
the activity of glutamate transporters can be impaired by 
oxidative damage [46] and inflammatory responses, which 
are also attenuated by resveratrol [47].

In addition to increase glutamate transporters, resveratrol 
also upregulated the expression of GS, a specific astrocytic 
enzyme responsible for the conversion of glutamate in glu-
tamine. Glutamine is then forwarded to neurons as an inter-
mediate for recycling glutamate [48]. Our previous works 
have demonstrated that GS expression decreased in cultured 
astrocytes in an age-dependent manner, demonstrating that 
resveratrol may act as a preventive factor in this process [3, 
49]. Interestingly, glutamate metabolism can be modulated 
by glucocorticoids; they are related to decreased glutamate 
uptake [50] and GS activity and expression [51] by astro-
cytes. We observed a downregulation of glucocorticoid 
receptors (GR) after resveratrol treatment, which may rep-
resent an additional mechanism by which resveratrol exerts 
the homeostatic role in glutamate metabolism. In addition, 
glucocorticoid actions in the hypothalamus may provide an 
integrative signal linking stress with the regulation of energy 
homeostasis [52].

With the progression of aging, the expression of senes-
cence markers, including p21, also increases. This protein 

Fig. 6   Glioprotective signal-
ing pathways associated with 
chronic resveratrol treatment. 
The cells were incubated with 
resveratrol (1 µM) in the culture 
medium for 15 days. mRNA 
expressions of HO-1 (A), Nrf2 
(B), SIRT1 (C), PI3K (D), 
and AMPK (E) were evalu-
ated. The data represents the 
means ± S.D., analyzed by 
Student’s t-test. p values < 0.05 
were considered significant. 
*Indicates differences between 
control and resveratrol groups 
(n = 10 independent cultures 
and, at least, duplicate of treat-
ments). RSV resveratrol
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promotes cell cycle arrest in senescent cells, and the inhi-
bition of this marker is recognized as an important way to 
treat age-related pathologies [53]. Importantly, we observed 
a downregulation of p21 by the chronic treatment with res-
veratrol in hypothalamic astrocytes. Aging progression is 
also characterized by inflammatory responses throughout 
the body, according to the concept of “inflammaging” [54]. 
With this regard, hypothalamic astrocytes from adult and 
aging animals have presented a pro-inflammatory profile [3], 
which may lead to a chronic inflammatory background in 
the hypothalamus [33]. The NFκB pathway is an important 
player in astrocyte reactivity [32] and age-related hypotha-
lamic inflammation [55], while inhibition of NFκB has been 
associated with improvement of various aspects of meta-
bolic conditions. Because many inflammatory cytokines are 
induced through this transcription factor, the downregulation 
of NFκB p65 expression by resveratrol may be effective in 
suppressing hypothalamic microinflammation [33]. In agree-
ment with that, astrocytes chronically treated with resvera-
trol presented a downregulation of several pro-inflammatory 
mediators, including TNF-α, IL-1β, and COX-2, and an 
upregulation of the anti-inflammatory cytokine IL-10. Of 
note, adenosine receptors play neuromodulatory and neuro-
inflammatory functions [56, 57] that have been associated 
with resveratrol-mediated anti-inflammatory activity in a 
previous study by our group [16]. Here, adenosine recep-
tors were also positively modulated by resveratrol chronic 
treatment, reinforcing their role in the glioprotective effects 
of resveratrol.

In addition to produce and release a wide range of inflam-
matory mediators, astrocytes can also respond to them dur-
ing immune responses through the expression of pattern 
recognition receptors [58]. In neurodegenerative diseases 
and CNS injuries, endogenous and exogenous ligands trig-
ger TLR signaling, leading to the transcription of inflamma-
tory cytokines [59]. Thus, the downregulation of TLR4 after 
treatment with resveratrol may be associated with a negative 
modulation of inflammatory markers. Moreover, resveratrol 
decreased S100B, which can act as an extracellular factor 
that engages RAGE [60]. Activation of RAGE by its ligands 
induces the release of cytokines, interleukins, and increased 
reactive oxygen species production in glial cells [61]. How-
ever, recent studies demonstrate that RAGE activation also 
contribute to neuronal-astrocytic communication [62] and 
promote changes in redox regulation.

Although reactive oxygen/nitrogen species (ROS/RNS) 
carry out modulatory functions in physiological conditions, 
excessive production of these species can contribute to the 
development and progression of pathological processes 
[63]. Aging process leads to mitochondrial dysfunction and 
imbalance of redox homeostasis, with significant involve-
ment of oxidative and nitrosative stresses [36, 64]. With 
this regard, glial cell-related antioxidant defenses display 

important roles for the protection and repair of the brain, 
and are essential for controlling energy homeostasis [9]. 
PGC-1α is a transcription co-activator for nuclear recep-
tors and plays a fundamental role in the control of cellular 
energy metabolism, redox homeostasis, and neuroinflamma-
tion [23, 65]. The astrocytic antioxidant system also involves 
the synthesis of GSH, which depends on the enzyme GCL. 
Importantly, neurons are dependent on astrocytic GSH to 
their own antioxidant defense [66]. In our study, we verified 
an increase in the expression of PGC-1α and GCL, as well as 
SOD1 and SOD2, indicating an improvement of antioxidant 
defenses in hypothalamic astrocytes from aged rats by the 
chronic treatment with resveratrol. In addition, aging brains 
show higher levels of PARP and iNOS [64, 67], which was 
downregulated in our experimental model, reinforcing the 
antioxidant action of the chronic treatment with resveratrol.

Oxidative stress and inflammation are closely related pro-
cesses, which are connected by important signaling path-
ways, such as NFκB and Nrf2 [68]. Signaling pathways act 
as key regulators of cell survival and responses to different 
physiological and pathological. Resveratrol is effective to 
prevent age-related functional alterations of astrocytes by 
different signaling pathways, including Nrf2/HO-1, PI3K/
Akt, AMPK, and NFκB [15, 16, 20, 21]. Nrf2 is an essential 
transcription factor responsive to metabolic, inflammatory, 
and redox signals, acting as a regulatory mechanism for 
the homeostasis of these systems. HO-1, one of the genes 
regulated by Nrf2, acts to produce cellular responses against 
stressful conditions [20, 69]. Our data corroborate with these 
mechanisms since chronic treatment with resveratrol was 
able to increase the expression of Nrf2 and HO-1. SIRT1 
and PI3K, which represent important metabolic effectors, 
were also upregulated by resveratrol, thus potentially par-
ticipating in the protective response induced in hypothalamic 
astrocytes [70, 71]. However, some limitations of this study 
should be mentioned, including the differences between gene 
expression and protein levels of NFκB and PGC-1α, prob-
ably due to their different regulatory mechanisms.

In addition, data from cultured astrocytes derived from 
Wistar rats chronically treated with resveratrol will confirm 
and expand the knowledge about the role of resveratrol on 
hypothalamus. In line with this, changes in hypothalamus 
strongly interfere with brain homeostasis, being a critical 
point in development and progression of age-dependent 
brain dysfunctions. Therefore, hypothalamic astrocytes may 
emerge as a therapeutic target for understanding the brain 
aging under physiological and pathological conditions.

Finally, resveratrol is a recognized anti-inflamma-
tory and antioxidant polyphenol with beneficial effects 
described in many tissues, but the focus of several stud-
ies with this compound is based on the strategy of acute 
treatments. If we consider long-term treatments, they can 
have further beneficial effects as a preventive approach. 
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Clinical evidence of food or nutrient supplements chroni-
cally administrated in patients suggest that diets rich in 
polyphenols, for example the Mediterranean diet, could be 
an effective nutritional strategy [72]. Therefore, in the near 
future, our findings might contribute for understanding the 
effects of resveratrol on hypothalamus, including for clini-
cal studies focusing on metabolism and aging. Considering 
the effects associated with aging on hypothalamic function 
(Fig. 7), such as oxidative stress and inflammation, it is 
reasonable to assume that long-term resveratrol treatment 
could help with these age-dependent changes in astrocytes 
and consequently the age-related diseases.
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